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Abstract 
In this paper, we used an efficient algorithm to obtain an analytic approxima-
tion for Volterra’s model for population growth of a species within a closed 
system, called the Restarted Adomian decomposition method (RADM) to 
solve the model. The numerical results illustrate that RADM has the good ac-
curacy. 
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1. Introduction 

Integro-differential equations arise in many areas of mathematics and sciences, 
such as biology, ecology, medicine, physics and technology. This class of equa-
tions arises while modeling various engineering and natural science problems, 
and hence it attracts much attention in numerical computation and analysis. 
Recently, many attempts have been made to develop analytic and approximate 
methods to solve the Volterra’s population model, such as, Euler method [1], the 
modified Euler method [1], the classical fourth-order Runge-Kutta method [1], 
Runge-Kutta-Fehlberg method [1], Pade approximation [2], Adomian decom-
position method [3], Sinc-Galerkin method [3], composite spectral functions 
approximations [4], Rational Chebyshev and Hermite functions collocation [5], 
Homotopy perturbation method [6] and Variation iteration method [7]. In this 
research, we solve Volterra’s population model by Restarted Adomian decompo-
sition method. 

2. Description of the Volterra’s Population Model 

Volterra proposed this model for a population [8] [9]. The simplest case, in cha-
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racterizing the population dynamics of an isolated species, is to consider an 
asexually reproducing organism for which age is irrelevant and behavior does 
not change with time or with the number of the organisms. The number, u, must 
be sufficiently large so that the process can be well approximated by a determi-
nistic treatment and by real, rather than integer, numbers. It may mean number 
of individuals, in which case it is an integer, but it may also mean total weight, 
weight of certain parts, total metabolism, or some other measure of quantity of 
life.  

Under these assumptions the change in u is given by the Malthusian equation 
in [8]: 

d , 0
d
u au a
t
= >                          (1) 

where a is birth rate, by integration, a geometrical law of increase (or decrease, if 
0a < ) is obtained: 

0e
atu u=                             (2) 

Volterra’s practice discussed deeply the restrictive assumptions under which 
his formulas were derived. Then, he proceeded to remove one or two of the as-
sumptions at a time, in the best Baconian fashion. The above assumptions imply, 
for example, that unlimited environmental resources are available to the species. 
One can easily allow for a finite environmental capacity by taking for a decreas-
ing function of u. By assuming that a decreases linearly with u, one obtains the 
Verhlust-Pearl equation 

( ) ( )d , , 0
d
u a bu u a b
t
= − >                     (3) 

where b is crowding coefficient, the integral, often called the “logistic curve,” is 
widely used even outside ecology. By taking into account specific mechanisms 
affecting reproduction or mortality lead to a much more complex functional re-
lationship. For example, by taking a population living in a completely closed en-
vironment, such as some microorganisms confined to a test tube, the amount of 
nutrients available decreases with time in proportion to the total amount of 
“metabolism” that takes place in the tube from the beginning of the experiment. 
Total metabolism also determines the concentration of toxic waste in the me-
dium. For simplicity, it is assumed that the metabolic activity of the population 
is directly proportional to the number of individuals and that its total amount 
affects linearly the coefficient of self-increase. Hence, the system can be repre- 
sented by the integro-differential equation  

( ) ( ) ( ) ( ) ( ) ( )2
0

d , 0 .
t

u t au t bu t c u t u uτ τ α′ = − − =∫           (4) 

If the integral term is missing, the well-known logistic equation with birth rate 
0a >  and crowding coefficient 0b >  is obtained. The last term, containing 

the integral, indicates the “total metabolism” or total amount of toxins produced 
since time zero. The individual death rate is proportional to this integral, so the 
population death rate due to toxicity must include a factor u. The presence of the 
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toxic term, by considering the system being always closed, causes the population 
level to fall to zero in the long run. The relative size of the sensitivity to toxins, c, 
determines the manner in which the population evolves before its fated decay. 
By introducing the non-dimensional variables the time and population scales are 
obtained as: 

tcT
b

=  and buP
a

=                          (5) 

And the non-dimensional problem takes the form: 

( ) ( ) ( ) ( ) ( ) ( )2
00

d , 0 .
t

kP T P T P T P T P P Pτ τ′ = − − =∫          (6) 

where ( )P P T=  is the scaled population of identical individuals at a time T,  

and the non-dimensional parameter cK
ab

=  is a prescribed parameter. The  

nondimensional parameter K plays a great role in the behavior of ( )P T  con-
cerning the rapid rise to a certain amplitude followed by an exponential decay to 
extinction. It is important to point out that for K small, the population is not 
sensitive to toxins, whereas the population is strongly sensitive to toxins for large 
K. 

3. General Description of the Adomian Decomposition  
Method 

Equation (4) may be written as 

( ) ( ) ( ) ( ) ( )2
0

d
t

Lu t au t bu t c u t u τ τ= − − ∫                 (7) 

With initial condition: ( )0 .u α=  

Let d
d

L
t

= , so ( ) ( )1
0

. . d
t

L t− = ∫ , applying 1L−  of both sides in Equation (7),  

and using the initial conditions, we obtain 

( ) ( ) ( ) ( ) ( )1 1 2 1
0

d
t

u t aL u t bL u t cL u t uα τ τ− − −= + − − ∫            (8) 

The unknown solution function u assumed to be given by a series of the form 

( ) ( )0 nnu t u t∞

=
= ∑                           (9) 

The nonlinear term usually represented by an infinite series of the so-called 
Adomian polynomials ( )nA t  and ( ),nB t τ , respectively, i.e., we set 

( ) ( )
( ) ( ) ( )

2
0

0 ,

nn

nn

u t A t

u t u B tτ τ

∞

=

∞

=

 =


=

∑
∑

                     (10) 

Substituting (9) and (10) in (8) given the recursive relation 

( )
0

1 1 1
1 0

, d , 0
t

k k k k

u

u aL u bL A cL B t s k

α

τ− − −
+

=


= − − ≥ ∫
          (11) 

From this recursive relation, we can compute 0 1 2, , , .u u u   
The solution of Equation (4) is now determined. However, in practice series 
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0 nn u∞

=∑  must be truncated to the series 
0

n
iin uϕ

=
=∑  with limn n uϕ→∞ = . 

4. Restarted Adomian Decomposition Method (RADM) 

In 2003, E. Babolian, et al. [10] introduced a new algorithm called “Restarted 
Adomian Method”, to improve the accuracy dramatically. This new method de-
pends on adding a term to both sides of Equation (8). Let G be the proper term, 
which is determined next; then 

( ) ( ) ( ) ( ) ( )1 1 2 1
0

d
t

u t G G aL u t bL u t cL u t uα τ τ− − −+ = + + − − ∫       (12) 

By applying the “Modified Adomian Decomposition Method” on Equation 
(12), we obtain: 

( )

( )

0

1 1 1
1 0 0 00

1 1 1
1 0

, d

, d , 1

t

t
k k k k

u G

u G aL u bL A cL B t s

u aL u bL A cL B t s k

α τ

τ

− − −

− − −
+

 =
 = − + − −

 = − − ≥

∫

∫

            (13) 

Hence, the following algorithm is presented. 
• The algorithm 

Choose small natural numbers m, n. 
Step 1: Apply the Adomian method on Equation (12) and calculate 0 1 2, , ,u u u  . 

Set  

0 1 nu u uω = + + +  

Step 2: For 2 :i m= , 1iG ω −=  

( )

( )

0

1 1 1
1 0 0 00

1 1 1
1 0

, d

, d , 1

t

t
k k k k

u G

u G aL u bL A cL B t s

u aL u bL A cL B t s k

α τ

τ

− − −

− − −
+

 =
 = − + − −

 = − − ≥

∫

∫

            (14) 

Set  

0 1 nu u uω = + + +  

end. 
Remarks: 
1) mω  can be considered as the approximate solution of Equation (4). 
2) The Adomian Decomposition Method’ usually gives the sum of the first 

few terms, and, consequently, gives an approximation of u. In the new algorithm 
(RADM), 0u  are updated, while the terms with large index are not calculated. 
Therefore, m and n are considered to be small, say, m = 3 and n = 2. 

5. Computation Results and Analysis 

Example 1 
a = 1, b = 1, c = 0.1, α = 0.1 

( ) ( ) ( ) ( ) ( ) ( )2
0

0.1 d , 0 0.1
t

u t u t u t u t u uτ τ′ = − − =∫  

Solution:  
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Applying ( ) ( )1
0

. . d
t

L t− = ∫  in both sides given, 

( ) ( ) ( ) ( ) ( )1 1 2 1
0

0.1 0.1 d
t

u t L u t L u t L u t u τ τ− − −= + − − ∫  

By (ADM) the recursive relation is 

( ) ( ) ( )
0

1 1 1
1 0

0.1

0.1 , d , 0
t

k k k k

u

u L u t L A t L B t kτ τ− − −
+

=


= − − ≥ ∫
 

Or  
2

1
2 3 4

2

0.09 0.0005

0.036 0.00058333 0.00000167

u x x

u x x x

 = −
 = − +

 

 

The series solutions are 

( ) 0 1 2u t u u u= + + +  

By applying the new algorithm (RADM) with 2n =  and 3m = , we obtain: 
Step 1 

( ) ( ) ( )
0

1 1 1
1 0

0.1

0.1 , d , 0,
t

k k k k

u

u L u t L A t L B t kτ τ− − −
+

=


= − − ≥ ∫
 

Or  
2

1
2 3 4

2

0.09 0.0005

0.036 0.00058333 0.00000167

u x x

u x x x

 = −


= − +
 

1 2 3 4
0 1 2 0.1 0.09 0.0355 0.00058333 0.00000167u u u x x x xω = + + = + + − +  

Step 2 

( )
( ) ( ) ( )

( ) ( ) ( )

2 3 4
0

2 3 4
1

1 1 1
0 0 00

1 1 1
2 1 1 10

0.1 0.09 0.0355 0.00058333 0.00000167

0.1 0.1 0.09 0.0355 0.00058333 0.00000167

0.1 , d

0.1 , d

t

t

u x x x x

u x x x x

L u t L A t L B t

u L u t L A t L B t

τ τ

τ τ

− − −

− − −

 = + + − +


= − + + − +



+ − −


= − −

∫

∫

 

Or  
3 4 5

1
4 5 6

2

0.0068999999 0.001935 0.00028258

0.00137999 0.00057532 0.00006516

u x x x

u x x x

 = − − +


= − − +





 

2 2 3
0 1 2 0.1 0.09 0.0355 0.00631667u u u x x xω = + + = + + + +  

Step 3 

( )
( ) ( ) ( )

( ) ( ) ( )

2 3
0

2 3
1

1 1 1
0 0 00

1 1 1
2 1 1 10

0.1 0.09 0.0355 0.00631667

0.1 .1 0.09 0.0355 0.00631667

0.1 , d

0.1 , d

t

t

u x x x

u x x x

L u t L A t L B t

u L u t L A t L B t

τ τ

τ τ

− − −

− − −

 = + + + +


= − + + + +



+ − −


= − −

∫

∫




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Or  
4 5 6

1
4 5 6

2

0.00034499 0.00046423 0.00007783

0.00034499 0.00011923 0.00005931

u x x x

u x x x

 = + − +


= − − + +





 

3 2 3 4
0 1 2

5 6

0.1 0.09 0.0355 0.00631667 0.00055375

0.00051289 0.00083165

u u u x x x x

x x

ω = + + = + + + −

− − +
 

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the best of the results of the methods listed 
in Table 1. 

Example 2 
a = 1, b = 1, c = 1, α = 0.1.  

( ) ( ) ( ) ( ) ( ) ( )2
0

d , 0 0.1
t

u t u t u t u t u uτ τ′ = − − =∫  

Solution: 

Applying ( ) ( )1
0

. . d
t

L t− = ∫  in both sides given, 

( ) ( ) ( ) ( ) ( )1 1 2 1
0

0.1 d
t

u t L u t L u t L u t u τ τ− − −= + − − ∫  

By (ADM) the recursive relation is 

( ) ( ) ( )
0

1 1 1
1 0

0.1

, d , 0
t

k k k k

u

u L u t L A t L B t kτ τ− − −
+

=


= − − ≥ ∫
 

Or  
2

1
2 3 4

2

0.09 0.005

0.036 0.00583333 0.00016667

u x x

u x x x

 = −
 = − +

 

 

The series solutions are 

( ) 0 1 2u t u u u= + + +  

 
Table 1. Error values obtained by the Adomian decomposition method and Restarted 
Adomian decomposition method for u(t). 

t ADM RADM 

0 0 0 

0.10 8.79686678e−09 2.14129699e−11 

0.20 2.77681355e−07 1.23594050e−09 

0.30 2.07655195e−06 1.25857453e−08 

0.40 8.60176430e−06 6.26187798e−08 

0.50 2.57533889e−05 2.09335545e−07 

0.60 6.27351443e−05 5.41591402e−07 

0.70 1.32436767e−04 1.16863189e−06 

0.80 2.51556841e−04 2.19780789e−06 

0.90 4.40423310e−04 3.70394003e−06 

1.00 7.22469247e−04 5.69662605e−06 
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By applying the new algorithm (RADM) with 2n =  and 3m = , we obtain: 
Step 1 

( ) ( ) ( )
0

1 1 1
1 0

0.1

, d , 0,
t

k k k k

u

u L u t L A t L B t kτ τ− − −
+

=


= − − ≥ ∫
 

Or  
2

1
2 3 4

2

0.09 0.005

0.036 0.00583333 0.00016667

u x x

u x x x

 = −
 = − +

 

 

1 2 3 4
0 1 2 0.1 0.09 0.031 0.00583333 0.00016667u u u x x x xω = + + = + + − +  

Step 2 

( )
( ) ( ) ( )

( ) ( ) ( )

2 3 4
0

2 3 4
1

1 1 1
0 0 00

1 1 1
2 1 1 10

0.1 0.09 0.031 0.00583333 0.00016667

0.1 0.1 0.09 0.031 0.00583333 0.00016667

, d

, d

t

t

u x x x x

u x x x x

L u t L A t L B t

u L u t L A t L B t

τ τ

τ τ

− − −

− − −

 = + + − +


= − + + − +



+ − −


= − −

∫

∫

 

2 2 3
0 1 2 0.1 0.09 0.031 0.00106667u u u x x xω = + + = + + + +  

Step 3 

( )
( ) ( ) ( )

( ) ( ) ( )

2 3
0

2 3
1

1 1 1
0 0 00

1 1 1
2 1 1 10

0.1 0.09 0.031 0.00106667

0.1 0.1 0.09 0.031 0.00106667

, d

, d

t

t

u x x x

u x x x

L u t L A t L B t

u L u t L A t L B t

τ τ

τ τ

− − −

− − −

 = + + + +


= − + + + +



+ − −


= − −

∫

∫





 

3 2 3
0 1 2 0.1 0.09 0.031 0.00106667u u u x x xω = + + = + + + +  

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the best of the results of the methods listed 
in Table 2. 

 
Table 2. Error values obtained by the Adomian decomposition method and Restarted 
Adomian decomposition method for u(t). 

t ADM RADM 
0 0 0 

0.10 8.48000000e−09 4.00000000e−11 
0.20 2.55620000e−07 1.09000000e−09 
0.30 1.80946000e−06 1.00700000e−08 
0.40 7.01648000e−06 4.54300000e−08 
0.50 1.93980800e−05 1.37040000e−07 
0.60 4.28897600e−05 3.15940000e−07 
0.70 8.03451600e−05 5.98780000e−07 
0.80 1.31263830e−04 9.72000000e−07 
0.90 1.88745730e−04 1.38351000e−06 
1.00 2.35721780e−04 1.74725000e−06 
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6. Conclusion 

In this paper, we have applied Restarted Adomian method in solving nonlinear 
integro-differential equations. The numerical results show that RADM is more 
accurate than Adomian decomposition method of the solution Volterra’s popu-
lation model in Table 1 and Table 2. 
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