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Abstract
The results obtained in [(1; 2)] for the statistical distributions at studying algebra of decision rules
and natural geometry generated by it, are applied to estimations of the nonequilibrium statistical
operator and superstatistics. The expressions for the nonequilibrium statistical operator and
superstatistics are derived as special cases of the weighted geodetic average of the probability
distributions.
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1 Introduction

In [(1; 2)] the differential geometry of varieties of probabilistic measures which gives a natural language
as the description of statistical model - to the a priori information on statistical experiment, and
constructions of optimum methods of processing of such experiment is investigated. It is possible to
interpret many results of works [(1; 2)] in terms of statistical physics. It concerns to exponent families
of distributions, to ”spread” of singular measures on all convex bearer, to problems of projecting,
inequalities of the information, and other features of behaviour of the probabilistic distributions studied
in [(1; 2)]. In the present work communication of the weighed average geodetic of continuous family
of probabilistic laws [(1; 2)] with the nonequilibrium statistical operator (NSO) [(3; 4; 5)] and with
superstatistics [(6; 7)] is traced.
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2 The weighted geodetic average of the probability distri-
butions

Following [(1)], we shall describe a class of probabilistic families for which in [(1; 2)] the notion of
the weighted geodetic average is defined. We consider, that the smooth family

−→
Φ of probabilistic

laws can be described by means of the unique open map (Θ, φ),−→x = φ(P ), or inverse mapping
Θ

Ψ→ Caph(Ω,
−→
S ,

−→
Z ), where Ω is the space of all elementary outcomes ω (of an experiment),

−→
S is

some σ-algebra of its subsets named also ”the events”. For each measure µ{·} on the measurable
space (Ω,

−→
S ) all sets of zero measures (zero-sets) form an ideal

−→
Z =

−→
Zµ of the algebra

−→
S . The

set of all probabilistic measures vanishing on the ideal
−→
Z and only on

−→
Z , is designated through

Caph(Ω,
−→
S ,

−→
Z ). They form a subset of mutually absolutely continuous distributions on (Ω,

−→
S ). If two

measures µ and ν have the general ideal zero-sets they are called mutually absolutely continuous (or
quasi-equivalent). If

−→
Zµ ⊆ −→

Zν then it is said, that µ dominates ν, and it is written as µ ≫ ν. We call
[(1)] the m-dimensional open map of set M the one-to-one mapping φ of the subset Θ ⊆ M on the
coherent open area of an m-dimensional Euclidian space Rm. The coordinates x(1)(P ) . . . , x(m)(P )
of a point φ(P ) are thus referred to as local coordinates of a point P ∈ M on the map (Θ, φ) under
consideration. The surface {P−→x ,

−→x ∈ Θ} in the manifold Caph(Ω,
−→
S ,

−→
Z ) has no self-crossings, i.e.

the mapping Ψ = φ−1 is biunique. The described families were called simple families in [(1)].
The simple family of distributions of probabilities {P−→x ,

−→x ∈ Θ} ⊂ Caph(Ω,
−→
S ,

−→
Z ) is called

smooth [(1)], when
1◦ there is a coordinated variant of densities p(ω;−→x ) on the fixed measure µ ∈ Conh(Ω,

−→
S ,

−→
Z )

such, that at every ω ∈ Ω the density p(ω;−→x ) is a three times differentiable positive function of the
argument (x1..., xn) = −→x ∈ Θ; (Conh(Ω,

−→
S ,

−→
Z ) is a set of all non-negative mutually absolutely

continuous measures on (Ω,
−→
S ), turning to zero on

−→
Z -sets and only on it);

2◦ at every −→x ∈ Θ the partial derivatives p′j(ω;
−→x ) = ∂p(ω;−→x )/∂xj of density, j = 1 . . . , n, are

linearly independent on Ω even neglecting their values on any
−→
Z -set;

3◦ for every θ ∈ Θ there is a special vicinity Oθ, in which the derivatives p′j(ω;−→x ) allow a majorant
g(θ)(ω) = (dG(θ)/dµ)(ω):

p′j(ω;
−→x ) ≤ g(θ)(ω), P ′

j{· | −→x } ≤ G(θ){·}, ∀−→x ∈ Oθ, ∀ω ∈ Ω,

M−→x [g
θ(ω)/p(ω;−→x )]2 ≤ L2

θ < ∞, ∀−→x ∈ Oθ

}
; (2.1)

4◦ for every θ ∈ Θ in the specified special vicinity Oθ all partial derivatives of likelihood function
ln p(ω;−→x ) up to the third order inclusive allow a majorant

|∂
|
−→
k | ln p(ω;−→x )

∂−→x
−→
k

| ≤ h(θ)(ω), ∀−→x ∈ Oθ, |
−→
k | = 1, 2, 3, (2.2)

where
−→
k = (k1, ..., kn), |

−→
k | = k1 + ...+ kn, ∂−→x

−→
k = ∂xk1

1 ...∂xkn
n , and

M−→x [h
θ(ω)]4 ≤ H4

θ < ∞, ∀−→x ∈ Oθ. (2.3)

The constant L2
θ from (2.1) is defined through estimations of the second derivatives.

In what follows we use the notations

∂ ln p(ω;−→x )

∂xj
= rj(ω;−→x ),

∂2ln p(ω;−→x )

∂xj∂xk
= rjk(ω;−→x ) , (2.4)

and the following consequence from the lemma 27.5 of [(1)]:
For any smooth family the identity holds:

M−→x r
j(ω;−→x ) = 0; (2.5)
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−M−→x r
jk(ω;−→x ) = M−→x r

j(ω;−→x )rk(ω;−→x ) = −→ω jk(−→x ), (2.6)

where M−→x r
jk(ω;−→x ) =

∫
Ω
rjk(ω;−→x )p(ω;−→x )µ{dω} is averaging, −→ω jk(θ) = Mθr

j(ω; θ)rk(ω; θ) is the
Fisher information matrix. Alongside with initial parametrization of family we shall consider also its
linear reparametrization. When in a new system of coordinates the Fisher information matrix in a point
θ is the unit matrix such system of coordinates in [(1)] is called θ-local. In [(1)] the θ-local distance
between the distribution laws P−→x and P−→τ is considered:

||−→x −−→τ ||2θ =
∑
j,k

(xj − τj)(xk − τk)
−→ω jk(θ). (2.7)

Introduce now according to [(1)] the notion of the weighted geodetic average of the continuous
family of probability laws. Let the family

−→
Φ = {P−→x ,

−→x ∈ C} of distributions on (Ω,
−→
S ), depending

on the vector parameter −→x with compact set C values of a parameter, is defined by a family of
coordinated strictly positive densities p(ω;−→x ) with respect to the measure R, continuous on −→x at
every ω ∈ Ω. Let α{·} be any probabilistic Borel measure on C. In (1) the weighed (with a weight
measure α) geodetic average of laws of family

−→
Φ is the probability distribution Uα with the logarithm

of density

lnuα(ω) =

∫
C

ln p(ω;−→x )α{d−→x } −H[α], (2.8)

where H[α] is the logarithm of a normalizing divider

expH[α] =

∫
Ω

exp[

∫
C

ln p(ω;−→x )α{d−→x }]R{dω}, (2.9)

if only last integral is finite. Otherwise we consider, that the specified average does not exist.
In [(1)] the set γ ⊂ Caph(Ω,

−→
S ,

−→
Z ) of probability distributions Ps{·} of exponent or geodetic family

(finite number of measurements) with canonical affine parameter −→s = (s1 . . . , sn) is introduced with
the family of densities

dPs

dµ
(ω) = p(ω;−→s ) = p0(ω) exp[

∑
j

sjqj(ω)−Ψ(s)] , (2.10)

where −→q = (q1(ω) . . . , qn(ω)) is a directing sufficient statistics (1), µ{·} is the fixed dominating
measure, and

exp[Ψ(s)] =

∫
Ω

exp[
∑
j

sjqj(ω)]p0(ω)µ{dω} (2.11)

is a normalizing divider. It is supposed, that the parameter −→s of the distribution takes values at which
the normalizing divider is finite, i.e. γ is the maximal family of distributions, representable at the some
s1 . . . , sn in the form of (2.10). In [(1; 2)] it is shown, that the family of densities in (2.10) - (2.11) is
a ”trajectory” of a n-dimensional subgroup of group of translations of the manifold Caph(Ω,

−→
S ,

−→
Z )

of the probability distributions. The distributions (2.10) are included into a wider class of exponential
families with the density in the form

p(ω;
−→
θ ) = p0(ω)exp[

∑
j

sj(
−→
θ )qj(ω)−Ψ(−→s (

−→
θ ))], (2.12)

where
−→
θ = (θ1, . . . , θm) ∈ Θ,−→s (

−→
θ ) = (s1(

−→
θ ), . . . , sn(

−→
θ )).

Two values of parameters in [(1; 2)] are related with every geodetic average Uα with density (2.8)
weighed with weight α{·}:
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−→
X [α] =

∫
C

−→x α{d−→x }, (2.13)

−→
Y [α] : Yj = yj +M−→y [lnuα(ω)− ln p(ω;−→y )]

∑
k

vjk(
−→y )rk(ω;−→y ), (2.14)

where rk(ω;−→z ) is defined in (2.4) - (2.5), a matrix
−→
V (−→x ) = (−→v jk)(

−→x ) is the inverse of the information

matrix
−→
W (−→x ) = (

−−→
wjk)(−→x ) (2.6). When

−→
Y [α] ∈ Θ, it is called that the law P−→

Y [α]
is an accompaniment

of the weighed geodetic average Uα. The point −→y ∈ F ⊂ Θ is set in [(1)] as the center of a cube

Cr = {−→x : |xj − yj | ≤ r; j = 1, ..., n = dim
−→
Φ} (2.15)

in the space of −→y -local parameters of a smooth compact family
−→
Φ = {P−→x ,

−→x ∈ F}; rn1/2 ≤ ρ(Φ);
all cube (2.15) belongs to the compact set K(

−→
Φ) ⊂ Θ, and the uniform estimates of derivatives (2.1)

- (2.3) are satisfied. The corresponding family {P−→x ,
−→x ∈ Cr} is denoted

−→
Φ(r) =

−→
Φ−→y (r) in [(1)] and

called cubic.
In [(1; 2)] it is proven, that

||
−→
Y [α]−

−→
X [α]||y ≤ r2H2n3/2, (2.16)

where H is a constant from (2.3). For the family
−→
Φ it is possible to specify the size ρ0(

−→
Φ) such, that

at r < ρ0(
−→
Φ) there exists the accompanying law PY [α], for every −→y ∈ F and probabilistic measure

α{·}, and there holds Y [α] ∈ C2r ⊂ K(
−→
Φ).

For the information deviations (Kullback entropy)

I[Q|P ] =

∫
Ω

[
dP

dQ
(ω) ln

dP

dQ
(ω)]Q{dω} = −

∫
Ω

[ln
dQ

dP
(ω)]P{dω} =

∫
Ω

[ln
dP

dQ
(ω)]P{dω} (2.17)

(last equality holds, when the probability laws P and Q in (2.17) are mutually absolutely continuous)
the relation is then written:

I[P |U ] = I[P |PY ] + I[PY |U ] + ⟨ln(dP/dPY ), U − PY ⟩, (2.18)

where PY is the accompanying law, ⟨f, P ⟩ =
∫
f(ω)P{dω}, U ∈ Γ(N) = Γ(

−→
ΦN ), Γ(

−→
ΦN ) is an

integrated convex envelope of the initial family
−→
Φ [(1)], that is the family of probabilistic laws with

densities (2.8), containing a convex envelope of the initial family
−→
Φ ,

−→
ΦN =

−→
Φ(r(N)), r(N) =

N−3/2 < ρ0(
−→
Φ).

In [(1; 2)] the difference between lnuα(ω) and ln p(ω;−→x ) and uα(ω) and p(ω;−→x ) was also
estimated. For the cubic family

−→
Φ(r) at r < ρ0(

−→
Φ) the weighted distribution Uα is close to the

accompanying law PY [α]:

| lnuα(ω)− ln p(ω;
−→
Y )| ≤ r2[B2 +B3h

(y)(ω)], (2.19)

|uα(ω)− p(ω;
−→
Y )| ≤ r2g(y)[B2 +B3h

(y)(ω)]B4, (2.20)

where B2 = B2(n,H) = 4nH,B3 = B3(n,H) = 4n+Hn3/2, B4 = exp[4nρ0H], values h(y), g(y), r,H
are defined in (2.1) - (2.3), (2.15). In [(1)] the conditions of convergence of distributions (2.8) and for
compactness of the integrated convex envelope of the family

−→
Φ are derived as well.
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3 Nonequilibrium Statistical Operator as the weighed geo-
detic average for the probabilistic laws of the quasi-
equilibrium distributions family

In [(8)] the logarithm of NSO ρ(t) [(3; 4; 5)] is interpreted as an averaging of the logarithm of the quasi-
equilibrium distribution ρq [(4; 5)] as function of different time arguments on the distribution pq(u) of
the system lifetime (defined as the time of the first achievement of a certain level):

ln ρ(t) =

∫ ∞

0

pq(u) ln ρq(t− u,−u)du, (3.1)

where u = t − t0 is a random variable of a the lifetime of a system, t is the present time moment,
t0 is a random variable of the initial time moment, i.e. the timemark of the system ”birth”. The value
u = t− t0 is equal to the random moment of the first achievement of a zero level [(9; 10)] during the
moment t0 in return time, at t 7→ −t, (3.2).

Γx = inf{t : y(t) = 0}, y(0) = x > 0. (3.2)

If pq(u) = εeεu, the distribution pq(u) has an exponent form with ε = 1/⟨Γ⟩, where ⟨Γ⟩ = ⟨t− t0⟩
is the average of the system lifetime, from (3.1) the NSO in the form proposed by Zubarev [(3; 4; 5)]
is recovered. The quasi-equilibrium distribution ρq reads as [(4)]:

ln ρq(t1, t2) = −Φ(t1)−
∑
n

Fn(t1)Pn(t2), (3.3)

where the dependence Pn(t2) is understood as a realization of the conservation laws [(3)] when the
operators Pn in the quantum case are considered in Heisenberg representation, and in the case
of classical mechanics the Heisenberg representation is replaced with the action of the evolution
operator, for example

H(x, t) = e−iLtH(x); ρq(t− u,−u) = e−iuLρq(t− u, 0), (3.4)

where L is the Liouville operator (3). The values Pn in (3.3) represent dynamic variables (for example,
energy, number of particles, etc.); their average values give a set of observable values; Fn are
Lagrange multipliers related to the intensive thermodynamic variables (temperature, chemical potential,
etc). Similar expressions encounter not only for the hydrodynamical, but also for the kinetic stage of
the system evolution [(4; 5)].

The expressions (3.3) for ρq correspond to the exponential family (2.12) and coincide with it at

ρq(t;ω) = p(ω;
−→
θ )/p0(ω);

−→
θ = −→x = u = t− t0, (3.5)

Φ(t− u) = Ψ(−→s (
−→
θ )), Pn = qn(ω); Fj(t− u) = −sj(

−→
θ ).

If the conditions (3.5) are satisfied the expression for NSO (3.1) coincides with (2.8) at

α{d−→x } = pq(u)du, u = −→x = t− t0 = Γ, H[α] = 0. (3.6)

Let’s show, that for NSO (3.1) H[α] = 0. The value H[α] in (2.8) - (2.9) for the distribution p(ω,−→x )
of the form (2.12) if the conditions (3.5) - (3.6) are satisfied, reads as

H[α] = Ψ(

∫
C

α{d−→x }sj(−→x )qj(ω))−
∫
C

α{d−→x }Ψ(sj(−→x )qj(ω)), (3.7)

where Ψ(s) is defined in (2.11). In [(3)] where Zubarev’s NSO ρZ corresponds to an invariant part
from the logarithm of the locally-equilibrium operator ρl (or ρq) (3), i.e.
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ln ρZ(t) = ε

∫ ∞

0

e−εu ln ρl(t− u,−u)du, (3.8)

for

Φl(t− u) = Ψ(s(t− u)) = lnSp exp{−
∑
m

∫
V

Fm(−→r , t− u)Pm(−→r ,−u)d−→r },

where −→r is spatial coordinate, V is the volume of system, the dependence Pm from u is given in
(3.4), the relations hold:

Φl = ε

∫ ∞

0

e−εuΦl(t− u)du = ε

∫ ∞

0

due−εu lnSp exp{−
∑
m

∫
V

Fm(−→r , t− u)Pm(−→r ,−u)d−→r };

Φl = lnSp exp{−
∑
m

ε

∫ ∞

0

∫
V

e−εuFm(−→r , t− u)Pm(−→r ,−u)dud−→r }.

Substituting these expressions in (3.7), we obtain H[α] = 0.
The expression (2.13) for the case of NSO with relations (3.5) - (3.6) satisfied, defines the average

lifetime of system, and the expression (2.14) gives an estimation for it, (named the quasi-projection
in terms of [(1; 2)]) with accuracy of (2.16). The expressions (2.4) - (2.5) coincide with the operator of
entropy production [(3; 4; 5)] σ̂(t− u,−u) = ∂ ln ρq(t− u,−u)/∂u.

In [(8)] estimations of a kind (2.14) for a cube (2.15) with the center in a point −→y = 0

Y [α] =

∫
Ω

[ln ρ(t)− ln ρq(t, o)]
σ̂(t, 0)ρq(t, o)

⟨σ̂2(t, 0)⟩q
dz, (3.9)

where z = (q1 . . . , qN ; p1 . . . , pN ) is set of coordinates q and impulses p all particles of system, z = ω
in (2.1) - (2.6); ⟨. . . ⟩q =

∫
Ω
. . . ρq(t, o)dz, are compared to the similar expressions derived directly

from NSO. In [(8)] the example of calculation of lifetime average for a system of neutrons in a nuclear
reactor is performed.

Part of the expression (3.9) with Y ∼ ⟨Γ⟩, are the entropy production σ̂ and entropy fluxes
[(3; 4; 5)]. At σ̂ → 0, ⟨Γ⟩ ∼ 0

02
→ ∞, and at σ̂ → ∞, ⟨Γ⟩ ∼ ∞

∞2 → 0. Thus, a lifetime of the
system depends on the entropy production and entropy fluxes in a system due to exchange of entropy
between the system and the environment.

Integrating in parts the expression (3.1), we obtain, that at
∫
pq(u)du|u=0 = −1,

∫
pq(u)du|u→∞ =

0, [(8)],

ln ρ(t) = ln ρq(t, 0)−
∫ ∞

0

(

∫
pq(u)du)σ̂(t− u,−u)du. (3.10)

From here

−
∫ ∞

0

(

∫
pq(u)du)σ̂(t− u,−u)du = ln ρ(t)− ln ρq(t− Y,−Y ) + ln ρq(t− Y,−Y )− ln ρq(t, 0).

The first term in the right part of the obtained expression, value ln ρ(t) − ln ρq(t − Y,−Y ) can
be estimated by means of the relation (2.19) provided that the conditions (3.5) - (3.6) are satisfied,
when uα(ω) = ρ(t), p(ω, x) = ρq(t − x,−x). The second term is estimated by means of the relation
obtained in [(1)]:

ln[p(ω;x)/p(ω;Y )]
<
> ±||x− Y ||h(y)(ω) ,

where h(y) is taken from (2.2). Then
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−
∫ ∞

0

(

∫
pq(u)du)σ̂(t− u,−u)du ≤ r2[4nH + (4n+Hn3/2)h(y)(ω)] + ρ(Φ)h(y)(ω).

In the left part the value of σ̂ is estimated from the relation (2.2), and

−
∫ ∞

0

(

∫
pq(u)du)σ̂(t− u,−u)du ≤ −h(y)(ω)

∫ ∞

0

(

∫
pq(u)du)du = h(y)(ω)⟨Γ⟩.

Thus, the lifetime average ⟨Γ⟩ is limited, and in (3.8) ε = 1/⟨Γ⟩ ̸= 0 though in [(3; 4; 5)] a limiting
transition ε → 0 after the thermodynamic limiting transition is performed. The reason for it is that in
[(1; 2)] a cubic family in the limited cube (2.15) is considered with lifetimes limited by the value r. In
the theory of NSO [(3; 4; 5)] the limiting transition ε → 0 is carried out after thermodynamic limiting
transition V → ∞, N → ∞, V/N = const. Intuitively it is clear, that the lifetime of an infinite large
systems will be infinitely large as well.

Similar estimations hold for the expression (2.20) in view of the relation derived from (3.10)

ρ(t)− ρq(t, 0) =
∞∑

k=1

[−
∫ ∞

0

du(

∫
pq(u)du)σ̂(t− u,−u)du]kρq(t, 0).

4 Superstatistics as the weighed geodetic average of pro-
babilistic laws of Gibbs family distributions depending
on a nonequilibrium parameter

The distributions of a kind (2.8) describe not only NSO. In works [(6; 7)] the superstatistics of A type
are introduced with:

p(E) = B(E)/ZA; B(E) =

∫ ∞

0

f(β) exp{−βE}dβ; ZA =

∫ ∞

0

B(E)ω(E)dE, (4.1)

where f(β) is some distribution of value β, inverse temperature, the intensive thermodynamic variable,
the conjugate of energy E, and B type, with

p(E) =

∫ ∞

0

f(β)
exp{−βE}

Z(β)
dβ; Z(β) =

∫ ∞

0

exp{−βE}ω(E)dE;

∫ ∞

0

f(β)dβ = 1. (4.2)

The expression (4.1) passes into (4.2) after replacement f̃(β) = cf(β)
Z(β)

, c = const. The special
case of superstatistics, at function f(β), set in the form of gamma-distribution, leads to Tsallis
distributions [(11)] with β0 =

∫
βf(β)dβ.

If in (4.1) instead of the distribution p(β;E) = exp{−βE}/Z(β) the distribution (2.12) is used
with −→x =

−→
θ and p(ω;−→x ) = p(ω;

−→
θ )/p0(ω) = p(β(θ);E) for a case A from (4.1), substituting (2.12)

in (2.8), we obtain the coincidence with (4.1) at

s(θ) = −β(θ), q = E; ln(p(ω;
−→
θ )/p0(ω)) = −β(θ)E − lnZ(β(θ)); (4.3)

uα(ω) = p(E); Z(β(θ)) =

∫
exp[−β(θ)E]ω(E)dE;∫

ln p(β(θ);E)α(θ)dθ = −
∫

β(θ)α(θ)dθE −
∫

lnZ(β(θ))α(θ)dθ =

ln

∫ ∞

0

f(β) exp{−βE}dβ = lnB(E).
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In this case H[α] = lnZA ̸= 0, unlike (3.6). For the value of H[α] the estimations are given in
[(1; 2)]:

0 ≤ −H[α] ≤ 4nr2H

in (1), and

−H[α] ≤
∫
C

I[Px|R]α{dx}

in [(2)] where the existence of such distribution of probabilities R(·) on (Ω,
−→
S ), is supposed, that

supCI[Px|R] < ∞ (designations C, (Ω,
−→
S ) correspond to (2.8)). From (4.3) the relation between

distribution functions f(β) and α(θ) is determined.
The parameter θ in (4.3) represents some extensive thermodynamic parameter corresponding

to an internal thermodynamic parameter, describing nonequilibrium state of the system [(12)]. It
can be the coordinate of the center of weights in the gravity field, the electric moment of dielectric
in an external electric field (12), number of phase jumps in the problems of phase synchronization
[(13; 14)], etc. The average values are

⟨θ⟩ =
∫

θα(θ)dθ; βθ =

∫
β(θ)α(θ)dθ.

Generally βθ does not coincide with β0. But for big systems βθ ∼ β0. As
−→
θ is the vector value

expressions in the form (4.3), obtained from (2.12), (2.8), describes also superstatistics with several
fluctuating thermodynamic parameters. Such expressions are derived in [(15; 16)].

The estimations of the Section 3 for NSO, can be applied for the superstatistics as well. So, for
the A type superstatistics the relation (2.19) is written in the form of ( n = 1):

ln(

∫ ∞

0

f(β)e−βEdβ) + β(θ[α])E + lnZ(β(θ[α]))− ln

∫ ∞

0

(

∫ ∞

0

f(β)e−βEdβ)ω(E)dE ≤

r2[4H + (4 +H)h(y)(ω)],

where ( (2.2), (2.3), (2.14))

∂ ln p(ω; θ)

∂θ
=

∂ ln p(ω; θ)

∂β(θ)

∂β(θ)

∂θ
=

∂β(θ)

∂θ
[⟨E(β(θ))⟩ − E] ≤ h(y)(ω); ⟨E(β(θ))⟩ = −∂ lnZ(β(θ))

∂β(θ)
;

∫
(
∂β(θ)

∂θ
)4[⟨E(β(θ))⟩ − E]4

e−β(θ)E

Z(β(θ))
ω(E)dE ≤ Mθ[h

(y)(ω)]4 ≤ H4;

θ[α] = y +

∫
lnB(E)

[⟨E(β(y))⟩ − E]
∂β(y)
∂y

∂2 lnZ(β(y))

∂β2(y)

e−β(y)E

Z(β(y))
ω(E)dE − β(y)

1
∂β(y)
∂y

.

If the center of the cube Cr (2.15) is located in a point y = 0, θ ≤ r. To estimate an arrangement
of the center of the cube and the value of the parameter r, it is necessary to know the physical nature
of the parameter θ, relating the consideration to the specific physical situation.

The expression (2.20) for the A type superstatistics and the relations (4.1) turn to

|B(E)

ZA
− e−β(θ[α])E

Z(β(θ[α]))
| ≤ r2g(y)(ω)[4nH + h(y)(ω)(4n+Hn3/2)]e4nρ0H .

The value ρ0, defined before the expression (2.17), can be also estimated after setting the
parameter θ.

352



Physical Science International Journal 4(3), 345-354, 2014

5 Conclusion
In this paper we performed a general estimate of the differences of the nonequilibrium statistical
operator of the quasi-equilibrium statistical operator for arbitrary distribution functions of the system
lifetime. The estimations of the average system lifetime are given. This value is dependent on
the entropy production and entropy fluxes, due to entropy exchange between the system and its
environment. The differences between the type A superstatistics distribution and Gibbs distributions
are discussed.

The papers [(1; 2)] contain a number of results important for the statistical physics. The results
of sections 3-5 of the present work are formulated by means of the projective methods developed in
(1; 2) which importance is emphasized in the theory of NSO [(3; 4; 5)]. The problem A of projecting
[(1; 2)] corresponds to finding the minimum of the Kullback entropy (2.17) for the nonequilibrium
system [(17)], §29.5. The expressions for the divergence of Amari, Kagan, Csiszar [(2)] are compared
to the entropy functionals, used in Tsallis statistics [(11)] (for example, to the Renyi information
quantities). In [(1; 2)] the methods are developed allowing a rigorous approach to the important
problem in NSO of selection of basic variables of the quasi-equilibrium distribution [(3; 4; 5)]. An
interesting problem is presented for finding an interpretation in the statistical physics of such concepts
as statistical decision rules, risk assessment or asymmetrical pythagorean geometry [(1)].
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