ot s Physical Science International Journal
International Journal 4(3).' 355'365, 2014

SCIENCEDOMAIN international SCIENCEDOMAIN

LS . .
2 www. sciencedomain.org

Studying the Effect of Vertical Eddy Diffusivity
on the Solution of Diffusion Equation

Khaled S. M. Essa’

"Mathematics and Theoretical Physics Department, NRC, Atomic Energy Authority, Cairo,
Egypt.

Author’s contribution

This whole work was carried out by the author KSME.

Received 5" July 2013

Original Research Article Accepted 4" October 2013
Published 28™ November 2013

ABSTRACT

The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind
integrated concentration. The solution we used Laplace transformation technique and
considering the wind speed depends on the vertical height and eddy diffusivity depends on
downwind and vertical distances. The two predicted concentrations and observed
concentration data taken on the Copenhagen in Denmark were compared.

Keywords: Advection diffusion equation; laplace transform; predicted normalized crosswind
integrated concentrations.

1. INTRODUCTION

The analytical solution of the atmospheric diffusion equation contains different shapes
depending on Gaussian and non- Gaussian solutions. An analytical solution with power law
of the wind speed and eddy diffusivity with the realistic assumption was studied by Demuth
[1]. The solution implemented in the KAPPA-G model by Tirabassi [2] and Lin and
Hildemann [3] extended the solution of Demuth [1] under boundary conditions suitable for
dry deposition at the ground. The mathematics of atmospheric dispersion modeling was
studied by John [4]. In the analytical solutions of the diffusion-advection equation, assuming
constant wind speed along the whole planetary boundary layer (PBL) or following a power
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law was studied by Van Ulden [5]; Pasquill and Smith [6]; Seinfeld [7]; Tirabassi [2] and
Sharan [8].

Estimating of crosswind integrated Gaussian and non-Gaussian concentration through
different dispersion schemes is studied by Essa [9]. Analytical solution of diffusion equation
in two dimensions using two forms of eddy diffusivities is studied by Essa [10].

In this paper the advection diffusion equation (ADE) is solved in two directions to obtain
crosswind integrated ground level concentration in unstable conditions. We use Laplace
transformation technique and considering the wind speed and eddy diffusivity depends on
the vertical height and downwind distance. Comparison between observed data from
Copenhagen (Denmark) and predicted concentration data using statistical technique was
presented.

2. ANALYTICAL METHOD

Time dependent advection — diffusion equation is written by Arya [11] as:

€Lk L), 0 L) LX)
ot ox  Ox ox ) oy "oy Oz

where:

c is the average concentration of air pollution (pg/m3).

u is the wind speed (m/s).

K« ky and k, are the eddy diffusivity coefficients along x, y and z axes respectively (m2/s).

For steady state, taking dc/dt=0 and the diffusion in the x-axis direction is assumed to be
zero compared with the advection in the same directions, hence:

R CRIRA G

Let us assume that k, =k, =Kk(x)
Integrating equation (2) with respect to y by Essa [12]:

k azcy(x.Z) — 0Cy(x,z)

3
0z2 0x (3)

Equation (3) is subjected to the following boundary conditions as:

1-The pollutants are absorbed at the ground surface i.e.

dcy(x,2) .
kT = —vycy(x,2z)atz = 0 )

where vy is the deposition velocity (m/s).

2-There is no flux at the top of the mixing layer, i.e.
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acy (x,z)
k——=0 at z=h (ii)
Cz
3-The mass continuity is written in the form:
u ¢y (x,z) =Q &(z-h) at x=0 (iii)

Where 9 is the Dirac delta function, Q is the source strength and "h" is mixing height.
4-The concentration of the pollutant tends to zero at large distance of the source, i.e.

cy(x,z) =0 at z=« (iv)
Applying the Laplace transform on equation (3) to have:

0°¢,(s,z) us

2 ) = —%cy(o, 2) 4)

where Ey (s, z) =L, {cy (x, Z); x—s}, where L, is the operator of the Laplace transform
Substituting from equation (iii) in equation (4), to get:

0¢,(52) s o \_ Qo0
=i kcy(s’z)_ ké‘(z h) ®)

dcy (x,
L [%] = s{¢, (5,0}~ ¢,(0,2)

The nonhomogeneous partial differential equation (5) has a solution in the form:

z R -z R 1 —h su
\/7+cze P —————11-¢ \/7 (6)
hilsuk

From the boundary condition (iv), we find ¢,=0:

c (s,z):cle
y

_. [ 1 I
¢, (s,z)=c,e Fy | 1l-e k (7)
i ( ) ? h \Jsuk

Using the boundary condition (iii) after taking Laplace transform,

¢, (s.z)= ,/,Q—S‘S (- - )

; (8)
i [—Cy] = s{¢,(s, )} — ¢,(0,2)
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Substituting from equation (8) in equation (7),

¢, = 25(2 ~h)(9)

us

Substituting from equation (9) in equation (7),

¢, (s, z) z—he 'k i m

Taking the inverse Laplace transform for the equation (10), we get the normalized crosswind
integrated concentration in the form:

(10)

¢ (x,2) h\/;l —% 1 1 ‘%
O  2lnky’ h\/nxuk h\/ﬂ:xuk (11)

In unstable case:Taking the value of the vertical eddy diffusivity in the form:
k (z) =k, w=z(1-z /h) (12)

Substituting from equation (12) into equation (3),

2z
kow .z [l—zj k,w *(l—j
oC, h)oc, h) oc, 3

+ )
0 x u(z) o’z u(z) 0z

Applying the Laplace transform on equation (13) with respect to x and considering that:

To have:
oC ~
L, (g}scy (5:2)-Cy (0.2) (1a)

Substituting from (14) in equation (13),
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u

kws|z——
h

C, (s,z)=— C,(0.z) (15)

Substituting from (ii) in equation (15),

2z
- -=1 -
oC S,z ( )GC S,z us - o(z —h
6 )6 w0 o)
154 z 194 z z (16)
z— kw,|z— kw,|z—
h h h

Integrating equation (16) with respect to z, to have:
z—h
z | 0
C,(s.2)= P (17)
few.h | 1--5
h

Equation (17) is nonhomogeneous differential equation. The homogeneous solution of (17)
is given by:

5‘C~y (S,Z) +us]n

oz kW« g

s u In

Z—h‘

- z

~ k,w s
L) ’ )
0 2 (18)

After taking Laplace transform for equation (18) and substituting from (ii),

1
c, 2;5(2 —h,) (19)

Substituting from equation (19) in equation (18),
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su In|—=% —h
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us
The special solution of equation (17) becomes:
suln z-h
z
ot - k.ow :
Cy (S ,Z ) 1 ”
o ) @1
S
kow ., h, | ——1
h

Then, the general solution of equation (17) is a combination between the two solutions (20)
and (21) as:

hs_h _
suln ‘h sulnl? h
— . S =z _ z .
~ pIvE k *
C,(s,z) 1 1 "
—=—v + ; e (22)
us
0 kw.h | —-1
h
Taking Laplace inverse transform of equation (22) using Shamus [13].
C (x,z
o ): ! + ! p (23)
© u In h —h 3 u In -
I IS L B T ) (S—lj X+ z
kow, W/ oW

This is the concentration of pollutant at any point (x,z)

To get the crosswind integrated ground level concentration, put z=0 in equation (23):
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C, (x,0
o )= ! + lh (24)
Q u In hs —h kvw*hs (S_IJX
h h
ulx — .
k,w,
3. VALIDATION

The used data was observed from the atmospheric diffusion experiments conducted at the
northern part of Copenhagen, Denmark, under neutral and unstable conditions by Gryning
and Lyck [14]; Gryning [15]. Table (1) shows that the comparison between observed,
predicted model "1" and predicted model "2" integrated crosswind ground level
concentrations under unstable condition and downwind distance.

Table 1. The comparison between observed, predicted model "1" and predicted model
"2" integrated crosswind ground level concentrations under unstable condition and
downwind distance

Run Stability Down C,/Q *10™ (s/m’)
no. distance Observed Predicted Predicted
(m) model 1 model 2

K(x) = 0.16 K(z)= k, w-z
(0w /u) x. (1-z /h)

1 Very unstable (A) 1900 6.48 8.95 5.01
1 Very unstable (A) 3700 2.31 4.64 2.62
2 Slightly unstable (C) 2100 5.38 6.28 4.36
2 Slightly unstable (C) 4200 2.95 3.14 2.26
3 Moderately unstable (B) 1900 8.2 10.92 5.01
3 Moderately unstable (B) 3700 6.22 6.30 2.61
3 Moderately unstable (B) 5400 4.3 8.30 1.80
5 Slightly unstable (C) 2100 6.72 9.47 4.50
5 Slightly unstable (C) 4200 5.84 9.01 2.27
5 Slightly unstable (C) 6100 497 12.19 1.57
6 Slightly unstable (C) 2000 3.96 5.30 4.35
6 Slightly unstable (C) 4200 2.22 2.53 2.21
6 Slightly unstable (C) 5900 1.83 1.98 1.60
7 Moderately unstable (B) 2000 6.7 8.1 4.57
7 Moderately unstable (B) 4100 3.25 3.96 2.32
7 Moderately unstable (B) 5300 2.23 3.06 1.81
8 Neutral (D) 1900 4.16 10.31 4.89
8 Neutral (D) 3600 2.02 5.45 2.68
8 Neutral (D) 5300 1.52 4.37 1.85
9 Slightly unstable (C) 2100 4.58 6.86 4.34
9 Slightly unstable (C) 4200 3.1 3.43 2.26
9 Slightly unstable (C) 6000 2.59 2.40 1.60
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Fig. 1. The variation of the two predicted and observed models via downwind
distances.

Fig. (1) Shows the predicted normalized crosswind integrated concentrations values of the
model 2are good to the observed data than the predicted of model 1.

Fig. (2) Shows the predicted data of model 2 is nearer to the observed concentrations data
than the predicted data of model 1.

From the above figures, we find that there are agreement between the predicted normalized
crosswind integrated concentrations of model 2 depends on the vertical height with the
observed normalized crosswind integrated concentrations than the predicted model "1" that
depends on the downwind distance.
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Fig. 2.The variation between the predicted models and observed concentrations data.

4. STATISTICAL METHOD

Now, the statistical method is presented and comparison between predicted and observed
results was offered by Hanna [16].The following standard statistical performance measures
that characterize the agreement between prediction (Cp =Cpred/Q) and observations
(Co=Cobs/Q):

C,—C,
Fractional Bias(FB) = g— Normalized Mean Square Error (NMSE)

[0.5(C, + C,)]

(Cp — C0)2
= ~————"—Correlation Coefficient (COR)
(c Co)
Ny
- (Cm — ) 5 < G
=N ( —C,) x ——2= (000 Factorof Two(FAC2) = 0. <c
<2 O

Where o, and o,are the standard deviations of C, and C, respectively. Here the over bars
indicate the average over all measurements. A perfect model has the following idealized
performance: NMSE = FB = 0 and COR =1.0.

(Cp - Co)z
(CpCo)

Normalized Mean Square Error (NMSE) =
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- =)
FractionalBias (FB) = —————
[0.5(C, + C)]
Nm —
. . _ 1 0 (Coi - Co)
Correlation Coefficient (COR) = — » (Cp; — Cp) X ————
Np, = (Gpao

C
<20

FactorofTwo(FAC2) = 0.5 < C—p <
o

Where o, and o, are the standard deviations of C, and C, respectively. A perfect model
would have the following idealized performance: NMSE = FB = 0 and COR = 1.0.

Table(2) Comparison between our two models according to standard statistical
Performance measure

Models NMSE FB COR FAC2
Predicated model 1 0.30 -0.40 0.78 1.56
Predicated model 2 0.26 0.32 0.67 0.80

From the statistical method, it is evident that the two models are inside a factor of two with
observed data. Regarding to NMSE and FB, the predicted two models are good with
observed data. The correlation of predicated model"1" equals (0.78) and model "2" equals
(0.67).

5. CONCLUSIONS

The predicted crosswind integrated concentrations of the two models are inside a factor of
two with observed concentration data. There is agreement between the predicted normalized
crosswind integrated concentrations of model "2" depends on the vertical height with the
observed normalized crosswind integrated concentrations than the predicted model "1"
which depends on the downwind distance. This means that the vertical eddy diffusivity
depends on the vertical height "z" than downwind distance "x". Also in the further work we
will take the eddy diffusivity depends on the vertical height and downwind distance.
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