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Abstract
As of this moment, 50 gravitational wave (GW) detections have been announced, thanks to the
observational efforts of the LIGO-Virgo collaboration, working with the Advanced LIGO and the
Advanced Virgo interferometers. The detection of signals is complicated by the noise-dominated
nature of the data. Conventional approaches in GW detection procedures require either precise
knowledge of the GW waveform in the context of matched filtering searches or coincident analysis
of data from multiple detectors. Furthermore, the analysis is prone to contamination by
instrumental or environmental artifacts called glitches which either mimic astrophysical signals or
reduce the overall quality of data. In this paper, we propose an alternative generic method of
studying GW data based on detecting anomalies. The anomalies we study are transient signals,
different from the slow non-stationary noise of the detector. The anomalies presented in the
manuscript are mostly based on the GW emitted by the mergers of binary black hole systems.
However, the presented study of anomalies is not limited only to GW alone, but also includes
glitches occurring in the real LIGO/Virgo dataset available at the Gravitational Waves Open Science
Center. To search for anomalies we employ deep learning algorithms, namely convolutional
autoencoders, which are trained on both simulated and real detector data. We demonstrate the
capabilities of our deep learning implementation in the reconstruction of injected signals. We
study the influence of the GW strength, defined in terms of matched filter signal-to-noise ratio, on
the detection of anomalies. Moreover, we present the application of our method for the localization
in time of anomalies in the studied time-series data. We validate the results of anomaly searches on
real data containing confirmed gravitational wave detections; we thus prove the generalization
capabilities of our method, towards detecting GWs unknown to our deep learning models during
training.

1. Introduction

The first gravitational wave (GW) detection on 14 September 2015 [1] inaugurated a new era in astrophysics.
The joint observational effort of the LIGO and Virgo Collaborations, working with the Advanced LIGO
(aLIGO) [2] and the Advanced Virgo (aVirgo) [3] interferometers in a global network has provided 50 GW
candidate signal detections, until the suspension of LIGO-Virgo observing run O3 in Spring 2020 [4–7].
Such an impressive number of statistically-significant signal candidates allows for the verification of many
theoretical models, describing various sources of GW radiation, like binary systems of black holes (BHs) and
neutron stars (NSs), as well as the very nature of gravity [8]. As a result of continuous work to improve their
sensitivity, the aLIGO and the aVirgo interferometers will soon probe a much larger volume of space and
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expand the capability of discovering new GW sources. According to theoretical predictions, tens of BH
mergers and a few NS mergers will be soon routinely registered every year [9]. Such a large number of events
will deliver extraordinary information about the nature of those objects, phenomena, as well as space-time
itself.

What can be observed through the GW window strongly depends on the fidelity of the data analysis
methods. The GW data is always noise dominated: astrophysical signals are buried deep into the detectors’
noise, caused by various sources. Some of them are associated with the environment [8], e.g. seismic and
environmental activity; others originate from the detector itself [9], such as the thermal fluctuations of the
mirrors and the laser beam photon shot noise [10]—time-dependent fluctuations in the laser interacting
with the mirrors of the interferometer. In order to reveal the hidden GWs, the traditional approach is based
on matched filtering algorithms [11]. The examples of existing pipelines utilising a matched filtering
approach are PyCBC [12] and GstLAL [13]. Assuming the model gravitational waveform is known, which is
not always the case for all astrophysical sources, the algorithm scans the data to match an optimal template
using a template bank. Matched filtering is computationally expensive and in the case of large template banks
requires a lot of computational resources. As an optimal method of filtering in stationary Gaussian noise, it is
prone to contamination by non-stationary instrumental artifacts, the so-called glitches, which either mimic
GW signals or reduce the quality of the collected data. Existing alternatives to matched filtering methods are
based on unmodeled searches of GW burst signals. Such GWs are of short duration with an unknown or
partially modelled waveform morphology related to complicated or unknown astrophysics. These signals are
searched by measuring an excessive power in the time-frequency domain that occurs coherently between
multiple detectors. An example of GW burst pipeline is coherent WaveBurst (cWB) [14, 15]. The sensitivity
of this method is affected by short duration glitches that may occur coincident in time between multiple
detectors. Versatile and rapid pipelines are needed to deal with non-stationary noise (and instrumental
glitches) and to perform preliminary analysis of large amounts of data from multiple detectors.

Deep learning (DL) [16] fits this role perfectly. DL has commenced a new era of machine learning (ML),
a field of computer science based on specially-designed algorithms that can generalize (‘learn’) from
examples in order to solve problems and make predictions, without the need of being explicitly programmed
[17]. DL algorithms, based on the concept of neural networks—models of neuron connectivity in the
brain—are able to analyse different representations of data with varied dimensionality, like images
(spectrograms, Q-transforms, Wavelet-transform) or time series. Moreover, they can quickly process large
amounts of data—a requirement for the real-time (low latency) analysis for the GW interferometers.

The purpose of this work is to propose a generic, model-independent data analysis method that searches
for anomalies in signals recorded by the GW detectors, based on performant DL models. The innovation of
the proposed method is that our DL model ‘learns’ the features of the noise and detects if anomalies occur in
the detected signal. We define an anomaly as an extraordinary, sparse transient data feature, outstanding
with respect to the ‘normal’ background noise of the detector. The anomaly signal could therefore either be
represented as a GW or an instrumental glitch. In particular, the GWs studied in the presented work are
based on the signals emitted by the binary BH systems (BBH).

The term ‘anomaly’ is a well defined concept in statistics and data analysis (hence also in machine
learning), sometimes also referred to as ‘outlier’. The DL methods we apply are perfectly fitted for their
detection and analysis role here, being especially suited to detect, compress, and reconstruct non-linearities
in the input signal data. The analysis assessing the capabilities of the method is performed with the BBH
signals, injected (added) to both simulated and real detector data. Once trained and tested on injections, the
DL models are validated on the confirmed GW detections—real astrophysical signals registered by the
detectors. Our results provide a proof-of-concept for the advantages of using DL methods in the GW data
analysis, namely the processing speed and ability to capture complicated non-linear relationships in the data.
These features enable our method to be potentially used as an event-trigger-generator (ETG). In this context,
the advantage of our method is the computational speed—ML algorithms once trained are extremely
efficient in the processing of data, in particular when used on computers equipped with graphics processing
units (GPUs). By searching for anomalies in the gravitational waves’ data via ML algorithms, our method
could support the currently existing ETGs such as Omicron [18] and Q-transform based Omega [19].

In GW astronomy, while DL is being actively researched, it is still quite a novel method. Therefore this
research fits very well in the early adoption scheme of the modern state-of-the-art development in the field,
knowledge of which will become indispensable in the near future. In the following we mention a few
interesting test cases. George and Huerta [20] developed the deep filtering method for signal processing,
based on a system of two deep convolutional neural networks, designed to detect and estimate parameters of
compact binary coalescence signal in highly noisy time-series data streams. The same authors have been
involved in a group working on denoising gravitational waves with autoencoders [21]. Dreissigacker et al
[22] have been using DL as a search method for continuous GWs emitted by spinning neutron stars. Similar
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work has been conducted by Morawski et al [23] on the application of convolutional neural networks for
classifying continuous GW signal candidates. Furthermore, DL has been used by Beheshtipour and Papa [24]
for clustering continuous GW candidates. DL has also been successfully used in the classification of glitches
by Razzano and Cuoco [25]. Finally DL has been used in searches for GW emitted by core-collapse
supernova explosions by Iess et al [26].

Within GW astrophysics, application of DL in anomaly detection is a fairly new concept (see however a
recent application in [27]). In different fields of astrophysics the ML anomaly detection has already been
successfully implemented [28, 29] (see [30] for a recent general overview of ML in astronomy). Outside
astronomy, anomaly detection has also been proposed in the search for signatures of new physics in the Large
Hadron Collider data [31], where it was demonstrated to discover a specific class of highly-energetic particle
jets, without the prior knowledge of their specific features.

The outline of this work is as follows. In section 2 we briefly discuss the DL architecture applied in our
work and in section 3 we describe our data generation procedures. In section 4 we explain the results of the
anomaly detection studies performed on both simulated and real data. Finally, in section 5 we further discuss
our results and draw some conclusions.

2. Deep Learning algorithms

In this paper we employ a combination of two deep learning methods for distinguishing GWs from noise
signals. We first briefly describe these learning methods and then we explain how we applied them to our
problem.

2.1. The convolutional neural network and autoencoder
A convolutional neural network [16] (CNN) is a deep, feed-forward artificial neural network (processes the
information one-way, from the input to the output), designed for processing structured arrays of data, e.g.
for classifying images. The core feature of a CNN is the convolution operator, that differentiates them from
regular (linear) neural networks employing simple matrix multiplication. The convolution operation
envisions the input structured array (say, of dimensionm× n) as a sequence of overlapping elements of
dimension, say, p× p, often with p<min(m,n). The convolution operator inner-multiplies each such
element with a so-called kernel (or filter), of the same dimension (p× p), that ‘slides’ over each element of
the original array. Each p× p element of the input array is thus replaced by the result of the convolution
operation (a number), and we thus have dimensionality reduction. This somewhat simplified convolution
concept is illustrated in figure 1.

Multiple layers are typically sequentially used, each with varying numbers and types of kernels. The
kernels are chosen so that the network learns specific features in one convolution (e.g. edges, corners, etc).
Convolution layers are alternated with other specialised layers, all further reducing the dimensionality, until a
final activation function maps the last layer to a vector whose elements correspond to the desired options
(classes) for classifying the input structured array. Each class in this vector is usually a probability, so that the
class with the highest value is indicated as the recognised class.

The overlapping of the input array elements together with the sliding kernel, as well as the sequencing of
applying convolution step-wise simulates the structure and operation of the visual human cortex that
processes incoming images in a series of layers, by identifying progressively more complex features. CNNs
have been shown to work extremely well at picking up patterns in the input structured arrays, for instance in
images, and thus have rapidly become the state-of-the-art in image classification and computer vision.

In our approach we use all the advantages brought by CNNs, but we further embed them into an
autoencoder (AE) architecture [32]. An AE [16] is a special type of deep artificial neural network that
step-wise encodes and compresses the input and then it (re)constructs an output based only on the most
compressed encoding, called the hidden layer, latent representation, or bottleneck. The main AE hypothesis
is that some structure exists in the input data, for instance some form of correlation between the input
features; such a structure can be and is learnt by an AE and consequently leveraged when forcing the input
through the latent layer. (If the input features are independent of each other, then the compression and
subsequent reconstruction are very difficult.)

An ideal AE is sensitive enough to the inputs to accurately build a reconstruction and insensitive enough
to the same inputs so that the model does not memorize/overfit the training data. Differently formulated,
this forces the model to maintain in the latent representation only the variations in data needed for
reconstruction, without holding on to redundancies within the input. There are different types of AE, but in
our work we use the undercomplete AE, where the dimension of the latent representation is strictly smaller
than the input dimension. In this way we take care of avoiding overfitting, since the model will not be able to
copy the input to the output.
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Figure 1. The 2-dimensional 4× 5 array on the left is seen as six overlapping 3× 3 arrays; each of these smaller arrays is
inner-multiplied with the 3× 3 kernel, resulting in the 2× 3 array on the right.

Figure 2. An AE with one hidden layer.

The simple AE in figure 2 (with only one hidden layer) works by first encoding the input y ∈ Rd to the
element h ∈ Rp, where p< d. Assuming we have the encoder activation function f : Rd → Rp, then
h= f (Wy+ b), where f can be sigmoid, ReLU, or something else,W is a weight matrix and b a bias factor
(initialised randomly and updated iteratively during training). The decoder activation function g : Rp → Rd

will map h to ỹ= g(W̃h+ b̃), where the activation function g, the weight matrix W̃ and the bias factor b̃may
be unrelated to f,W, and b. If only ReLU is used for activation and we have only one hidden layer, then we
have a linear AE; if we have more hidden layers, or non-linear activation(s), then the AE becomes non-linear,
which is better at detecting abstract features. Thus, in general, the encoder and decoder are proper neural
networks in themselves, not simply activation functions.

The training of the AE works by attempting to minimize the reconstruction loss, most often using the
mean squared error (MSE) formula [16]

L(y, ỹ) = ∥y− ỹ∥2 =
∥∥∥y− g(W̃f(Wy+ b)+ b̃)

∥∥∥2 . (1)

The training of the network works by updating the parametersW, b, W̃, b̃ until L(y, ỹ) is sufficiently small
and further training does not decrease it anymore—in that case the network has converged. There are
numerous algorithms for updating the parameters, but here we use the ADAM algorithm (adaptive moment
estimation) [33], as it adapts the learning rate during training and has been empirically shown superior to
other methods for large datasets, large number of parameters, as well as non-stationary input. The learning
rate (training ‘step’ of updating) together with the batch size (number of training examples that use the same
learning rate), the update method (also called as optimizer), the number and size of the layers and the loss
function are the hyperparameters of the AE.

Since the AE is reducing dimensionality for encoding, it has often been used for only that—for instance,
for feature learning. However, when compared to other dimensionality reduction techniques, such as
principal component analysis (PCA), AE appears as a powerful generalization, since it is able to learn
non-linear relationships in input data. While PCA attempts to discover a lower dimensional hyperplane
describing the original data, AE is capable of learning non-linear manifolds of the least possible size, as
illustrated in figure 3. Essentially, the AE learns a vector field for mapping input data towards lower
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Figure 3. Example of the manifold concept. Nonlinear vs linear dimension reduction.

dimensional manifolds, that describe the high density region where input data concentrates. If the manifold
accurately describes input data, then the AE has effectively learnt the input data.

2.2. Applying the CNNAE
Although CNNs were designed for the analysis of 2D data (i.e. images) [16], here we apply them for a
simpler, 1D implementation, as our analysed signals are time series. The CNN AE is designed to learn two
things. In case of input data instances containing only detector background noise (no anomalies), the AE is
trained to reconstruct the noise as closely as possible. However, in case of instances containing an anomalous
signal (GW or glitch in case of real data), the AE is trained to disregard the anomaly and reconstruct the data
as if the signal was not present. By comparing the input to the output reconstructed by the AE, the anomaly
present in the instance of data time series is recovered and further studied. Using the AE network is thus
instrumental, since it will reconstruct only the signals it has been trained for, in our case the detector noise,
and disregard anything else in its reconstruction, in our case the GW or the glitch, as noise.

Depending on the presence of anomalies in the input data, the loss value L(y, ỹ) is expected to vary. The
L(y, ỹ) computed for an ‘anomalous’ input reaches higher values than in case of ‘anomaly-free’ input, since
the difference between y (noise or noise with anomaly) and ỹ (only noise) is larger. The difference between
these signals is proportional to the amplitude of the anomaly. As a result, the AE trained on data containing
stronger anomalies is expected to converge during training towards higher L(y, ỹ).

The final architecture6 used in section 4 was chosen based on empirical tests on the data. We tested
architectures ranging from one to eight hidden layers. The final layout of the architecture is presented in
figure 4. The chosen architecture reaching the minimum value for L(y, ỹ) for the fixed training data set was
the network containing three hidden convolutional layers: an encoding layer, a decoding layer, and a latent
representation layer in between them, with 256, 128, and 256 neurons, respectively. The kernel size was fixed
for all layers to 3× 1. All but the final output layer use the ReLU as the activation function, whereas the final
layer reconstructing the initial signal uses a sigmoid activation function. The other hyperparameters used for
training were the ADAM optimizer [33] with learning rate of 0.0005 and batch size of 32.

In the following section, we detail our datasets used for training, validation and testing.

3. Training data sets and data flow

We prepared two kinds of training datasets: a simplified one by means of simulated detector strain time series
(based on the colored normal distribution of noise), denoted DataSet 1 (DS1), and a realistic one based on
the real LIGO-Virgo O2 observing run [39], publicly available at the Gravitational Waves Open Science
Center (GWOSC) [40] and denoted DataSet 2 (DS2). In both cases we use the same general data flow
presented in figure 5.

6 We implement the algorithm in Python [34] using the Keras/TensorFlow library [35, 36] with the GPU support. The development
was performed on the NVidia Quadro P6000 (sponsorship via the NVidia GPU seeding grant). The production runs were deployed on
the Prometheus cluster (Academic Computer Centre CYFRONET AGH) equipped with Tesla K40 GPU nodes, running CUDA 10.0 [37]
and the cuDNN 7.3.0 [38].
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Input data:
1D vector of length: 1024 points

Conv. layer:
256x(3x1)

Max pooling layer:
pool size: 2x1

Conv. layer:
128x(3x1)

Up pooling layer:
pool size: 2x1

Conv. layer:
256x(3x1)

Output conv. layer:
1D vector of length: 1024 points

Figure 4. Diagram shows the networks’ layer structure and architecture. The size below convolutional layers correspond to the
Number of filters times Kernels size of every layer. The second dimension of all layers is equal to unity since the initial input data
were 1D time-series vectors.

Detector
strain

+

GW
waveforms

Whitening Deep Learning
Neural Network

Training

Anomaly

Noise

Figure 5. Data flow of the project. The first step consists of data generation. GW waveforms were injected into the detector strain,
either simulated or real (e.g. public data from the GWOSC platform). Since the raw time-series signal varied with frequency, the
whitening procedure was applied to simplify data for further training. The training of the DL algorithms aimed to recover as
many injected anomalies as possible, while limiting the false positive rate of the pipeline (noise samples incorrectly classified as
anomaly).

The whitening mentioned in the workflow diagram removes the contribution of the stationary detector
noise and re-weights the sensitivity at different frequencies [41]. As a result, the amplitude spectral density of
the data becomes uniform and GW signals buried in the data are easier to search for and compare with each
other. The whitening filter was re-computed separately for DS1 and DS2 as well as for every interferometer to
take into account the differences in the sensitivity. The whitening procedure used for the analysis of both
studied datasets was conducted in the frequency domain following pyCBC Python library modules [42].

To simulate an astrophysical GW signal emitted by a BBH we used the IMRPhenomv4 waveform model
[43], which includes the binary inspiral, merger of the components and the final BH ringdown. The
component BH massesm1 andm2 of the waveform model were chosen to be compatible with the first
detected GW150914 [1]. We selectedm1,m2 based on the initial mass function (IMF) in ranges associated
with uncertainties of mass estimation for GW150914:m1 : 32.5–40.3M⊙,m2 : 26.2–33.6M⊙. For the index
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Figure 6. Top left: designed sensitivity of aVirgo and aLIGO interferometers. The detectors were expected to reach this level of
sensitivity over broad range of frequencies after all planned upgrades. Top right: examples of generated BBH GW waveforms
injected into the strain data as anomalies. The GW were generated for the following parameters: blue signal—m1= 29M⊙,
m2= 24M⊙, distance= 440 Mpc; orange signal—m1= 33M⊙,m2= 27M⊙, distance= 380 Mpc; green
signal—m1= 28M⊙,m2= 23M⊙, distance= 600 Mpc. Bottom left: examples of the simulated data using the above sensitivity
curves. Bottom right: distributions of matched filter SNR of simulated GW injected into the real data for detectors: LIGO Hanford
(blue), LIGO Livingston (orange) and Virgo (green) as well simulated data for: aLIGO (violet) and aVirgo (pink).

of the IMF power law, we chose the value of α=−2.35 [44]. The luminosity distances were chosen uniformly
from the range between 200 and 800 Mpc, to cover a realistic range of the matched filter signal-to-noise ratio
(SNR)—from 4 to 40 varying for different interferometers as shown in the bottom right plot in figure 6. The
position in the sky was chosen to be optimal for every detector in a given moment of time. The examples of a
few simulated GW signals are presented on the top right plot in figure 6.

The DS1 dataset was created for the two assumed sensitivity curves of the GW detectors. Each curve
described the level of the detector sensitivity with respect to the frequency in such a way that the generated
strain was mimicking the realistic time series output. In our analysis we used the designed sensitivity for the
aVirgo from O3 run (version without squeezing) [45, 46] and the aLIGO [47] interferometers. ‘Designed’
means that the interferometers were expected to reach this level of sensitivity after all the planned upgrades.
Band-pass filtering was then applied to the generated noise to remove high frequency (above 1 kHz) and low
frequency (below 30 Hz, corresponding to the seismic noise) components from the data, as current
interferometers are not sensitive enough to detect GWs outside that frequency range. The data was then
resampled from 4096 Hz to 1024 Hz. An example of the output time series from the DS1 is shown on the
bottom left plot in figure 6. Prepared in advance GW signals were injected into the generated strain and
subjected to the procedure of whitening.

The DS2 (realistic) dataset was created based on the publicly available LIGO-Virgo O2 observing run,
using the data stored at the GWOSC platform [40] for three interferometers: LIGO Hanford, LIGO
Livingston and Virgo described in the text with the respective abbreviations H1, L1 and V1. For each
detector, we chose six hours of data to train the DL models. For L1, we took segments between 1187 270 656
and 1187 295 232 (in GPS time units); for H1, between 1174 958 080 and 1174 982 656; whereas for V1,
between 1187 672 064 and 1187 696 640. We injected into the strain the same GW signals as for the simulated
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data. As a result, we obtained (for the same set of injections) three different distributions of matched filter
SNR, since every detector had a different sensitivity. The distributions are illustrated in the bottom right plot
in figure 6. For the comparison, we included additional SNR distributions of the simulated datasets. The
obtained real data strain with injected anomalies was then subjected to the procedure of whitening and
resampled from 4096 Hz to 1024 Hz.

In total, we generated five datasets (two simulated for aVirgo and aLIGO, and three based on real LIGO
Livingston, LIGO Hanford and Virgo O2 data) which were further split into one second segments and
divided for the training, validation and testing datasets (65%, 10% and 25% respectively). An additional test
set, containing confirmed GW detections, has been created by using one hour of data around GPS time for
each confirmed GW, whitened and resampled as described above. As confirmed GWs, we chose three BBH
detections with the highest network SNR from O2 run: GW150914, GW170608 and GW170814 [39].

4. Results

The results presented below are split into subsections. The first presents the results of the anomaly searches
on the simulated dataset containing injected GW. The second subsection covers searches of anomalies in the
real data of Virgo and LIGO interferometers. The last subsection presents capabilities of anomaly searches on
the real data containing confirmed detections of GW.

4.1. Anomaly searches on simulated data
The CNN-AE described in section 2 was first trained on the whitened, simulated data containing GWs. The
convergence of the model was achieved after 100 epochs, during which the MSE loss function reached a value
of around 6× 10−5 for the aVirgo data and 10−4 for the aLIGO data. We extended the training for another
100 epochs to investigate the onset of overfitting. However, the overfitting did not appear and MSE
fluctuated around the values mentioned above. The learning history of the AE, trained on both simulated
datasets, with results for both the training and the validation sets is shown on the left plot in figure 7. For
aVirgo, the same set of gravitational waveforms covered a SNR range of smaller values than for aLIGO, as a
result of the worse detector sensitivity (see the top left plot in figure 6 for comparison). This, in turn, resulted
in the convergence towards a lower MSE for the aVirgo dataset, since the difference between the ‘anomalous’
input and ‘anomalous-free’ reconstruction were smaller than in the case of aLIGO data (see section 2.2 for
more details).

Furthermore, as described in section 2.2, the correctly trained CNN-AE reconstructed the pure detectors’
noise, regardless of the anomalies presence in the input data. Then, by subtracting the input from the
reconstructed output we aimed to recover the underlying signal. We computed the mentioned differences
between the input initial data and the output AE reconstruction. Examples of the results are presented in
figure 8, where blue, dashed lines in the background correspond to the expected results, whereas red lines
correspond to values obtained with the AE. In the majority of cases, we were able to correctly reconstruct the
GW waveforms for aLIGO data. The anomaly was significantly different from the surrounding noise, with its
recovered part mostly associated with the merger part of the gravitational waveforms, together with a small
contribution from the inspiral part. In contrast, for the aVirgo dataset, the reconstruction was significantly
worse, often dominated by the surrounding noise. In rare cases, as presented on the right plot in figure 8, the
merger part was reconstructed. In the appendix A we present the summary of the match between the injected
and reconstructed waveforms using ⟨x1|x2⟩metric performed in the time domain.

Since the AE was able to correctly reconstruct the majority of anomalies buried in the data (at least for
the aLIGO dataset), we aimed then to define a metric allowing automatic anomaly detection. We chose the
MSE as such a metric, computed between the input data and the AE output as detailed in section 2.2.
Figure 9 shows histograms of MSE for the two different signal types present in the studied data: noise and
injected GW. As expected, values of MSE for the noise were much smaller than for the latter case and close to
zero. There was a range of MSE in which histograms of both types overlapped (denoted with the burgundy
colour in figure 9). Nevertheless, the majority of noise with injected GW instances in the aLIGO dataset and
almost half of these instances in the aVirgo dataset had values larger than the noise. Moreover, we added the
detection threshold (defined in the following paragraph) to the histograms to stress out how many of initially
injected GW were correctly detected as anomalies (hatched area in figure 9).

We defined the threshold for the anomaly detection using the relation between the false positive rate
(FPR) and MSE. Then, by fixing FPR at a particular value, we set the detection threshold (DT) on the
corresponding MSE. In the presented analysis, we fixed FPR at 5%, resulting in the following thresholds:
DTsimV = 1.6× 10−5 for aVirgo and DTsimL = 3.1× 10−5 for aLIGO. The results of the anomaly searches at
FPR= 5% are shown in table 1 in the form of confusion matrix. Additionally, the comparison in the
anomaly detection efficiency for both interferometers is shown on the left plot in the figure 10 in the form of
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Figure 7. The learning history of the AE trained on the whitened, simulated aVirgo and aLIGO datasets (left plot) as well as on the
whitened, real data for L1, H1 and V1 datasets (right plot). The convergence was achieved after 100 epochs. We trained for 200
epochs, to investigate the onset of overfitting: it did not appear.

Figure 8. The examples of signal reconstruction using the CNN-AE on aLIGO (left plot) and aVirgo data (right plot). The plots
(red curves) were generated after subtracting the input signal from the AE predictions. For comparison, we added the expected
signal using blue, dashed curve (difference between the input signal and the ground-truth output signal).

receiver operating characteristic (ROC) curves. Over all ranges of FPR, the aLIGO detector achieved a
significantly higher detection efficiency, or true positive rate (TPR).

Presented in table 1 values quantitatively represent the results from both panels in figure 9. Anomaly row
relates to the hatched area from those panels. In the case of aLIGO dataset 96% of detected anomalies are
correctly related to the injected GW with minor contamination of noise samples. In case of aVirgo 59% of
samples characterized by low SNR (around 10 and less) samples did not exceed the DT and contributed to
the non-anomalous group. Details presenting the relation between the SNR of the injected GW and MSE of
the reconstructed waveform can be found in the appendix B.

4.2. Anomaly searches on real data
Later on, the AEs were trained on whitened, real data from the O2 observational run, collected for three
existing interferometers: V1, L1 and H1 with injected BBH gravitational waveforms. The right plot in
figure 7 presents the learning history of the AE trained on the dataset for every detector. As in the case of the
simulated data, AE reached convergence after around 100 epochs. We again prolonged the training to
investigate the onset of overfitting, which did not appear. Since the difference between the ‘anomalous’ input
and the ‘anomalous-free’ reconstruction for V1 was the smallest among the considered datasets (as a result of
the SNR smallest range), the AE during training converged towards the lowest MSE. Adequately, a smaller
range of SNRs for the H1 dataset with respect to the L1 dataset resulted in the difference between the
respective values of MSE (for L1 being higher, and for H1 being lower).

The ability of the AE to reconstruct the detectors’ noise was investigated as previously in the case of
simulated data. The differences between the input strain and AE reconstructions were compared with the
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Figure 9. Distribution of MSE between the AE predictions and the input strain for two types of studied signals: noise
(blue histogram) and injected GW (red histogram). In the broad range of MSE for aLIGO dataset the injected GW had
significantly higher MSE than noise, allowing a definite distinction between these signal types. Additional black vertical line
representing anomaly DT was added to emphasize amount of detected anomalies (hatched areas).

Table 1. Results of anomaly detection of CNN-AE at FPR= 5% for aLIGO and aVirgo dataset in the form of confusion matrix.
Columns relate to the ground-truth values whereas rows to the predictions. For aLIGO dataset significant majority of detected
anomalies corresponded to the data samples with injected GW. However in case of aVirgo more than a half of data samples with injected
GW did not exceed the DTsimV as a result of low SNR (see figure 6 for comparison between aLIGO and aVirgo GW SNR distributions).

aLIGO aVirgo

Injected GW Noise Injected GW Noise

Anomaly 96% 5% 41% 5%
Non-anomaly 4% 95% 59% 95%

Figure 10. Receiver operating characteristic curves for simulated data (left plot) and real data (right plot). Black vertical line
corresponds to the FPR= 5% chosen as the criterion for the anomaly detection threshold.

expected values. Examples of this comparison are presented in figure 11. The summary of the match between
the injected and the reconstructed waveforms is presented in appendix A. The AE trained on L1 data
achieved the best results, since the GW injected into the strain were extracted to the greatest extent in the
merger part and partially in the inspiral part. On the other hand, the AE trained on the other datasets
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Figure 11. Three examples of GW reconstruction using AE. Presented plots were generated after subtracting from the AE
predictions, input signal (red curve). For the comparison we added the expected signal using blue, dashed curve
(difference between the input signal and the ground-truth output signal). From left to right: results for L1, H1 and V1 detectors.

Figure 12. Distribution of MSE between the AE predictions and the input strain for two types of studied signals: injected GW
(red histograms) and noise (blue histograms). Plots correspond to the L1 (left plot), H1 (middle plot) and V1 (right plot) datasets.
Additional black vertical line representing anomaly DT was added to emphasize amount of detected anomalies (hatched areas).

reconstructed mainly the merger part. Overall, the AE seemed to fail to reconstruct lower amplitudes and
frequencies of the GW signal (the inspiral and ringdown part).

To compute the threshold for the anomaly detection, we generated histograms of the MSE for every
detectors’ dataset and compared its values with the FPR. The results are shown in figure 12. The anomalies
covered a greater range of MSE values than the noise, with an overlapping range varying for different datasets
(coloured in burgundy in figure 12). In the case of L1 data, this region was the smallest whereas for V1, it was
the largest. As in the case of simulated data, we defined a detection threshold for anomalies assuming FPR=
5%, which resulted in the following thresholds: DTL1 = 1.3× 10−5 for L1, DTH1 = 2.2× 10−5 for H1 and
DTV1 = 4.3× 10−6 for V1. The results of the anomaly searches on real datasets are present in table 2 in the
form of confusion matrix. Anomaly row relates to the hatched area on panels in figure 12. In the case of L1
and H1 datasets, around half of detected anomalies are correctly related to the injected GW. Samples that did
not exceed corresponding DT had low SNR. That was also the case of the V1 dataset where only 27% of
samples exceeded DTV1. Details presenting the relation between the SNR of the injected GW and MSE of the
reconstructed waveform for the real datasets can be found in the appendix B.
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Table 2. Results of anomaly detection of CNN-AE at FPR= 5% for L1, H1 and V1 datasets in the form of confusion matrix. Columns
relate to the ground-truth values whereas rows to the predictions. For all datasets significant majority of detected anomalies correctly
corresponded to the data instances with injected GW. However, more than a third part of non-anomalous class (samples that did not
exceed DT for a given detector) related to the low SNR injected GW (see figure 6 for comparison between L1, H1 and V1 GW SNR
distributions).

L1 H1 V1

Inj. GW Noise Inj. GW Noise Inj. GW Noise

Anomaly 52% 5% 50% 5% 27% 5%
Non-anomaly 48% 95% 50% 95% 73% 95%

Figure 13. Anomaly localisation based on the difference in peak positions between reconstructed and injected signals. Left plot:
The results for the simulated datasets. Right plot: The results for the real datasets.

Additionally, we performed tests on the localisation in time of anomalies detected by our method. We
compared the known times of the GW injection into the data with the time of the reconstructed signal.
Specifically, we subtracted the times corresponding to the maximum amplitude peaks of both signals, and
plotted histograms of the resulting differences for all the anomalies that exceeded computed previously DT.
For comparison, we performed this procedure also for the simulated datasets. The results are shown in
figure 13. In all the studied cases, around 95% of detected anomalies were localised within 0.05 s intervals
around the injection times. We conclude that this feature may be useful not only for detection and
reconstruction, but also potentially for other applications, such as the localisation of signals in the data from
many detectors, and subsequent sky localisation of the sources.

4.3. Anomaly searches on confirmed GWdetections
Using a selection of real GW detections provided by the LIGO-Virgo collaboration on the GWOSC platform
[40], we tested the AE on three relatively strong signals from the GWTC-1 O1-O2 catalog [39]: GW150914
[1], GW170608 [48] and GW170814 [49]. The reported network SNR (square root of a sum of squares of
SNRs from individual detectors ρi) ρnet =

√∑
i ρ

2
i is≃24 for GW150914,≃15 for GW170608 and≃16 for

GW170814 [40]. Assuming two equally sensitive detectors, each of them would measure SNR of≃17 for
GW150914,≃10 for GW170608 and and≃11 for GW170814; note that the GW170814 was a three-detector
event, with the single-detector SNRs in H1, L1 and V1 equal to 7.3, 13.7, and 4.4, respectively [49]. In reality,
due to differences in sensitivity the detectors registered the signals with different SNRs, which were
nevertheless near the single-detector SNR detection threshold, established by the FPR= 5% condition.

After whitening, test data were fed into the AE. Then, the reconstructed values were subtracted from the
input data. The results of subtraction for GW150914 are shown on the two upper, right plots in figure 14 for
the both LIGO detectors. The presented signals resulted in the MSEL1 = 3.2× 10−4 and
MSEH1 = 1.0× 10−3. For both detectors, MSE had significantly higher values than the corresponding
detection thresholds of FPR= 5%.

In case of GW170608, the AE detected the event; however, the reconstructed signal was limited to the
merger part for both the LIGO detectors as shown on the two middle, right plots in figure 14. A potential
explanation for this weaker reconstruction of this particular GW is related to the different mass ranges of
GW170608 and the GWs used for the training of the AE. GW170608 had BBH component masses
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Figure 14. Test of the CNN-AE on the dataset containing confirmed detections using L1 and H1 datasets for GW150914 (four
upper plots), GW170608 (four middle plots) and GW170814 (four bottom plots). Left plots: spectrograms presenting the relation
between frequency and time for the segment of real data containing GW. Right plots: the difference between the CNN-AE
predictions and the input data.

corresponding to aroundm1 = 11.0 andm2 = 7.6M⊙ which were substantially smaller than the masses used
in the data generation (see section 3 for more details). We note that the H1 detector was nominally outside of
observing mode at the time of this event. This data release includes H1 data around the time of this event, by
using a modified segment list, as was done for the published analysis [39, 40, 48]. Nevertheless, the AE
detected GW170608, proving its generalisation capabilities towards recognising gravitational waveforms it
was not trained for. This is a sure advantage of our proposed method, when compared to the matched
filtering method. Furthermore, the MSE values for both detectors had slightly higher values above the
detection thresholds at FPR= 5%: MSEL1 = 5.3× 10−5 and MSEH1 = 4.1× 10−5.

13



Mach. Learn.: Sci. Technol. 2 (2021) 045014 F Morawski et al

The last studied test case, GW170814, was detected in both LIGO detectors with a substantial part of the
waveform being recovered, as shown on the two bottom, right plots in figure 14. For the V1 data, AE failed to
detect the event evidently due to low reported SNR of≃4 [49]. The MSE for the L1 and H1 datasets were
above the data threshold, at 5% and equal to MSEL1 = 2.2× 10−4, MSEH1 = 2.2× 10−4, whereas for V1 the
MSE was below the threshold: MSEV1 = 1.8× 10−6.

These results confirm that our proposed method of using CNN-AE for anomaly searches is able to detect
real GWs, even though the deep learning model was trained on relatively uncomplicated datasets, based on
the information related to a particular GW waveform models, varying with respect to the limited range of
masses and distances.

5. Summary

In this paper, we proved that AEs are a potentially powerful method for anomaly searches in GW data. A
relatively simple AE, consisting of only three hidden layers, was capable of detecting anomalies, defined in
terms of transient BBH GWs (as well glitches in real data), and trained on either simulated or real data.
Moreover, our proposed method was able to detect as anomalies all three confirmed GWs used as a test case
and even partially reconstruct the waveforms of the underlying signals.

In the proposed method we introduced a metric allowing for the automatic detection of anomalies. The
chosen metric was MSE. Using this metric, we defined the threshold for the anomaly detection by associating
MSE with FPR. The results presented in the manuscript referred to FPR= 5%. At such a threshold we were
able to detect from the LIGO data set, almost all of the injected GW into the simulated dataset, as well as
around 50% for real detector data. In the case of Virgo, for simulated data around half of injected signals
were detected and quarter for real data. The reason for worse results on real data taken from the O1 to O2
observational run, was the substantial difference in the sensitivity with respect to the simulated counterpart.
The sensitivity of real detectors were overall worse than the designed one. However, the real sensitivity
significantly improved for the O3 observational run after detector upgrades. Once the data from O3 becomes
public, the anomaly searches of the proposed CNN-AE method are expected to improve.

Our method also proved to be useful in the precise time localisation of anomalies. Anomalies exceeding
the detection threshold for all the studied datasets (real and simulated) turned out to be localised with
accuracy below 0.05 s. Localisation of the peak amplitude may be particularly useful for the localisation of
GW sources on the sky in multi-detector analysis. However, such an application of our method requires a
separate study.

Finally, the successful detection of GW170608 proved the generalisation capabilities of our AE, towards
the detection of GWs with parameters that are different than those of the GWs used for the AE training and
in the data nominally outside of the observing mode.

Among the future projects we are considering are applications of recurrent neural networks instead of
CNN in the anomaly searches as an alternative suited for the time-series data as well as anomaly searches of
different GW types such as core collapse supernova signals.
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Figure 15. Distribution of a match between the injected (x1) and the reconstructed (x2) waveforms as a function of normalized
scalar product ⟨x1|x2⟩. Scalar product equals to one relates to the full match between waveforms whereas value of zero—no
match. Left plot: results for the whole studied dataset of particular detector; right plot: results of a match after applying the
anomaly detection threshold at FPR= 5%.
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Appendix A. Match/overlap between the injected and reconstructed waveforms

A.1. Simulated dataset
To measure the match between the injected and the reconstructed waveforms we used the normalized scalar
product ⟨x1|x2⟩ in the time domain resulting in values in a range (0, 1). Zero related to no match, whereas
one to full match between the waveforms. Presented results in figure 15 corresponds to the whole studied
dataset for aLIGO and aVirgo detectors (left panel) as well as samples exceeding the anomaly detection
thresholds (right panel). Applying respective DT allowed to substantially reduce number of samples with no
match between the waveforms as a result of low SNR of injected GW. Samples exceeding DT were
reconstructed to a greater extent which resulted in ⟨x1|x2⟩ closer to one.

A.2. Real dataset
The same metric as in case of simulated dataset was used to study the match between the injected and the
reconstructed waveforms for the real datasets. Presented in figure 16 results show the similarities in the
match between consecutive datasets (L1, H1 and V1) as well as the effect of applying the anomaly detection
threshold. Samples with ⟨x1|x2⟩ close to zero had low SNR. As a result they were poorly reconstructed which
in turn translated into low value of MSE. Samples exceeding respective DT were reconstructed to a greater
extent as in the case of simulated data. However, overall match was worse—the mean values of ⟨x1|x2⟩ for
real datasets were around 0.6, whereas for simulated data 0.8.
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Figure 16. Distribution of a match between the injected (x1) and the reconstructed (x2) waveforms as a function of normalized
scalar product ⟨x1|x2⟩. Scalar product equals to one relates to the full match between waveforms whereas value of 0—no match.
Left plot: results for the whole studied dataset of particular detector; right plot: results of a match after applying the anomaly
detection threshold at FPR= 5%.

Figure 17. Relation between MSE and matched filter SNR for aVirgo and aLIGO datasets colored with a distance to the GW
source. Black horizontal line corresponds to the detection threshold of anomalies at FPR= 5%.

Appendix B. Signal-to-noise ratio vs mean squared error

B.1. Simulated dataset
For the aLIGO dataset above SNR= 20, the MSE-SNR relation was almost linear, with a small spread of
individual data instances along MSE, as shown in figure 17. Whereas with the decline of SNR, the spread of
MSE significantly increased, characterized by the non-linearity in the MSE-SNR relation. Anomalies around
the same SNR for values below ten varied up to an order of magnitude in MSE. Manual inspection of data
samples containing anomalies of low SNR provided an explanation of this behaviour. In the analysed
samples, only the merger part of the gravitational waveform was recovered. For lower SNRs (below ten) the
recovery was partial and dependent on the variability of the noise. If the amplitude of the noise in a given
data segment was small comparing to the injected GW signal, the resulting MSE was higher than in the case
of noise samples with larger amplitudes. Overall, for the aLIGO dataset, the susceptibility of AE to the local
variability of the noise was inversely proportional to the SNR of the injected anomaly.

In case of the aVirgo dataset, the mentioned susceptibility was more significant. Matched filter SNRs for
all injected GWs covered a smaller range of values than for aLIGO (compare SNR ranges on the bottom right
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Figure 18. Relation between the MSE and the matched filter SNR for L1 (left plot), H1 (middle plot) and V1 (right plot) datasets
colored with a distance to the GW source. Black horizontal line corresponds to the detection threshold of anomalies at FPR= 5%.

plot in figure 6 for aLIGO and aVirgo datasets). In the majority of studied cases, the recovery of the anomaly
was partial and limited to the merger part.

B.2. Real dataset
The relation between SNR and MSE presented similar features as for the simulated data discussed above. The
variability of MSE for samples of similar SNR was largest among the weakest anomalies as shown in
figure 18. The increase of the matched filter SNR led to the decrease of the spread in MSE, and thus their
relation became more linear. This was the case for the AEs trained on the L1 and H1 datasets. In contrast, the
AE trained on the V1 dataset was more susceptible to the local variability of the noise. Since the injected
anomalies had a small SNR for V1 (majority of injected GW had SNR below ten), their amplitude was
significantly lower than the detectors noise. As a result, the anomaly detection depended on the variability of
the noise, which had a random character.
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