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Abstract
We derive symmetric and antisymmetric kernels by symmetrizing and antisymmetrizing
conventional kernels and analyze their properties. In particular, we compute the feature space
dimensions of the resulting polynomial kernels, prove that the reproducing kernel Hilbert spaces
induced by symmetric and antisymmetric Gaussian kernels are dense in the space of symmetric
and antisymmetric functions, and propose a Slater determinant representation of the
antisymmetric Gaussian kernel, which allows for an efficient evaluation even if the state space is
high-dimensional. Furthermore, we show that by exploiting symmetries or antisymmetries the size
of the training data set can be significantly reduced. The results are illustrated with guiding
examples and simple quantum physics and chemistry applications.

1. Introduction

Kernel methods and neural networks are two of the most prevalent and versatile machine learning
techniques. While various recent publications focus on invariant or equivariant deep learning algorithms,
our goal is to derive kernel-based methods that exploit symmetries. Symmetries play an important role in
many research areas such as physics and chemistry [1–3], but also point cloud classification problems [4] or
problems defined on sets [5] are naturally permutation-invariant. One of the most prominent applications is
in quantum physics. Systems of bosons require symmetric wave functions, whereas systems of fermions are
represented by antisymmetric wave functions. Exploiting such symmetries of the underlying system is a
popular and powerful approach that has been used to improve the performance of kernel-based methods as
well as deep-learning algorithms. The goal is to obtain more accurate representations without increasing the
number of training data points—resulting in more efficient learning algorithms—and to ensure that
symmetry constraints are satisfied. In [1] and [2], for instance, neural networks and kernel approaches that
take into account symmetries of molecules are constructed. These methods are then used for learning
potential energy surfaces. An approach for constructing potential energy surfaces based on Gaussian
processes combined with permutation-invariant kernels can be found in [6]. Gaussian processes that exploit
symmetries by summing over permutations of identical atoms are also utilized in [7] to improve the accuracy
of density functional theory descriptions. Moreover, the so-called SOAP (smooth overlap of atomic
positions) kernel [8] is a popular framework to design translation-, rotation-, and permutation-invariant
descriptors of molecules. In [9], general invariant kernels (capturing discrete and continuous
transformations) for pattern analysis are defined and analyzed. Recently, neural network architectures for
antisymmetric wavefunctions have been proposed [10–14] that typically operate by applying Slater
determinants to the outputs. The neural networks optimize the basis functions entering the Slater
determinants through a deep learning variant of a technique called backflow. Backflow is a method to modify
the basis functions used in quantumMonte Carlo as trial wavefunctions [15]. Neural network approaches
such as FermiNet [11] and PauliNet [12] achieve extremely high accuracy with relatively few Slater
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determinants compared to standard quantum chemistry methods that build Slater determinants with fixed
basis functions. Kernels, on the other hand, accomplish this by mapping the data to potentially
infinite-dimensional feature spaces. Any continuous antisymmetric function can be approximated by
antisymmetrized universal kernels. The universal approximation of symmetric and anti-symmetric functions
is also studied in [16].

In this work, we develop kernels that are intrinsically symmetric or antisymmetric. Although we focus
mostly on physics and chemistry applications in what follows, the derived kernels can be used in the same
way in other kernel-based supervised or unsupervised learning algorithms such as kernel principal
component analysis (kernel PCA) [17], kernel canonical correlation analysis (kernel CCA) [18], or support
vector machines (SVMs) [19]. The main contributions are:

• We derive symmetric and antisymmetric kernels based on conventional kernels such as polynomial and
Gaussian kernels and show that certain kernels can be expressed as Slater permanents or determinants.

• We analyze the feature spaces and approximation properties of such kernels.
• We demonstrate that these techniques improve the efficiency of kernel-based methods for problems
exhibiting symmetries or antisymmetries.

• We apply kernel-basedmethods for solving the time-independent Schrödinger equation to simple quantum
mechanics problems. Furthermore, we predict the boiling points of molecules using kernel ridge regression.

In section 2, we first introduce kernels, reproducing kernel Hilbert spaces, and kernel-based methods for
solving the time-independent Schrödinger equation. Antisymmetric kernels will be derived in section 3 and
symmetric kernels in section 4. These two sections contain the main theoretical results, in particular the
analysis of the properties of the resulting polynomial and Gaussian kernels. Numerical results will be
presented in section 5. We conclude the paper with a list of open problems and future research.

2. Kernels and kernel-based methods

We will briefly recapitulate the properties of kernels and introduce the induced reproducing kernel Hilbert
spaces. Additionally, we will present a kernel-based method for solving the time-independent Schrödinger
equation.

2.1. Reproducing kernel Hilbert spaces
A kernel can be regarded as a similarity measure. We will focus on real-valued kernels, but the definitions can
be easily extended to complex domains.

Definition 2.1 (Kernel [19]). Given a non-empty set X, a function k : X×X is called kernel if there exists a Hilbert
space H and a feature map ϕ : X→H such that

k(x,x′) = ⟨ϕ(x),ϕ(x′)⟩ .

For a given kernel k, the so-called Gram matrix G ∈ Rm×m associated with a data set {x(i)}mi=1 ⊂ X is defined
by Gij = k(x(i),x( j)).

Definition 2.2 (Positive definiteness [19]). A function k : X×X is called positive definite if for all m, all vectors c=
[c1, . . . , cm]⊤ ∈ Rm, and all subsets {x(i)}mi=1 ⊂ X it holds that

c⊤Gc=
m∑
i=1

m∑
j=1

cicjk(x
(i),x(j))⩾ 0.

Strictly positive definite means that c⊤Gc= 0 for mutually distinct data points only if c= 0. It can be
shown that a function k : X×X→ R is a kernel if and only if it is symmetric, i.e. k(x,x ′) = k(x ′,x), and
positive definite (s.p.d. in what follows to avoid confusion between different notions of symmetry), see [19].
Such kernels induce so-called reproducing kernel Hilbert spaces.

Definition 2.3 (RKHS [19, 20]). Let X be a non-empty set. A space H of functions f : X→ R is called reproducing
kernel Hilbert space (RKHS) with inner product ⟨ · , · ⟩H if a kernel k exists such that

(a) f(x) = ⟨ f, k(x, ·)⟩H for all f ∈H, and

(b) H= span{k(x, ·) | x ∈ X}.
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The first requirement is called the reproducing property. For f = k(x, ·), this results in k(x,x ′) =
⟨k(x, ·),k(x ′, ·)⟩H so that we can define the so-called canonical feature map by ϕ(x)= k(x, ·). Additionally,
for a data set {x(i)}mi=1, we define Φ= [ϕ(x1), . . . ,ϕ(xm)] so that G=Φ⊤Φ. For more details on kernels and
reproducing kernel Hilbert spaces, we refer to [19, 20]. It was shown in [21, 22] that not only function
evaluations but also derivative evaluations can be represented as inner products in the RKHSH, provided the
kernel is sufficiently smooth. Let now α= (α1, . . . ,αd) ∈ Nd

0 be a multi-index. We define |α|=
∑d

i=1αi as
usual and, for a fixed r ∈ N0, the index set Ir = {α ∈ Nd

0 : |α| ≤ r}. Given a function f : X→ R, the partial
derivative of f with respect to α is defined by

Dαf=
∂|α|

∂xα1
1 . . .∂xαd

d

f.

Theorem 2.4 ([21, 22]). Let r ∈ N0 be a non-negative number, k ∈ C2 r(X×X) a kernel, and H the induced
RKHS. Then:

(a) Dαk(x, ·) ∈H for any x ∈ X and α∈ Ir.
(b) (Dαf )(x) = ⟨Dαk(x, ·), f ⟩H for any x ∈ X, f ∈H, and α∈ Ir.

In (i) and (ii), the derivativeDα is understood as acting on the first argument of the kernel k.

We will need this property later for the approximation of differential operators. Another question is how
rich these Hilbert spacesH induced by a kernel k are.

Definition 2.5 (Universal kernel [23]). Let X be compact and C(X) the space of all continuous functions mapping
from X to R equipped with || · ||∞. A kernel k is called universal if the induced RKHSH is dense in C(X).

That is, for a function f ∈ C(X), we can find a function g ∈H such that ||g− f ||∞ < ε for any ε > 0. The
Gaussian kernel

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
,

for instance, is universal, while the polynomial kernel

k(x,x′) = (c+ x⊤x′)q

is not. We will analyze the properties of these kernels and their symmetrized and antisymmetrized
counterparts in more detail below. Various other notions of universality and the relationships between
universal and characteristic kernels are discussed in [24]. In what follows, we will omit the subscriptH if it is
clear which inner product or norm we are referring to.

2.2. Kernel-based solution of the Schrödinger equation
In [25], we proposed a kernel-based method for the solution of the time-independent Schrödinger equation
and the approximation of other differential operators such as the generator of the Koopman operator. We

will restrict ourselves to the Schrödinger equation. Let V be a potential andH=− ℏ2

2 m∆+V the
Hamiltonian, where ℏ is the reduced Planck constant andm the mass, then the time-independent
Schrödinger equation is defined by

Hψ = Eψ.

That is, we want to compute eigenfunctions ψ and the associated eigenvalues E, which correspond to energies
of the system. We define

dϕ(x) =− ℏ2

2m

d∑
l=1

D2elϕ(x)+V(x)ϕ(x),

where el is the lth unit vector, and operators

C00 =
ˆ
ϕ(x)⊗ϕ(x)dµ(x) and C01 =

ˆ
ϕ(x)⊗ dϕ(x)dµ(x).

3
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Here, C00 is the standard covariance operator (see [26]) and C01 contains the action of the Schrödinger
operator. Since these integrals typically cannot be computed in practice, we estimate them using
µ-distributed training data {x(i)}mi=1, resulting in the empirical operators

Ĉ00 =
1

m

m∑
i=1

ϕ(x(i))⊗ϕ(x(i)) and Ĉ01 =
1

m

m∑
i=1

ϕ(x(i))⊗ dϕ(x(i)).

Assuming that the eigenfunctions can be represented as ψ̂ =Φu, i.e. they are contained in the space spanned
by the functions {ϕ(x(i))}mi=1, we obtain a matrix eigenvalue problem

G10u= ÊG00u,

where the entries of the (generalized) Gram matrices G00,G10 ∈ Rm×m are defined by[
G00

]
ij
=
[
ϕ(x(i))

]
(x(j)) = k(x(i),x(j))

and

[
G10

]
ij
=
[
dϕ(x(i))

]
(x(j)) =− ℏ2

2 m

d∑
l=1

D2elk(xi,xj)+V(xi)k(xi,xj).

Eigenfunctions are then of the form

ψ̂ =Φu=
m∑
i=1

uik(x
(i), ·).

A detailed derivation and numerical results for simple quantum mechanics problems—the quantum
harmonic oscillator and the hydrogen atom—can be found in [25].

3. Antisymmetric kernels and their properties

In this section, we will introduce the notion of antisymmetric kernels and define antisymmetric counterparts
of well-known kernels such as the polynomial kernel and the Gaussian kernel. Furthermore, we analyze the
properties of the resulting reproducing kernel Hilbert spaces. Most results can then be carried over to the
symmetric case, which will be studied in section 4.

3.1. Antisymmetric kernels
Let X⊂ Rd be the state space. Furthermore, let Sd be the symmetric group and π ∈ Sd a permutation. With a
slight abuse of notation, we define π(x) = [xπ(1), . . . ,xπ(d)]

⊤ to be the vector x ∈ X permuted by π. A
function f : X→ R is called antisymmetric if

f(x) = sgn(π)f(π(x)),

where sgn(π) denotes the sign of the permutation π, which is 1 if the number of transpositions is even and
−1 if it is odd. We define the antisymmetrization operator A by

(Af)(x) =
1

d!

∑
π∈Sd

sgn(π)f(π(x)).

Remark 3.1. In the same way, we can consider state spaces of the form X⊂
⊕dx

i=1Rdy . Functions would then be
antisymmetric with respect to permutations of vectors in Rdy . That is, for x= [x1, . . . ,xdx ]

⊤ with xi ∈ Rdy , the
permuted vector is then π(x) = [xπ(1), . . . ,xπ(dx)]

⊤. For typical quantum mechanics applications, for instance,
dy = 3 (every particle has a position in a three-dimensional space) and dx the number of fermions (or bosons
in the symmetric case). The special case dx = 2 is considered in [27], where the spectral properties of symmetric
and antisymmetric pairwise kernels are analyzed. Supervised learning problems with such pairwise kernels are
discussed in [28].

Our goal is to define antisymmetric kernels for arbitrary d, which can then be used in kernel-based
learning algorithms.

4
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Definition 3.2 (Antisymmetric kernel function). Let k : X×X→ R be a kernel. We define an antisymmetric function
ka : X×X→ R by

ka(x,x
′) =

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn(π)sgn(π′)k
(
π(x),π′(x′)

)
.

Clearly, if k(x,x ′) = k(x ′,x), then also ka(x,x ′) = ka(x ′,x). Furthermore, for a fixed permutation π̂ ∈ Sd,
it holds that

ka(π̂(x),x
′) =

1

d!2

∑
π∈Sd

∑
π ′∈Sd

sgn(π)sgn(π ′)k
(
π(π̂(x)),π ′(x ′)

)
= sgn(π̂)

1

d!2

∑
π∈Sd

∑
π ′∈Sd

sgn(π ◦ π̂)sgn(π ′)k
(
[π ◦ π̂](x),π ′(x ′)

)
= sgn(π̂)

1

d!2

∑
π∈Sd

∑
π ′∈Sd

sgn(π)sgn(π ′)k
(
π(x),π ′(x ′)

)
= sgn(π̂)ka(x,x

′). (1)

Here, we used the fact that sgn(π̂) = sgn(π̂−1) and sgn(π ◦ π̂) = sgn(π)sgn(π̂). Additionally, we utilized the
property that for a function g : Sd → R it holds that

∑
π∈Sd

g(π) =
∑

π∈Sd
g(π ◦ π̂), which corresponds to a

reordering of the summands. Thus, ka is antisymmetric in both arguments. From (1) it directly follows that
ka(x,x ′) = 0 if at least two entries of x or x ′ are equal6.

Lemma 3.3. The function ka defines an s.p.d. kernel.

Proof. We have

ka(x,x
′) =

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn(π)sgn(π′)k
(
π(x),π′(x′)

)
=

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn(π)sgn(π′)⟨ϕ(π(x)),ϕ(π′(x′))⟩

=

〈
1

d!

∑
π∈Sd

sgn(π)ϕ(π(x)),
1

d!

∑
π′∈Sd

sgn(π′)ϕ(π′(x′))

〉
= ⟨ϕa(x),ϕa(x

′)⟩ ,

where ϕa(x) =
1
d!

∑
π∈Sd

sgn(π)ϕ(π(x)). That is, ka is a kernel. Symmetry was shown above. To see that the

function is positive definite, let c= [c1, . . . , cm]⊤ ∈ Rm be a coefficient vector and {x(i)}mi=1 ⊂ X. Then

c⊤Gac=
m∑
i=1

m∑
j=1

cicjka(x
(i),x(j)) =

m∑
i=1

m∑
j=1

cicj
〈
ϕa(x

(i)),ϕa(x
(j))
〉

=

〈
m∑
i=1

ciϕa(x
(i)),

m∑
j=1

cjϕa(x
(j))

〉
=

∥∥∥∥∥
m∑
i=1

ciϕa(x
(i))

∥∥∥∥∥
2

⩾ 0.

The antisymmetrized two- and three-dimensional Gaussian kernels are visualized in figure 1. The feature
space mapping of the antisymmetric kernel ka is the antisymmetrization operatorA applied to the feature
space mapping of the kernel k.

Example 3.4. For X⊂ R2, the feature space of the quadratic kernel k(x,x ′) = (1+ x⊤x ′)2 is spanned by
{1,x1,x2,x21,x1x2,x22} and thus six-dimensional. The feature space of the antisymmetrized kernel ka is spanned
by the two antisymmetric functions {x1 − x2,x21 − x22}. This illustrates that the feature space is significantly
reduced. △

Polynomial kernels of arbitrary degree p for d-dimensional spaces will be discussed in more detail in
section 3.2.

6 Assume w.l.o.g. that xi = xj for some indices i ̸= j. Let π̂ be the permutation which only swaps the positions i and j, then it holds that
ka(x,x ′) = ka(π̂(x),x ′) = sgn(π̂)ka(x,x ′) =−ka(x,x ′).

5
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Figure 1. (a) Two-dimensional antisymmetric Gaussian kernel ka, where x ′ = [0.4,−0.3]⊤ and σ= 0.3. Yellow corresponds to
positive and blue to negative values. (b) Three-dimensional antisymmetric Gaussian kernel ka, where x ′ = [0.3,−0.6,0.4]⊤ and
σ= 0.2. The separating isosurface in the middle is defined by ka(x,x ′) = 0.

Figure 2. (a) Numerically computed normalized features of the Gaussian kernel k with bandwidth σ = 1
2
. (b) Similar-looking but

antisymmetric features of the associated kernel ka. (c) Symmetric features of the kernel ks derived in section 4.

Remark 3.5. The Mercer features of a kernel k are defined by the eigenfunctions of the integral operator

(Tkf)(x) =
ˆ

k(x,x′)f(x′)dµ(x′)

multiplied by the square root of the associated eigenvalues λ, see [19]. The Mercer features of an antisymmet-
ric kernel ka are automatically antisymmetric. This can be seen as follows: let φ be an eigenfunction of Tka with
corresponding eigenvalue λ, then

λφ(π(x)) =

ˆ
ka(π(x),x

′)φ(x′)dµ(x′) = sgn(π)

ˆ
ka(x,x

′)φ(x′)dµ(x′) = λsgn(π)φ(x).

Mercer features of the Gaussian kernel and its antisymmetric and symmetric (see section 4) counterparts—
computed by a spectral decomposition of the covariance operator, cf [29]—are shown in figure 2.

Definition 3.6 (Permutation invariance). We call a kernel permutation-invariant if

k(x,x′) = k(π(x),π(x′))

6
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for all permutations π ∈ Sd.

The Gaussian kernel and the polynomial kernel are permutation-invariant since the standard inner
product and induced norm are permutation-invariant, i.e. ⟨xx ′⟩= ⟨π(x)π(x ′)⟩ for a permutation π ∈ Sd.
The antisymmetric kernel ka is permutation-invariant by construction. While many kernels used in practice
are naturally permutation-invariant, an open question is whether this assumption limits the expressivity of
the induced function space. We will analyze the properties of the Gaussian kernel in section 3.3. The
permutation-invariance allows us to simplify the representation of the antisymmetric kernel.

Lemma 3.7. Given a permutation-invariant kernel k, it holds that

ka(x,x
′) =

1

d!

∑
π∈Sd

sgn(π)k
(
π(x),x′

)
=

1

d!

∑
π∈Sd

sgn(π)k
(
x,π(x′)

)
.

Proof. We obtain

ka(x,x
′) =

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn(π)sgn(π′)k
(
π(x),π′(x′)

)
=

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn(π)sgn(π′)k
([
(π′)−1 ◦π

]
(x),x′

)
=

1

d!2

∑
π∈Sd

∑
π′∈Sd

sgn
(
(π′)−1 ◦π

)
k
([
(π′)−1 ◦π

]
(x),x′

)
=

1

d!

∑
π∈Sd

sgn(π)k
(
π(x),x′

)
since all permutations occur d! times. In the third line, we used the same properties of permutations as above.
The proof for the second representation is analogous.

For the sake of simplicity, assume now that the kernel k is permutation-invariant. We want to show that for a
universal kernel k, the reproducing kernel Hilbert space induced by the corresponding antisymmetric kernel
ka is dense in the space of antisymmetric functions.

Proposition 3.8. Let X be bounded. Given a universal, permutation-invariant, continuous kernel k, the space
Ha induced by ka is dense in the space of continuous antisymmetric functions given by Ca(X) = {f ∈ C(X) |
fis antisymmetric}.

Proof. Let f be antisymmetric. It follows that f(x) = sgn(π)f(π(x)) for all π ∈ Sd and thus

f(x) =
1

d!

∑
π∈Sd

sgn(π)f(π(x)).

Since k is assumed to be universal, we can find coefficients αi ∈ R and vectors x(i) ∈ X such that
||
∑n

i=1αik( · ,x(i))− f||∞ < ε. Then∥∥∥∥∥
n∑

i=1

αika( · ,x(i))− f

∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

i=1

αi

d!

∑
π∈Sd

sgn(π)k
(
π( ·),x(i)

)
− 1

d!

∑
π∈Sd

sgn(π)f(π( ·))

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1d! ∑
π∈Sd

sgn(π)

[
n∑

i=1

αik
(
π( ·),x(i)

)
− f(π( ·))

]
︸ ︷︷ ︸

<ε ∀π

∥∥∥∥∥
∞

< ε.

Continuous antisymmetric functions can be approximated arbitrarily well by universal antisymmetric
kernels such as the Gaussian kernel. Although we used the same number of data points for the
approximation in the proof (i.e. n points for the expansion in terms of k and also ka), fewer data points are
required in practice if we employ the antisymmetric kernel, see example 3.14.

3.2. Antisymmetric polynomial kernels
We have seen in example 3.4 that the feature space dimension of the polynomial kernel of order two for
X⊂ R2 is reduced from six to two by the antisymmetrization. Let q= (q1, . . . ,qd) ∈ Nd

0 be a multi-index and

7
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|q|=
∑d

i=1 qi. We define xq =
∏d

i=1 x
qi
i . For a d-dimensional state space X, the polynomial kernel of order p is

then given by

k(x,x′) = (c+ x⊤x′)p =
∑

0 ≤|q|≤p

(√
aqx

q
)(√

aqx
′q) ,

where

aq =

(
p

q

)
cq0

q0!

and q0 = p− |q|, cf [30]. The multinomial coefficients are defined by(
p

q

)
=

p!

q1! . . .qd!
.

Thus, the feature space is spanned by the monomials
{
xq
∣∣ 0 ≤ |q| ≤ p

}
and the dimension of the feature

space is nϕ =
(p+d

d

)
, see, e.g. [31].

We now want to find the feature space of the corresponding antisymmetric kernel ka. Given a
multi-index q, assume that there exist two entries qi and qj with qi = qj. Since the transposition (i, j) leaves
the multi-index (and thus xq) unchanged, this monomial will be eliminated by the antisymmetrization
operator. It follows that the monomials must have distinct indices. In fact, the nonzero images of monomials
under antisymmetrization are of the form

fµ(x) =

∣∣∣∣∣∣∣∣∣∣
xδ1+µ1
1 xδ2+µ2

1 . . . xδd+µd
1

xδ1+µ1
2 xδ2+µ2

2 . . . xδd+µd
2

...
...

. . .
...

xδ1+µ1

d xδ2+µ2

d . . . xδd+µd

d

∣∣∣∣∣∣∣∣∣∣
, (2)

where δ = (d− 1,d− 2, . . . ,0) and µ= (µ1, . . . ,µd) with µ1 ⩾ µ2 ≥ ·· ·⩾ µd ⩾ 0 is a partition of a positive
integer7, see [32]. The degrees of the terms of this antisymmetric polynomial are |µ|+

(d
2

)
. Since we need all

monomials of order 0 ⩽ |q|⩽ p, we have to consider the partitions µ of 0 ⩽ pr ⩽ p−
(d
2

)
.

This representation uses the fact that multi-indices corresponding to antisymmetric polynomials can be
written as q= δ+µ, where δ is defined as above and µ a partition. It follows that an antisymmetric
polynomial must be at least of order

(d
2

)
. Equation (2) can be regarded as a Slater determinant (introduced

below) for a specific set of functions. We also obtain the Vandermonde determinant (up to the sign) as a
special case where µ= 0.

Definition 3.9 (Partition function). Let sℓ(n) be the function that counts the partitions of n into exactly ℓ parts.

A closed-form expressions for sℓ(n) is not known, but it can be expressed in terms of generating functions
or computed using the recurrence relation

sℓ(n) = sℓ(n− ℓ)+ sℓ−1(n− 1),

where we define sℓ(n) = 1 if n= 0 and ℓ= 0 and sℓ(n) = 0 if n⩽ 0 or ℓ⩽ 0 (but not n= ℓ= 0), see [33] for
more details about partitions and partition functions.

Lemma 3.10. The dimension of the feature space generated by the antisymmetrized polynomial kernel of order
p is

nϕa =

p−(d2)∑
pr=0

d∑
j=0

sj(pr).

Proof. Since
(d
2

)
of the |q| exponents are already spoken for, we can use only the remaining |q| −

(d
2

)
to generate

partitions µ, with 0 ⩽ |q|⩽ p. All these numbers can be decomposed into at most d parts since we have only
d variables. If the number of components is smaller than d, we simply add zeros.

7 A partition of a positive integer n is a decomposition into positive integers so that the sum is n. The order of the summands does
not matter, i.e. 6= 3+ 2+ 1 and 6= 1+ 2+ 3 are the same partition. We sort partitions in non-increasing order, e.g. µ= (3, 2, 1) is a
partition of 6 into three parts.

8
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Table 1. Dimensions of the feature spaces spanned by the polynomial kernel k and its antisymmetric counterpart ka. Here, d is the
dimension of the state space and p the degree of the polynomial kernel.

p 2 3 4 5 6 7 8

d nϕ nϕa nϕ nϕa nϕ nϕa nϕ nϕa nϕ nϕa nϕ nϕa nϕ nϕa

2 6 2 10 4 15 6 21 9 28 12 36 16 45 20
3 10 0 20 1 35 2 56 4 84 7 120 11 165 16
4 15 0 35 0 70 0 126 0 210 1 330 2 495 4

Example 3.11. For d= 3 and p= 6, the base case is δ= (2, 1, 0), and we can generate partitions for

pr = 0 : µ= (0,0,0), q= (2,1,0),

pr = 1 : µ= (1,0,0), q= (3,1,0),

pr = 2 : µ= (2,0,0),(1,1,0), q= (4,1,0),(3,2,0),

pr = 3 : µ= (3,0,0),(2,1,0),(1,1,1), q= (5,1,0),(4,2,0),(3,2,1),

resulting in seven antisymmetric polynomials. △

The sizes of the feature spaces of the polynomial kernels k and ka for different dimensions d and degrees p
are summarized in table 1. This shows that antisymmetric polynomial kernels might not be feasible for
higher-dimensional problems. For d= 10, for example, the lowest degree of the monomials is already 45.

3.3. Antisymmetric Gaussian kernels
We will now analyze the properties of the Gaussian kernel. We have shown in Proposition 3.8 that the space
spanned by the antisymmetric Gaussian kernel is dense in the space of continuous antisymmetric functions.
For the Gaussian kernel, the expression obtained in lemma 3.7 can be simplified even further.

Lemma 3.12. Let k be the Gaussian kernel with bandwidth σ, then

ka(x,x
′) =

1

d!

∣∣∣∣∣∣∣∣∣
e−

(x1−x′1)
2

2σ2 . . . e−
(x1−x′d)

2

2σ2

...
. . .

...

e−
(xd−x′1)

2

2σ2 . . . e−
(xd−x′d)

2

2σ2

∣∣∣∣∣∣∣∣∣ .
Proof. Applying Leibniz’ formula

det(A) =
∑
π∈Sd

sgn(π)
d∏

i=1

aπ(i),i,

we have ∣∣∣∣∣∣∣∣∣
e−

(x1−x′1)
2

2σ2 . . . e−
(x1−x′d)

2

2σ2

...
. . .

...

e−
(xd−x′1)

2

2σ2 . . . e−
(xd−x′d)

2

2σ2

∣∣∣∣∣∣∣∣∣=
∑
π∈Sd

sgn(π)
d∏

i=1

e−
(xπ(i)−x′i )

2

2σ2

=
∑
π∈Sd

sgn(π)e−
∑d

i=1(xπ(i)−x′i )
2

2σ2

=
∑
π∈Sd

sgn(π)e−
||π(x)−x′||2

2σ2

=
∑
π∈Sd

sgn(π)k(π(x),x′).

Lemma 3.7 then yields the desired result.

This decomposition is akin to the well-known Slater determinant (see, e.g. [34]), which defines an
antisymmetric wave function by

ψa(x) =
1√
d!

∣∣∣∣∣∣∣
ψ1(x1) . . . ψd(x1)

...
. . .

...
ψ1(xd) . . . ψd(xd)

∣∣∣∣∣∣∣ .
9
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Figure 3. (a) Antisymmetric function f(x) = sin(π(x1 − x2)). (b) Kernel ridge regression approximation error as a function of
the number of data points. The antisymmetric Gaussian kernel leads to more accurate function approximations without
increasing the size of the training data set.

Notice that here the normalization factor is chosen in such a way that, provided the wave functions ψi,
i= 1, . . . ,d, are normalized and orthogonal to each other, ψa is normalized as well.

Remark 3.13. We can define a more general class of antisymmetric kernels. Let f : R→ R be a function, then

ka(x,x
′) =

1

d!

∣∣∣∣∣∣∣
f(|x1 − x′1|) . . . f(|x1 − x′d|)

...
. . .

...
f(|xd − x′1|) . . . f(|xd − x′d|)

∣∣∣∣∣∣∣
defines an antisymmetric kernel. We call such a function ka a Slater kernel. The Gaussian kernel can be obtained

by setting f(r) = e−
r2

2σ2 and the Laplacian kernel—using the 1-norm—by setting f(r) = e−
r
σ . Alternatively, ker-

nels based on generalized Slater determinants could be constructed or by concatenating creation and annihilation
operators, see also [11–13].

The advantage of the Slater determinant formulation is that we can compute it efficiently using matrix
decomposition techniques, without having to iterate over all permutations, which would be clearly infeasible
for higher-dimensional problems.

Example 3.14. In order to illustrate the difference between a standard Gaussian kernel k and its antisymmet-
rized counterpart ka, we define an antisymmetric function f : R2 → R by f(x) = sin(π(x1 − x2)) and apply kernel
ridge regression (see, e.g. [31]) to randomly sampled data points8. That is, we generate m data points x(i) in X=
[−1,1]× [−1,1] and compute y(i) = f(x(i)). We then try to recover f from the training data

{
(x(i),y(i))

}m
i=1

. Addi-

tionally, we define an augmented data set of size 2m by adding the antisymmetrized data set, i.e.
{
(x(i),y(i))

}m
i=1

∪{
(π(x(i)),−y(i)

}m
i=1

, whereπ= (1, 2) in cycle notation. The bandwidth of the kernel is set toσ = 1
2 . The results are

shown in figure 3. We measure the root-mean-square error (RMSE)—averaged over 5000 runs—in the midpoints
of a regular 30× 30 box discretization of the domain. Kernel ridge regression using ka results in more accurate
function approximations and is, for small m, numerically equivalent to kernel ridge regression using k applied to
the augmented data set of size 2 m. For larger values of m, doubling the size of the data set leads to ill-conditioned
matrices and increased numerical errors9. △

The example shows that the antisymmetrized kernel is indeed advantageous, it enables a more accurate
representation without increasing the size of the data set. For higher-dimensional problems, this effect will be
even more pronounced. To obtain the same accuracy for a three-dimensional antisymmetric function, we
would already need 6m data points. The kernel evaluations, on the other hand, become more expensive, but
are easily parallelizable. The bottleneck of kernel-based methods is often the size of the training data set,
which enters in a cubic way (since a generally dense system of linear equations has to be solved, or, if we are
interested in eigenfunctions of operators associated with dynamical systems, a generalized eigenvalue
problem).

8 We use a bold π for the mathematical constant to avoid confusion with permutations π.
9 This could be mitigated by decreasing the bandwidth or by regularization techniques.
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3.4. Derivatives of antisymmetric kernels
For the approximation of differential operators, we will also need partial derivatives of the kernel ka. Since ka
just comprises alternating sums of kernel functions k, we can compute derivatives of ka by summing over
derivatives of k. For polynomial and Gaussian kernels, the derivatives of k can be found in [25]. Alternatively,
the partial derivatives of the antisymmetric Gaussian kernel can be computed via Slater determinants.

Example 3.15. For the antisymmetric Gaussian kernel, let Kel ∈ Rd×d be the matrix with entries

K el
ij =

− 1
σ2 (xi − x′j)e

−
(xi−x′j )

2

2σ2 , i= l,

e−
(xi−x′j )

2

2σ2 , i ̸= l.

Then

Delka(x,x
′) =

1

d!
det(Kel).

Similar formulas can be derived for the second-order derivatives. △

4. Symmetric kernels and their properties

Although we focused on antisymmetric functions so far, symmetric functions also play an important role in
quantum physics. Other typical applications include point clouds, sets, and graphs, where the numbering of
points, elements, or vertices should not impair the learning algorithms. Some of the above results can be
easily carried over to the symmetric case. The special case dx = 2 is analyzed in [27]. Similar symmetrized
kernels are also constructed in [6]. We focus on the analysis of the induced functions spaces.

4.1. Symmetric kernels
We call a function f : X→ R symmetric if

f(x) = f(π(x))

for all permutations π ∈ Sd and define the symmetrization operator

(Sf)(x) = 1

d!

∑
π∈Sd

f(π(x)).

Definition 4.1 (Symmetric kernel function). Let k : X×X→ R be a kernel. We then define a symmetric function ks :
X×X→ R by

ks(x,x
′) =

1

d!2

∑
π∈Sd

∑
π′∈Sd

k
(
π(x),π′(x′)

)
.

We simply omitted the signs of the permutations here. As before, if k(x,x ′) = k(x ′,x), then also
ks(x,x ′) = ks(x ′,x). The function ks is permutation-symmetric in both arguments. Note that the definition
of permutation-symmetry is different from permutation-invariance, which was defined by
k(x,x ′) = k(π(x),π(x ′)). Permutation-symmetric kernels are, however, automatically
permutation-invariant. We briefly restate the above results for symmetric functions, the proofs are analogous
to their counterparts for antisymmetric functions.

Lemma 4.2. The function ks defines an s.p.d. kernel.

Example 4.3. For X⊂ R2, the feature space of the symmetrized polynomial kernel of order 2 is spanned by the
symmetric functions {1,x1 + x2,x21 + x22,x1x2}. △

More general results for polynomial kernels will be derived in section 4.2. Eigenfunctions of the integral
operator associated with ks are symmetric. Mercer features of the symmetrized Gaussian kernel for d= 2 are
shown in figure 2.

Lemma 4.4. Given a permutation-invariant kernel k, it holds that

ks(x,x
′) =

1

d!

∑
π∈Sd

k
(
π(x),x′

)
=

1

d!

∑
π∈Sd

k
(
x,π(x′)

)
.
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Table 2. Dimensions of the feature spaces spanned by the polynomial kernel k and its symmetric counterpart ks. Here, d is again the
dimension of the state space and p the degree, cf table 1.

p 2 3 4 5 6 7 8

d nϕ nϕs nϕ nϕs nϕ nϕs nϕ nϕs nϕ nϕs nϕ nϕs nϕ nϕs

2 6 4 10 6 15 9 21 12 28 16 36 20 45 25
3 10 4 20 7 35 11 56 16 84 23 120 31 165 41
4 15 4 35 7 70 12 126 18 210 27 330 38 495 53

Analogously, continuous symmetric functions can be approximated arbitrarily well by symmetric
universal kernels.

Proposition 4.5. Let X be bounded. Given a universal, permutation-invariant, continuous kernel k, the space Hs

induced by ks is dense in the space of continuous symmetric functions given byCs(X) = {f ∈ C(X) | fis symmetric}.

4.2. Symmetric polynomial kernels
Let us compute the dimensions of the feature spaces spanned by symmetrized polynomial kernels.

Lemma 4.6. The dimension of the feature space generated by the symmetrized polynomial kernel of order p is

nϕs =

p∑
pr=0

d∑
j=0

sj(pr).

Proof. Let π be a permutation, then the multi-indices q and π(q) generate the same feature space function
when we apply the symmetrization operator S to the corresponding monomials xq and xπ(q). We thus have to
consider only partitions µ of the integers 0⩽ |q|⩽ p since the ordering of the multi-indices does not matter.

This case is similar to the antisymmetric case, with the difference that we require partitions of integers up
to p instead of p−

(d
2

)
. Table 2 lists the dimensions of the feature spaces spanned by the polynomial kernel k

and its symmetric version ks for different combinations of d and p. Compared to the standard polynomial
kernel, the number of features is significantly lower, but higher than the number of features generated by the
antisymmetric polynomial kernel.

4.3. Symmetric Gaussian kernels
The symmetric kernel cannot be expressed as a Slater determinant anymore, but we can utilize a related
concept. The permanent of a matrix A ∈ Rd×d is defined by

per(A) =
∑
π∈Sd

d∏
i=1

aπ(i),i =:

∣∣∣∣∣∣∣
–a11 . . . a1d
...

. . .
...

–ad1 . . . add

∣∣∣∣∣∣∣
–

–

.

While for d= 2 the permanent can be written as a determinant (by flipping the sign of a12 or a21), this is not
possible anymore for d⩾ 3 [35]. No polynomial-time algorithm for the computation of the permanent is
known, but there are efficient approximation schemes for matrices with non-negative entries [36].

Lemma 4.7. Let k be the Gaussian kernel with bandwidth σ, then

ks(x,x
′) =

1

d!

∣∣∣∣∣∣∣∣∣
–
e−

(x1−x′1)
2

2σ2 . . . e−
(x1−x′d)

2

2σ2

...
. . .

...

–e
− (xd−x′1)

2

2σ2 . . . e−
(xd−x′d)

2

2σ2

∣∣∣∣∣∣∣∣∣
–

–

.
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Figure 4. Application of kernel PCA to a set of undirected graphs. The x-direction corresponds to the first principal component.
The results show that isomorphic graphs are assigned the same value.

Proof. The proof is analogous to the one for lemma 3.12. Using the definition of the permanent, we obtain∣∣∣∣∣∣∣∣∣
–
e−

(x1−x′1)
2

2σ2 . . . e−
(x1−x′d)

2

2σ2 −

...
. . .

...

–e
− (xd−x′1)

2

2σ2 . . . e−
(xd−x′d)

2

2σ2

∣∣∣∣∣∣∣∣∣
–

–

=
∑
π∈Sd

d∏
i=1

e−
(xπ(i)−x′i )

2

2σ2

=
∑
π∈Sd

e−
∑d

i=1(xπ(i)−x′i )
2

2σ2

=
∑
π∈Sd

e−
||π(x)−x′||2

2σ2

=
∑
π∈Sd

k(π(x),x′).

The result then follows from lemma 4.4.

Example 4.8. Assume we have a set of undirected graphs that we would like to classify or categorize. The res-
ults should not depend on the vertex labels and thus be identical for isomorphic graphs. Let A,A ′ ∈ Rd×d be the
adjacency matrices of the graphs G and G ′, respectively. We define a Gaussian kernel for graphs by

k(G,G′) = exp

(
−
||A−A′||f 2

2σ2

)
,

where || · ||F denotes the Frobenius norm, and make it symmetric as described above. The only difference here is

that we have to define π(A) =
(
aπ(i),π( j)

)d
i,j=1

to permute rows and columns simultaneously. The kernel function

ks(G,G ′) can then be expressed in terms of so-called hyperpermanents. We have

ks(G,G
′) =

∑
π∈Sd

exp

(
−
||π(A)−A′||f 2

2σ2

)
=
∑
π∈Sd

d∏
i=1

d∏
j=1

exp

(
−
(
aπ(i),π(j) − a′i,j

)2
2σ2

)
.

The derivation of a formula for the Laplace expansion of hyperpermanents can be found in appendix A.1. For the
considered example, we set σ= 1 and randomly generate a set of 100 undirected connected graphs of size d= 5. We
then apply kernel PCA, see [17], using the symmetric kernel ks. Sorting the graphs according to the first principal
component, we obtain the ordering shown in figure 4 (only a subset of the graphs is displayed). Isomorphic graphs
are grouped into the same category. △

Other learning algorithms such as kernel k-means, kernel ridge regression, or support vector machines
can be used in the same way, enabling us to cluster, make predictions for, or classify data where the order of
elements is irrelevant.

4.4. Product or quotient representations of symmetric kernels
The aim now is to express a symmetric kernel not as a Slater permanent but as a product or quotient of
antisymmetric functions. As shown in section 3.1, an antisymmetric kernel is zero for all x for which a
(non-trivial) permutation π exists such that π(x)= x. Therefore, products of antisymmetric kernels are zero

13
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Figure 5. (a) Symmetric Gaussian kernel. (b) Quotient of antisymmetric Gaussian kernels. (c) Product of antisymmetric
Gaussian kernels. The bandwidths of the antisymmetric kernels were chosen in such a way that the resulting functions
approximate the symmetric Gaussian kernel. In the top row x ′ = [0.4,−0.3]⊤ and in the bottom row x ′ = [0.4,0.35]⊤. Product
kernels cannot approximate the symmetric Gaussian kernel if x ′ is close to the separating boundary given by x1 = x2.

for such x as well, see also figure 5. We thus mainly restrict ourselves to quotients. Let k(1)a and k(2)a be two

permutation-invariant antisymmetric kernels and k(2)a (x,x ′) ̸= 0. We define

ks(x,x
′) =

k(1)a (x,x′)

k(2)a (x,x′)
.

Then

ks(π(x),x
′) =

k(1)a (π(x),x′)

k(2)a (π(x),x′)
=

sgn(π)k(1)a (x,x′)

sgn(π)k(2)a (x,x′)
= ks(x,x

′).

Remark 4.9. If the numerator and denominator can be written as determinants, i.e. k(1)a (x,x ′) = det(K1) and

k(2)a (x,x ′) = det(K2), we obtain

ks(x,x
′) =

det(K1)

det(K2)
= det(K1)det(K

−1
2 ) = det(K1 K

−1
2 ).

Example 4.8. Suppose d= 2. Let k(1) and k(2) be two Gaussian kernels with bandwidths σ1 and σ2, respectively,
where σ1 < σ2. If the bandwidths are sufficiently small, either k(1)(x,x ′) and k(2)(x,x ′) or k(1)(π(x),x ′) and
k(2)(π(x),x ′) will be close to zero (unless π(x)= x), where π= (1, 2) in cycle notation. Assume w.l.o.g. the latter
holds, then

ks(x,x
′) =

k(1)a (x,x′)

k(2)a (x,x′)
=

k(1)(x,x′)− k(1)(π(x),x′)

k(2)(x,x′)− k(2)(π(x),x′)
≈ k(1)(x,x′)

k(2)(x,x′)
,

which is a Gaussian with bandwidth σ satisfying 1
σ2 =

1
σ2
1
− 1

σ2
2
. This is illustrated in figure 5. Furthermore, the

limit of ks(x,x ′) as x2 → x1 exists and is given by

ks(x,x
′) =

σ22
σ12

k(1)(x,x′)

k(2)(x,x′)
,

with x= [x1,x1]⊤, see appendix B. △

The symmetric Gaussian kernel can be approximated by a quotient of antisymmetric Gaussian kernels,
which can be evaluated inO(d3), thus avoiding the non-polynomial complexity of the permanent. The
question whether such kernels are universal is beyond the scope of this work.
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5. Applications

In addition to the guiding examples presented above, we will illustrate the efficacy of the derived kernels with
the aid of quantum physics and chemistry problems.

5.1. Particles in a one-dimensional box
Let us first consider a simple one-dimensional two-particle system. We define a potential V by

V(x) =

{
0, 0 ⩽ x⩽ L,

∞, otherwise.

Furthermore, we assume that the two particles do not interact and obtain the Schrödinger equation

− ℏ2

2m
∆ψ(x1,x2) = Eψ(x1,x2) (3)

for 0⩽ x1,x2 ⩽ L. By separating the two variables, we obtain the classical particle in a box problem, with

eigenvalues Eℓ =
ℏ2 π2 ℓ2

2 mL2 and eigenfunctions ψℓ(x) =
√

2
L sin

(
πℓx
L

)
, for ℓ= 1,2,3, . . . , see, for instance, [37].

For the two-particle system, the eigenvalues are hence of the form

Eℓ1,ℓ2 = Eℓ1 + Eℓ2 =
ℏ2 π2(ℓ21 + ℓ22)

2mL2

and the eigenfunctions are

ψℓ1,ℓ2(x1,x2) = ψℓ1(x1)ψℓ2(x2) =
2

L
sin

(
πℓ1x1
L

)
sin

(
πℓ2x2
L

)
.

However, since the two particles are physically indistinguishable, the wave functions must satisfy
|ψℓ1,ℓ2(x1,x2)|

2
= |ψℓ1,ℓ2(x2,x1)|2, which implies that the functions are either symmetric (if the particles are

bosons) or antisymmetric (if the particles are fermions). Let us assume that the two particles are electrons,
i.e. fermions. We thus want to compute antisymmetric solutions of the time-independent Schrödinger
equation by applying the approach introduced in section 2.2, see also [25]. In the same way, we could assume
that the particles are bosons and compute symmetric solutions by replacing the antisymmetric kernel by a
symmetric kernel.

We define ℏ= 1,m= 1, and L= π, choose the antisymmetric Gaussian kernel with bandwidth σ= 0.1,
and generatem= 900 uniformly sampled points in [0, L]×[0, L]. Additionally, to ensure that the
eigenfunctions are zero outside the box, we place 124 equidistantly distributed test points on the boundary
and enforce ψℓ1,ℓ2(x1,x2) = 0 for these boundary points. We thus have to solve a constrained eigenvalue
problem and use the algorithm described in [38]. The first three eigenfunctions ψ1,2, ψ1,3, and ψ2,3 are shown
in figure 6 and good approximations of the analytically computed eigenfunctions. The probability that the
two electrons are in the same location is always zero. Furthermore, the results show that by increasing the
number of data points we obtain more accurate and less noisy estimates of the true eigenvalues.

Remark 5.1. We would like to point out that

• This example is just meant as an illustration of the concepts and not as a realistic physical model;
• Eigenfunctions with ℓ1 = ℓ2 are symmetric and eliminated by the antisymmetrization operation;
• Approximations of the eigenfunctions can be obtained using far fewer points (m< 50), but the eigenvalues will
be considerably overestimated (kernels tailored to quantummechanics applications might lead to better approx-
imations);

• The antisymmetry assumption is encoded only in the kernel, not in the Schrödinger equation itself.

This can be easily extended to the multi-particle case. We now add electron–electron interaction terms
resulting in the Hamiltonian

H=− ℏ2

2m
∆+

∑
i̸=j

1

|xi − xj|
.

For d= 3, we randomly generate 3000 interior points and 600 boundary points to enforce Dirichlet
boundary conditions. We choose a Gaussian kernel with bandwidth σ= 0.1, assemble the Gram matrices,
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Figure 6. Numerically computed antisymmetric eigenfunctions (a) ψ1,2, (b) ψ1,3, and (c) ψ2,3 with corresponding eigenvalues
λ1,2 ≈ 2.75, λ1,3 ≈ 5.40, and λ2,3 ≈ 7.07 form= 900. The eigenvalues are slightly larger than the analytically computed values
λ1,2 = 2.5, λ1,3 = 5, and λ2,3 = 6.5. (d) Eigenvalues as a function of the number of data points. The solid lines represent the
numerically computed eigenvalues, the shaded areas the standard deviation, and the dashed lines the analytically computed
eigenvalues.

Figure 7. Antisymmetric eigenfunctions (a) ψ1,2,3, (b) ψ1,2,4, and (c) ψ1,3,4. The top row shows the analytically computed
eigenfunctions omitting electron–electron interaction, the bottom row the numerically computed eigenfunctions including
repulsive forces.

and again solve the resulting constrained eigenvalue problem. The results are shown in figure 7. For the sake
of comparison, we also plot the corresponding eigenfunctions of the Schrödinger equation without the
electron–electron interaction. It can be seen that the eigenfunctions for the separable case are similar to the
eigenfunctions where the interaction terms are included. For this particular system, the interaction terms do
not seem to have a drastic effect on the system’s low-lying energy states. In general, however, their effect on
the electronic wavefunction can be significant. We also remark that energies and wavefunctions of the
interacting system could in principle be approximated by perturbation techniques. However, due to the
degeneracy of the antisymmetric states, such a perturbation analysis seems beyond the scope of this work.

5.2. Acyclic molecules
As a second example, we consider a data set of acyclic molecules [39]. The aim is to determine the boiling
points of these molecules containing the elements C, H, O, and S. The data set10 consists of 183 graphs
G= (V, E) representing the molecular structures and the corresponding boiling points in degrees Celsius, see
figure 8 for a few examples of molecules included in the data set. The number of vertices |V| varies between 3
and 11, where the hydrogen atoms of the molecules are neglected. Thus, in order to compare the graphs of

10 The data set can be found at https://brunl01.users.greyc.fr/CHEMISTRY/.
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Figure 8. Skeletal formulas of a selection of samples taken from the data set. The set contains oxygen and sulfur compounds of
different complexities. The associated boiling points are between−23.7 ◦C and 250 ◦C.

different sizes, we expand all adjacency matrices to Rd×d with d= 11 by appending rows and columns of
zeros, representing artificial isolated nodes.

We define a symmetrized Laplacian kernel on graphs, cf example 4.8. Given the adjacency matrices
A,A ′ ∈ Rd×d of the graphs G= (V, E) and G ′ = (V ′,E ′) as well as the kernel parameter σ > 0, we define the
tensor T ∈ Rd×d×d×d by

ti,j,k,l = exp

(
−
|ai,j − a′k,l|

σ

)
for i ̸= j and k ̸= l and

ti,i,k,k =

{
1, ifVi and V′

k represent the same atom,

exp(−1/σ) , otherwise.

The latter definition ensures that we avoid unwanted effects of any ordinal labeling of the nodes. Using the
hyperpermanent of T, the kernel evaluation ks(G,G ′) can be written as

ks(G,G
′) = hper(T) =

∑
π∈Sd

d∏
i=1

d∏
j=1

ti,j,π(i),π( j). (4)

Note that we do not consider entries ti,j,k,l with either i= j, k ̸= l or i ̸= j, k= l since i= j⇔ π(i) = π( j). We
refer to appendix A for different methods and simplifications for computing the hyperpermanent of T.

For kernel-based (ridge) regression (see, e.g. [40]), we extract 165 adjacency matrices (≈90%) and their
corresponding boiling point temperatures from the data set as training samples, the other data pairs
constitute the test set. That is, for any G in the test set, the regression function is given by f(G) = Θ⊤Ktrain,G,
where the vector Ktrain,G ∈ R165 is the Gram matrix (or kernel matrix) corresponding to the training samples
(rows) and the test sample G (column). The vectorΘ ∈ R165 is the solution of Ktrain,trainΘ= b with b being
the vector of boiling points of the molecules in the training set. We then compute the average error as well
the root-mean-square error in the boiling points of the test set in order to evaluate the generalizabilty of the
learned regression function. We repeat each experiment 10 000 times with randomly chosen training and test
sets, the results for different kernel parameters σ are shown in figure 9(a).

The best results in terms of the average and the root-mean-square error are obtained for kernel
parameters σ between 2.5 and 2.8, see table 3 for details. According to the data set’s website, the best results
so far for the boiling point prediction on 90% of the set as training data and 10% as test data are achieved by
applying so-called treelet kernels which exploit all possible graph/tree patterns up to a given size [39]. In this
case, the average error is listed as 4.87 and the root-mean-square error as 6.75. Both values are comparable
with our results.
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Figure 9. (a) Average errors and root-mean-square errors for the test set for different values of σ. The solid lines depict the
median and the semi-transparent areas comprise the 30th to the 70th percentile of the respective errors. (b) Entries of the Gram
matrix corresponding to the whole data set for σ= 3 with a logarithmically scaled color map. The samples are sorted by number
of atoms, type of compound (oxygen/sulfur), and number of contained heteroatoms.

Table 3.Mean and median of the average error and root-mean-square error over all repetitions for values of σ between 2.5 and 2.8.

σ

Average error Root-mean-square error

mean median mean median

0.25 4.90 4.76 6.85 6.57
0.26 4.91 4.77 6.87 6.53
0.27 4.92 4.77 6.88 6.47
0.28 4.94 4.80 6.91 6.44

As shown in figure 9(b), the entries of the Gram matrix tend to decrease for larger molecules. This effect
can be explained by the expansion of the adjacency matrices and similarities of the molecules with small
numbers of atoms. For instance, the first two compounds in the (ordered) data set are dimethyl ether
(C2H6O) and dimethyl sulfide (C2H6S). Due to the expansion from |V|= 3 to |V|= 11, the majority of the
permutations in (4) do not affect the adjacency matrix of G ′, cf appendix A.3. The block structure of the
matrix arises from the ordering of the data set, i.e. each group of molecules with the same number of atoms
is divided into subgroups of compounds containing one oxygen atom, two oxygen atoms, one sulfur atom,
and two sulfur atoms.

6. Conclusion

We derived symmetric and antisymmetric kernels that can be used in kernel-based learning algorithms such
as kernel PCA, kernel CCA, or support vector machines, but also to approximate symmetric or
antisymmetric eigenfunctions of transfer operators or differential operators (e.g. the Koopman generator or
Schrödinger operator). Potential applications range from point cloud analysis and graph classification to
quantum physics and chemistry. Furthermore, we analyzed the induced reproducing kernel Hilbert spaces
and resulting feature space dimensions. The effectiveness of the proposed kernels was demonstrated using
guiding examples and simple benchmark problems.

The next step is now to apply kernel-based methods to more complex quantum systems. Such problems
might require kernels tailored to the system at hand. By exploiting additional properties (sparsity, low-rank
structure, weak coupling between subsystems), it could be possible to improve the performance of
kernel-based methods. Furthermore, the kernel flow approach proposed in [41] could be extended to
operator estimation problems. This would allow us to also learn the kernel from data.

Another topic for future research would be to consider other types of symmetries and to develop kernels
that explicitly take these properties into account. While the antisymmetric kernel can be evaluated efficiently
using matrix factorizations, this is not possible for the symmetric kernel, which requires the evaluation of a

18



Mach. Learn.: Sci. Technol. 2 (2021) 045016 S Klus et al

matrix permanent. Utilizing efficient approximation schemes could speed up the generation of the required
Gram matrices significantly. Alternatively, the product or quotient formulation of symmetric kernels could
be exploited to facilitate the application of the proposed methods to higher-dimensional problems.
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Acknowledgments

We would like to thank Jan Hermann for helpful discussions about quantum chemistry and the reviewers for
their helpful comments and suggestions.

Funding

P Gelß and F Noé have been partially funded by Deutsche Forschungsgemeinschaft (DFG) through grant
CRC 1114 ‘Scaling Cascades in Complex Systems’ (Project ID: 23 522 1301, projects A04 and B06). F Noé also
acknowledges funding from BMBF through the Berlin Institute for the Foundations of Learning and Data
(BIFOLD), the European Commission (ERC CoG 772 230), and the Berlin Mathematics center MATH+

(AA2-8).

Appendix A. Hyperpermanents

Given a tensor T ∈ Rd×4
= Rd×d×d×d, the hyperpermanent of T is given by

hper(T) =
∑
π∈Sd

d∏
i=1

d∏
j=1

tπ(i),π(j),i,j =
∑
π∈Sd

d∏
i=1

d∏
j=1

ti,j,π(i),π(j).

In example 4.8, we considered tensor entries of the form

ti,j,k,l = exp

(
−
(
ai,j − a ′

k,l

)2
2σ2

)
(5)

for adjacency matrices A,A ′ ∈ Rd×d in order to construct the symmetrized Gaussian kernel for graphs.
Another example for defining the entries of T, as described in section 5.2, is

ti,j,k,l = exp

(
−
|ai,j − a ′

k,l|
σ

)
, (6)

which results in the symmetrized Laplacian kernel for graphs. For both choices, we set ti,i,k,k = exp(−1/2σ2)
and ti,i,k,k = exp(−1/σ), respectively, if ai,i ̸= a ′

k,k and ti,i,k,k = exp(0), otherwise. In what follows, we will
consider different techniques for computing the hyperpermanent of T.

A.1. Laplace expansion for the computation of hyperpermanents
Define T(µ) ∈ Rd×4

by

t(µ)i,j,k,l =

{
ti,j,k,l · ti,1,k,µ · t1,j,µ,l, if i= j and k= l,

ti,j,k,l, otherwise.

Let T̂(µ) ∈ R(d−1)×4
denote the tensor that results from T(µ) by removing all entries t(µ)i,j,k,l with i= 1, j= 1,

k=µ, or l=µ. The hyperpermanent can then be written as
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hper(T) =
∑
π∈Sd

d∏
i=1

d∏
j=1

ti,j,π(i),π(j)

=
∑
π∈Sd

t1,1,π(1),π(1)

d∏
i=2

ti,1,π(i),π(1)

d∏
j=2

t1,j,π(1),π(j)

d∏
i=2

d∏
j=2

ti,j,π(i),π(j)

=
d∑

µ=1

t1,1,µ,µ
∑
π∈Sd

π(1)=µ

d∏
i=2

d∏
j=2

ti,j,π(i),π(j)
(
ti,1,π(i),µt1,j,µ,π(j)

)δij

=
d∑

µ=1

t1,1,µ,µhper
(
T̂(µ)

)
,

where δij denotes the Kronecker delta. Note that i= j implies π(i)=π(j).

A.2. Hyperpermanents of pairwise symmetric tensors
Suppose ti,j,k,l = tj,i,k,l and ti,j,k,l = ti,j,l,k for all i, j,k, l ∈ {1, . . . ,d}. For instance, this is the case for tensors T
containing elementwise evaluations of Gaussian and Laplacian kernels as given in (5) and (6), respectively.
The hyperpermanent of T can then be written as

hper(T) =
∑
π∈Sd

d∏
i=1

d∏
j=1

ti,j,π(i),π( j)

=
∑
π∈Sd

d∏
i=1

ti,i,π(i),π(i)

d∏
j=1
j̸=i

ti,j,π(i),π( j)



=
∑
π∈Sd

(
d∏

i=1

ti,i,π(i),π(i)

) d∏
i=1

d∏
j=1
j̸=i

ti,j,π(i),π( j)


=
∑
π∈Sd

(
d∏

i=1

ti,i,π(i),π(i)

) d∏
i=1

d∏
j=i+1

t2i,j,π(i),π( j)


=
∑
π∈Sd

∏d
i=1

∏d
j=i t

2
i,j,π(i),π( j)∏d

i=1 ti,i,π(i),π(i)
.

(7)

The advantage of the above formula is that we can reduce the computational costs for the hyperpermanent.
Additionally, we do not have to compute all elements of T, which also reduces the computational costs.

A.3. Hyperpermanents for graphs with isolated nodes
In order to compare graphs of different sizes, we include artificial isolated nodes in section 5.2. That is, the
adjacency matrix of a given graph is expanded by adding zero entries. In this case, all permutations among
the isolated nodes do not change the result of the product

∏d
i=1

∏d
j=1 ti,j,π(i),π( j). Assume that the dimension

of the adjacency matrix A used in (5) and (6) is initially d ′ < d before the expansion to Rd×d. Then, it holds
that

ti,j,π(i),π(j) = td′+1,d′+1,π(i),π(j),

if i> d ′ or j> d ′. Thus, given two permutations π1 and π2 with

π1(i) = π2(i) for 1⩽ i⩽ d′,

it follows that ∏d
i=1

∏d
j=i t

2
i,j,π1(i),π1(j)∏d

i=1 ti,i,π1(i),π1(i)

=

∏d
i=1

∏d
j=i t

2
i,j,π2(i),π2(j)∏d

i=1 ti,i,π2(i),π2(i)

.

20



Mach. Learn.: Sci. Technol. 2 (2021) 045016 S Klus et al

This means that for each permutation π ∈ Sd, any of the (d− d ′)! permutations of the set
{π(d ′ + 1), . . . ,π(d)} does not change the value of the quotient in (7). This fact can be exploited using the
formula

hper(T) =
∑
π∈Sd

π(d′ + 1)< .. . < π(d)(d− d′)!

∏d
i=1

∏d
j=i t

2
i,j,π(i),π(j)∏d

i=1 ti,i,π(i),π(i)
,

which enables us to decrease the number of considered permutations significantly if d ′ is much smaller
than d.

Appendix B. Quotient representation of symmetric Gaussian kernels

Under the same assumptions as given in example 4.10, we use lemma 3.12 in order to write ks(x,x ′) as

ks(x,x
′) =

k(1)a (x,x′)

k(2)a (x,x′)
=

e
− (x1−x′1)

2

2 σ2
1 e

− (x2−x′2)
2

2 σ2
1 − e

− (x1−x′2)
2

2 σ2
1 e

− (x2−x′1)
2

2 σ2
1

e
− (x1−x′1)

2

2 σ2
2 e

− (x2−x′2)
2

2 σ2
2 − e

− (x1−x′2)
2

2 σ2
2 e

− (x2−x′1)
2

2 σ2
2

,

where x1 ̸= x2 and x ′1 ̸= x ′2. From l’Hôpital’s rule follows that

lim
x2 →x1

k(1)a (x,x′)

k(2)a (x,x′)
= lim

x2 →x1

∂
∂x2

k(1)a (x,x′)

∂
∂x2

k(2)a (x,x′)

= lim
x2 →x1

− x2−x′2
σ2
1

e
− (x1−x′1)

2

2 σ2
1 e

− (x2−x′2)
2

2 σ2
1 +

x2−x′1
σ2
1

e
− (x1−x′2)

2

2 σ2
1 e

− (x2−x′1)
2

2 σ2
1

− x2−x′2
σ2
2

e
− (x1−x′1)

2

2 σ2
2 e

− (x2−x′2)
2

2 σ2
2 +

x2−x′1
σ2
2

e
− (x1−x′2)

2

2 σ2
2 e

− (x2−x′1)
2

2 σ2
2

=

(
− x1−x′2

σ2
1

+
x1−x′1
σ2
1

)
e
− (x1−x′1)

2

2 σ2
1 e

− (x1−x′2)
2

2 σ2
1(

− x1−x′2
σ2
2

+
x1−x′1
σ2
2

)
e
− (x1−x′1)

2

2 σ2
2 e

− (x1−x′2)
2

2 σ2
2

=
σ22
σ21

e
− ∥(x1,x1)−(x′1,x

′
2)∥

2

2 σ2
1

e
− ∥(x1,x1)−(x′1,x

′
2)∥

2

2 σ2
2

.
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