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ABSTRACT 
 

This paper addresses two important useful extensions of binary reliability techniques to multi-state 
reliability techniques, namely: (a) the problem of complementation or inversion of the function of 
system success to that of system failure (or equivalently, of deriving the logical minimal cutsets in 
terms of the logical minimal paths), and (b) the associated problem of hand-checking of a symbolic 
reliability expression. The paper deals specifically with the reliability of a multi-state delivery 
network. It presents two complementation procedures, one via the application of multi-state De 
Morgan‟s rules, and the other via the multi-state Boole-Shannon expansion. The paper also 
illustrates one case in which this complementation is needed, as it outlines a method for checking 
the reliability of the multi-state system in terms of its logical minimal paths and logical minimal 
cutsets.  
 

 

Keywords: Network reliability; complementation; De’ Morgan laws; Boole-Shannon expansion; 
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1. INTRODUCTION 
 
A prominent problem of reliability engineering is 
the problem of obtaining the minimal sum for a 
switching function (Two-valued Boolean function) 
whenever the minimal sum for its complement is 
given, or equivalently, deriving the prime 
implicants (PIs) of a function in terms of those of 
its complement. This problem is usually referred 
to as the inversion problem, and in reliability 
context it deals with the derivation of minimal 
cutsets (PIs of system failure) in terms of minimal 
paths (PIs of system success) [1-15]. Solution of 
this problem is necessary when minimal paths 
are known, while the failure modes or cutsets of 
the system are needed [4]. Knowledge of both 
sets of prime implicants for system success and 
system failure also facilitates system reliability 
computations [16-18] and is a must for 
exhaustive checking of symbolic reliability 
expressions [19, 20]. 
 
This paper is a part of an on-going activity [21-
32] that strives to provide a pedagogical 
treatment of multi-state reliability problems, and 
to establish a clear and insightful interrelationship 
between the two-state modeling and the multi-
state one by stressing that multi-valued concepts 
are natural and simple extensions of two-valued 
ones. The paper addresses two important useful 
extensions of binary techniques to multi-valued 
techniques, namely: (a) the afore-mentioned 
problem of complementation of system success 
to system failure, and (b) the associated problem 
of hand-checking of symbolic reliability 
expressions. 
 
As a vehicle for demonstrating the afore-
mentioned extensions, we consider a multi-state 
delivery network (MSDN) with multiple suppliers, 
in which a vertex denotes a supplier, a transfer 
station or a market, while a branch denotes a 
carrier providing the delivery service for a pair of 
vertices [33]. The capacity that is available for a 
specific customer  of the carrier responsible for 
the delivery on a branch is treated as a multi-
state variable, since this capacity is shared 
among several customers including the one 
under consideration. The addressed problem is 
to evaluate the network reliability, the probability 
that the MSDN with the deterioration 
consideration can satisfy the market demand 
within the budget and production capacity 
limitations. Lin et al. [33] developed an algorithm, 
which, among other things, deduced the binary 
system success in terms of the multi-valued 
component successes. The logical expression of 

this success is a disjunctive normal form (DNF) 
or a sum-of products expression, in which the 
products are prime implicants that are called 
(logical) minimal paths. The expected value of 
this expression is system reliability. Our specific 
tasks herein are to complement system success 
to obtain system failure as a disjunction of 
cutsets, and to hand-check a typical reliability 
expression for the system. Standard notation of 
representing multi-state quantities via binary 
instances are employed throughout this paper 
[22, 25-30,32]. 
 
The organization of the remainder of this paper is 
as follows. Section 2 presents important pertinent 
assumptions. Section 3 introduces the running 
example of a multi-state delivery network 
(MSDN) with multiple suppliers, borrowed from 
[33]. Section 3 reproduces from [33] the system 
success used as a starting point herein. Section 
4 presents a complementation procedure via the 
application of multi-state De Morgan‟s rules. 
Section 5 provides an alternative 
complementation technique via the multi-state 
Boole-Shannon expansion. Section 6 outlines a 
method for checking the reliability of the multi-
state system in terms of its minimal paths and 
minimal cutsets. Section 7 concludes the paper.  
 

2. ASSUMPTIONS    
 
The model considered is one of a system with 
binary output and multistate components, specified 
by the structure or success function S X  [25, 34]. 
 

S:  0, 1, ⋯ , m1 ×  0, 1, ⋯ , m2 × …  
×  0, 1, ⋯ , mn →  0, 1 .       1  

 

The system is generally non-homogeneous, i.e., 
the number of system states (two) and the 
numbers of component states (m1 + 1), (m2 +
1), ⋯ , (mn + 1)  might differ [34]. When these 
numbers have a common value ,  the system 
reduces to a homogeneous one. 
 

The system is a non-repairable one with 
statistically independent non-identical 
(heterogeneous) components. 
The system is a coherent one enjoying the 
properties of causality, monotonicity, and 
component relevancy [21-27]. 
 

3. DETAILED RUNNING EXAMPLE 
 

Lin et al. [33] studied the multi-state delivery 
network (MSDN) with multiple suppliers shown in 
Fig. 1. The network contains two suppliers, one 
market, two transfer centers and eight branches. 
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The network has specific data of delivery costs, 
probability distributions of all branches and 
available capacities that are listed in [33], 
together with the suppliers‟ production capacities.  
The physical minimal paths (PMPs) connecting 
source s1 and terminal t can be expressed as P1 
= {b1, b6}, P2 = {b2, b7} and P3 = {b2, b5, b8}, and 
the PMPs connecting source s2 and terminal t 
are P4 = {b3, b7}, P5 = {b3, b5, b8} and P6 = {b4, 

b8}. The deterioration rate vector for the six 
PMPs is given together with the demand, 
production capacity and the budget. The final 
success expression derived from Table in [33] 
(obtained via lengthy manipulations, and 
reported here with appropriate translation of 
notation) is given by the following expression, 
which is a disjunction of eight prime implicants or 
logical minimal paths (LMPs) of system success. 

 
𝑆 = 𝑋3 ≥ 3  𝑋5 ≥ 3  𝑋8{≥ 3} 

∨ 𝑋3 ≥ 3  𝑋7  ≥ 3  
∨  𝑋2 ≥ 3  𝑋5 ≥ 3  𝑋8{≥ 3} 
∨  𝑋2 ≥ 2  𝑋3 ≥ 2  𝑋4 ≥ 2  𝑋7 ≥ 3  𝑋8{≥ 2} 
 ∨  𝑋2 ≥ 3  𝑋7{≥ 3} 
∨  𝑋1 ≥ 2  𝑋3 ≥ 2  𝑋4 ≥ 2  𝑋6 ≥ 2  𝑋7 ≥ 2  𝑋8{≥ 2} 
∨  𝑋1 ≥ 2  𝑋2 ≥ 2  𝑋4 ≥ 2 𝑋6 ≥ 2  𝑋7 ≥ 2  𝑋8{≥ 2} 
∨  𝑋1 ≥ 2  𝑋2 ≥ 2  𝑋3 ≥ 2 𝑋6 ≥ 2  𝑋7{≥ 3}.                                                                    (2) 

 

 
 

Fig. 1. The multi-state delivery network (MSDN) with multiple suppliers studied in [33] 
  

4. COMPLEMENTATION VIA APPLICATION OF MULTI-STATE DE MORGAN’S RULES 
 
De Morgan's laws are a pair of transformation rules [35-40] that are both valid rules of inference [41-
44]. These rules express conjunctions (ANDing) and disjunctions (ORing) solely in terms of each 
other via negation or complementation as follows: The negation of a disjunction is the conjunction of 
the negations, while the negation of a conjunction is the disjunction of the negations. This is 
expressed mathematically as [18] 
 

 

 𝐴𝑘
𝑛
𝑘=1

          =   𝐴 
𝑘

𝑛
𝑘=1 ,                                                                                                                        (3)  

 

 𝐴𝑘
𝑛
𝑘=1

          =    𝐴𝑘
    𝑛

𝑘=1  .                                                                                                                       (4) 

 
Implementation of De Morgan‟s rules (in the multi-state case) necessitates the use of several 
simplification rules. An important simplification rule it uses (when handling coherent success) is the 
following domination rule (which generalizes the idempotency rule of AND for an uncomplemented 
literal (𝑋𝑘 ∧ 𝑋𝑘 = 𝑋𝑘) in the two-valued case) [32] 
 

𝑋𝑘 ≥ 𝑗1  𝑋𝑘 ≥ 𝑗2 = 𝑋𝑘 ≥ 𝑗2                    for   𝑗2 ≥ 𝑗1,                                     (5a) 
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A similar simplification used by De Morgan‟s rules (when handling coherent failure) is the following 
domination rule (which is another generalization of the idempotency rule of AND for a complemented 

literal ( 𝑋 𝑘 ∧  𝑋 𝑘 =  𝑋 𝑘) in the two-valued case) [32] 
 

𝑋𝑘 ≤ 𝑗1  𝑋𝑘 ≤ 𝑗2 = 𝑋𝑘 ≤ 𝑗2                   for   𝑗2 ≤ 𝑗1,                                                                   (5b) 
 

Two other important simplification rules are the two differencing rules [32]   
 

𝑋𝑘 ≥ 𝑗1  𝑋𝑘 ≤ 𝑗2 = 𝑋𝑘 𝑗1 , 𝑗1 + 1, … , 𝑗2               for   𝑗2 ≥ 𝑗1,                                                             (6a) 
 
𝑋𝑘 ≥ 𝑗1  𝑋𝑘 < 𝑗2 = 𝑋𝑘 𝑗1 , 𝑗1 + 1, … , 𝑗2 − 1          for   𝑗2 > 𝑗1,                                                           (6b) 
 

which have no counterpart in the two-valued case, unless they are replaced by the orthogonality rules 

(which generalize the orthogonality (𝑋𝑘 ∧  𝑋 𝑘 = 0) in the two-valued case) 
 
𝑋𝑘 ≥ 𝑗1  𝑋𝑘 ≤ 𝑗2 = 0                                   for   𝑗2 < 𝑗1,                                                             (6c) 

 
𝑋𝑘 ≥ 𝑗1  𝑋𝑘 < 𝑗2 = 0                                    for   𝑗2 ≤ 𝑗1,                                                            (6d) 

 
𝑋𝑘 𝑗  𝑋𝑘 ≠ 𝑗 = 0,                                                                                                                         (6e) 

 
Three other important simplification rules are the three complementation rules [32] 
 

 𝑋 𝑘 ≥ 𝑗 =   𝑋𝑘 < 𝑗 ,                                                                                                               (7a) 
 

𝑋 𝑘 > 𝑗 =   𝑋𝑘 ≤ 𝑗 ,                                                                                                    (7b) 
 

𝑋 𝑘 𝑗 =   𝑋𝑘 ≠ 𝑗 .                                                                                                                           (7c) 
 

As a prelude to the complementation of the coherent success 𝑆 in our running example, we rearrange 

the terms of 𝑆 in (2) to obtain 
 

𝑆 = 𝑋3 ≥ 3  𝑿𝟕  ≥ 𝟑  
∨  𝑋2 ≥ 3  𝑿𝟕{≥ 𝟑} 
∨ 𝑋3 ≥ 3  𝑿𝟓 ≥ 𝟑  𝑿𝟖{≥ 𝟑} 
∨  𝑋2 ≥ 3  𝑿𝟓 ≥ 𝟑  𝑿𝟖{≥ 𝟑} 
∨  𝑋2 ≥ 2  𝑿𝟑 ≥ 2  𝑋4 ≥ 2  𝑋7 ≥ 3  𝑋8{≥ 2} 
∨  𝑋1 ≥ 2  𝑋3 ≥ 2  𝑋4 ≥ 2  𝑋6 ≥ 2  𝑋7 ≥ 2  𝑋8{≥ 2} 
∨  𝑋1 ≥ 2  𝑋2 ≥ 2  𝑋3 ≥ 2  𝑋6 ≥ 2  𝑋7{≥ 3} 
∨  𝑋1 ≥ 2  𝑋2 ≥ 2  𝑋4 ≥ 2 𝑿𝟔 ≥ 𝟐  𝑋7 ≥ 2  𝑋8{≥ 2}  .                                                     (8) 

 
We now combine similar terms to obtain 
 

𝑆 = 𝑿𝟕{≥ 𝟑}( 𝑋2 ≥ 3 ∨  𝑋3 ≥ 3 ) 
∨ 𝑿𝟓 ≥ 𝟑  𝑿𝟖{≥ 𝟑}( 𝑋2 ≥ 3 ∨  𝑋3 ≥ 3 ) 

∨   𝑿𝟑 ≥ 𝟐  𝑿𝟒 ≥ 𝟐  𝑿𝟖{≥ 𝟐}(𝑋2 ≥ 2 𝑋7 ≥ 3 ∨ 𝑋1 ≥ 2  𝑋6 ≥ 2  𝑋7 ≥ 2 ) 

∨  𝑿𝟏 ≥ 𝟐  𝑿𝟐 ≥ 𝟐  𝑿𝟔 ≥ 𝟐  ( 𝑋3 ≥ 2 𝑋7{≥ 3} ∨  𝑋4 ≥ 2  𝑋7 ≥ 2  𝑋8{≥ 2}).                            (9) 
 

Complementing both sides of (9), we obtain the system failure as a product of four sums (which, when 
multiplied out, and after absorbing all subsuming terms, yields a disjunction of all prime implicants of 
system failure) 
 

S   = (𝑋7  < 3 ∨   𝑋2 < 3  𝑋3 < 3 ) (𝑋5  < 3 ∨  𝑋8  < 3 ∨ 𝑋2 < 3  𝑋3 < 3 ) 𝐴 𝐵.                  (10) 
 

Where 
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𝐴 =  (  𝑋3 < 2 ∨  𝑋4 < 2  ∨ 𝑋8{< 2} ∨ (𝑋2 < 2 ∨ 𝑋7 < 3 )(𝑋1 < 2 ∨  𝑋6 < 2  ∨ 𝑋7 < 2 )), (11) 
 

𝐵 = (  𝑋1 < 2 ∨  𝑋2 < 2  ∨ 𝑋6{< 2} ∨ (𝑋3 < 2 ∨ 𝑋7 < 3 )(𝑋4 < 2 ∨  𝑋7 < 2  ∨ 𝑋8 < 2 )).  (12) 
 

Using intelligent multiplication [40, 42, 44-52] { 𝑎 ∨ 𝑏  𝑎 ∨ 𝑐 =  𝑎 ∨ 𝑏𝑐 }, we multiply out the first two 
terms in (10) to obtain 
 

(𝑋7  < 3 ∨   𝑋2 < 3  𝑋3 < 3 ) (𝑋5  < 3 ∨   𝑋8  < 3 ∨ 𝑋2 < 3  𝑋3 < 3 ) 

=  𝑋7  < 3  (𝑋5  < 3 ∨   𝑋8  < 3 ) ∨ 𝑋2 < 3  𝑋3 < 3  
=  𝑋7  < 3  𝑋5  < 3 ∨  𝑋7  < 3    𝑋8  < 3 ∨ 𝑋2 < 3  𝑋3 < 3  

 

Hence, the expression for S   can be rewritten as 
 

S   =  𝑋7  < 3  𝑋5  < 3  𝐴 𝐵 ∨  𝑋7  < 3    𝑋8  < 3  𝐴 𝐵 ∨ 𝑋2 < 3  𝑋3 < 3  𝐴 𝐵.                      (10a) 
 

The three terms in the expression (10a) above for S   can be simplified (making use of Boolean 
quotients [18, 22, 25, 40, 43, 53, 54]) to 
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The final expression for system failure is given by a disjunction of all 24 logical minimal cutsets 
(corresponding to the Blake canonical form in the two-valued case) as follows 
 

S  =  𝑋4{< 2} 𝑋5  < 3  𝑋7  < 3 ∨  𝑋5  < 3  𝑋7  < 3 𝑋8{< 2}  
∨ 𝑋1 < 2  𝑋5  < 3  𝑋7  < 3  ∨ 𝑋5 < 3  𝑋6  < 2  𝑋7  < 3   ∨ 𝑋5 < 3  𝑋7  < 2  
∨ 𝑋1 < 2  𝑋7  < 3  𝑋8  < 3  ∨ 𝑋4 < 2  𝑋7  < 3  𝑋8  < 3   
∨ 𝑋6 < 2  𝑋7  < 3  𝑋8  < 3   ∨ 𝑋7 < 2  𝑋8  < 3   ∨ 𝑋7 < 3  𝑋8  < 2   
∨  𝑋2 < 2    𝑋3  < 2  ∨ 𝑋1 < 2  𝑋2  < 3  𝑋3  < 2 ∨ 𝑋2  < 3  𝑋3  < 2  𝑋6 < 2  
∨ 𝑋2  < 3  𝑋3  < 2  𝑋4 < 2 ∨ 𝑋2  < 3  𝑋3  < 2  𝑋7 < 2 ∨ 𝑋2  < 3  𝑋3  < 2  𝑋8 < 2  
∨ 𝑋2  < 2  𝑋3  < 3  𝑋4 < 2 ∨ 𝑋2  < 2  𝑋3  < 3  𝑋8 < 2  
∨ 𝑋1 < 2  𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  ∨ 𝑋1 < 2  𝑋2  < 3  𝑋3  < 3  𝑋8 < 2  
∨ 𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  𝑋6  < 2 ∨ 𝑋2  < 3  𝑋3  < 3  𝑋6  < 2  𝑋8 < 2  
∨ 𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  𝑋7  < 3 ∨ 𝑋2  < 3  𝑋3  < 3 𝑋7  < 3  𝑋8 < 2 .                              (13) 

 

5. INVERSION VIA THE BOOLE-SHANNON EXPANSION 
 
A prominent way for converting a Boolean function into its complement is the Boole-Shannon Expansion, 
which takes the following form in the two-valued case [18, 54-58] 
 

f X  =  (X i  ∧  f X 0i)  ∨  (Xi  ∧  f X 1i ) =  X i   f X 0i  ∨  Xi   f X 1i ,                                   (14) 
 

This Boole-Shannon Expansion expresses a (two-valued) Boolean function f X  in terms of its two sub-

functions f X 0i  and f X 1i  These subfunctions are equal to the Boolean quotients f X /X i and f X /Xi, 
and hence are obtained by restricting Xi in the expression of f X  to 0 and 1, respectively. If f X  is a 

function of n  variables, the two sub-functions f X 0i  and f X 1i  are functions of at most (n − 1) 
variables. A possible (non-unique) multi-valued extension of (14) is [22, 25, 32] 
 

 S X  = Xi 0  ∧ (S X /Xi 0 )  ∨   Xi 1  ∧ (S X /Xi 1 )  ∨   Xi 2  ∧ (S X /Xi 2 )   ∨   Xi 3  ∧
(S X /Xi 3 )  ∨ . ..   ∨   Xi mi  ∧ (S X /Xi mi ).                                                                                         (15) 
 

The expansion (15) serves our purposes very well. Once the sub-functions in (15) are complemented, 

S X  will be replaced by its complement  S (X), namely 
 

 S  X  = Xi 0  ∧ ( S  X /Xi 0 )  ∨   Xi 1  ∧ ( S  X /Xi 1 )  ∨    
Xi 2  ∧ ( S  X /Xi 2 )   ∨   Xi 3  ∧ ( S  X /Xi 3 )  ∨ . ..   ∨   Xi mi  ∧ ( S  X /Xi mi ).                     (16) 

 

We now obtain the Boole-Shannon expansion of system failure S    with respect to the orthonormal set 
{X2 ≥ 3 , X2 2 , X2 < 2 }, which is given by        
  

S   = X2 ≥ 3   S   / X2 ≥ 3   ∨   X2 2   S   /X2 2  ∨   X2 < 2  (S   /X2 < 2 ).                              (17) 
 

System coherence necessitates that 
 

(S   / X2 ≥ 3 ) ≤ (S   /X2 2 )  ≤ (S   /X2 < 2 ).                                                                              (18) 
 

and, hence, expression (17) for system failure reduces to 
 

S   = X2 ≥ 3   S   / X2 ≥ 3   ∨   X2 2  ( S   /X2 2  ∨  S   / X2 ≥ 3  ) ∨   X2 < 2  ((S   /X2 < 2 ) ∨
 S   / X2 2  ∨  S   / X2 ≥ 3  ).                                                                                                      (19a) 

S   = (X2 ≥ 3 ∨   X2 2 ∨   X2 < 2 ) S   / X2 ≥ 3   ∨ ( X2 2  ∨ X2 < 2 ))  S   /X2 2  ∨
  X2 < 2  (S   /X2 < 2 ).                                                                                                               (19b) 

 

S   =   S   / X2 ≥ 3   ∨   X2 < 3   S   /X2 2  ∨   X2 < 2  (S   /X2 < 2 ).                                      (19c) 
 

Where 
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Substitution of (20)-(22) into (19c), followed by 
absorption of any subsuming terms, yields a 

formula for S    that is similar to (13). 
 

6. CHECKING MULTI-STATE 
RELIABILITY IN TERMS OF MINIMAL 
PATHS AND CUTSETS 

 

Rushdi [19] introduced tests for checking a 
symbolic binary reliability expression. These tests 
might be easily extended to the multi-state case. 
What is needed is (a) that the reliability 
expression be a multi-affine function in each of 
its arguments (a straight line relation in each of 
the arguments), where an argument is the 
expectation of certain instance(s) of some multi-
valued variable. Moreover, (b) the reliability 
expression must have a correct “truth table”, i.e., 
must yield a value of „1‟ in every success state 
and a value „0‟ in every failure state. 
Requirement (b) is substantially simplified by 
using a „reduced truth table‟, each of whose lines 
asserts either a logical minimal path or a logical 
minimal cutset. Simply stated, requirement (b) 
now asserts that the reliability expression must 
yield a value of „1‟ when a logical minimal path is 
asserted and a value „0‟ when a logical minimal 
cutset is asserted. Assertion of a logical minimal 

path or cutset means that the variable instances 
appearing in it are asserted, while the variables 
missing in it are „indeterminate‟ or “don‟t-cares.” 
Note that the reduced truth table in Table 1 
exhausts all system states since the disjunction 
of all logical minimal pathsets (all prime 
implicants of the Boolean function of success) 
and all logical minimal cutsets (all prime 
implicants of the complementary Boolean 
function of failure) constitutes a disjunction of a 
Boolean function and its complement, which is 
identically equal to 1. This reduced truth table 
differs from a conventional truth table, since the 
lines of the former table might be overlapping, 
while those of the latter table are disjoint. The 
present reduced truth table has only 32 lines 
(representing 8 logical minimal paths plus 24 
logical minimal cutsets), which are significantly 
fewer than those of the conventional truth table, 
viz., 𝑚1 ∗ 𝑚2 ∗ 𝑚3 ∗ 𝑚4 ∗ 𝑚5 ∗ 𝑚6 ∗  𝑚7 ∗ 𝑚8 = 3 ∗
4 ∗ 4 ∗ 3 ∗ 4 ∗ 3 ∗ 4 ∗ 4 = 27648. 
         
For the problem of the running example, Rushdi 
and Amashah [32] obtained the following 
probability-ready expression (PRE), in which any 
ORed entities are disjoint and any ANDed 
entities are statistically independent [16-18, 21-
30] 
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This PRE is converted, on a one-to-one basis, into an expectation, by replacing each Boolean 
variable and Boolean operator by its arithmetic counterpart, namely  
 

 
 

Table 1. Reduced ‘truth table’ for the multi-state reliability function 
 

Logical Minimal Path or Cutset Asserted E S  
X3 ≥ 3  X7  ≥ 3  1 

 X2 ≥ 3  X7{≥ 3} 1 

X3 ≥ 3  X5 ≥ 3  X8{≥ 3} 1 

 X2 ≥ 3  X5 ≥ 3  X8{≥ 3} 1 

X2 ≥ 2  X3 ≥ 2  X4 ≥ 2  X7 ≥ 3  X8{≥ 2} 1 

X1 ≥ 2  X2 ≥ 2  X3 ≥ 2  X6 ≥ 2  X7{≥ 3} 1 

X1 ≥ 2  X3 ≥ 2  X4 ≥ 2  X6 ≥ 2  
X7 ≥ 2  X8{≥ 2} 

1 

 X1 ≥ 2  X2 ≥ 2  X4 ≥ 2 X6 ≥ 2  X7 ≥ 2  X8{≥ 2} 1 

 𝑋4{< 2} 𝑋5  < 3  𝑋7  < 3  0 

 𝑋5  < 3  𝑋7  < 3 𝑋8{< 2} 0 

𝑋1 < 2  𝑋5  < 3  𝑋7  < 3  0 

𝑋5 < 3  𝑋6  < 2  𝑋7  < 3  0 

𝑋5 < 3  𝑋7  < 2  0 

𝑋1 < 2  𝑋7  < 3  𝑋8  < 3  0 

𝑋4 < 2  𝑋7  < 3  𝑋8  < 3  0 

𝑋6 < 2  𝑋7  < 3  𝑋8  < 3  0 

 𝑋7 < 2  𝑋8  < 3  0 

 𝑋7 < 3  𝑋8  < 2  0 

 𝑋2 < 2    𝑋3  < 2  0 

𝑋1 < 2  𝑋2  < 3  𝑋3  < 2  0 

𝑋2  < 3  𝑋3  < 2  𝑋6 < 2  0 

𝑋2  < 3  𝑋3  < 2  𝑋4 < 2  0 

𝑋2  < 3  𝑋3  < 2  𝑋7 < 2  0 

𝑋2  < 3  𝑋3  < 2  𝑋8 < 2  0 

𝑋2  < 2  𝑋3  < 3  𝑋4 < 2  0 

𝑋2  < 2  𝑋3  < 3  𝑋8 < 2  0 

𝑋1 < 2  𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  0 

𝑋1 < 2  𝑋2  < 3  𝑋3  < 3  𝑋8 < 2  0 

𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  𝑋6  < 2  0 

𝑋2  < 3  𝑋3  < 3  𝑋6  < 2  𝑋8 < 2  0 

𝑋2  < 3  𝑋3  < 3  𝑋4 < 2  𝑋7  < 3  0 

𝑋2  < 3  𝑋3  < 3 𝑋7  < 3  𝑋8 < 2  0 
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This reliability expression is a multi-affine function in each of its arguments, and it has a correct 
reduced truth table, as shown in Table 1. To understand how Table 1 is constructed, we  explain a 
case of one particular logical minimal path and another for a logical minimal cutset. For the logical 
minimal path 𝑋3 ≥ 3  𝑋7  ≥ 3 , we substitute 𝐸{𝑋3 ≥ 3 } = 1 and 𝐸{𝑋7 ≥ 3 } = 1 (and hence 𝐸{𝑋3 <
3}=0 and 𝐸{𝑋7<3}=0 ) in equation (24) to obtain 
 

𝐸{𝑆} =  0   + 0 + (1) (𝐸 𝑋2 ≥ 3  +  𝐸 𝑋2 < 3   1 + 0 = 1.                                                 (25) 

 
For the minimal cutset  𝑋7 < 3  𝑋8  < 2 , we substitute 𝐸{𝑋7 < 3 } = 1 and 𝐸{𝑋8 < 2 } = 1 (and hence 

𝐸{𝑋7 ≥ 3 } = 0 and 𝐸{𝑋8 ≥ 2 } = 0 ) in equation (24) to obtain 
 

𝐸 𝑆 =   1  0 +  1  0 + 0 = 0.                                                                                            (26) 
 

7. CONCLUSIONS   
 
This paper clarifies the relation between the 
logical minimal cutsets and logical minimal paths 
of a multi-state system. It identifies the logical 
minimal cutsets as prime implicants of the 
Boolean function of system failure, and 
recognizes the logical minimal pathsets as prime 
implicants of the complementary Boolean 
function of system success [59-70]. The paper 
offers two approaches for the inversion problem 
dealing with the complementation of multi-state 
success into multi-state failure. The two 
approaches are also valid for the opposite 
direction for complementation of multi-state 
failure into multi-state success. A novel 
contribution of the paper is a listing of 
simplification rules that need to be associated 
with De‟ Morgan rules for the multi-valued case. 
 

This paper is a part of an on-going activity that 
strives to provide a pedagogical treatment of 
multi-state reliability problems, and to establish a 
clear and insightful interrelationship between the 
two-state modeling and the multi-state one by 
stressing that multi-valued concepts are natural 
and simple extensions of two-valued ones. The 
paper addresses two important useful extensions 
of binary techniques to multi-valued techniques, 
namely the problem of complementation of 
system success to system failure, and the 
associated problem of hand-checking of symbolic 
reliability expressions. 
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