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Abstract: A novel vertex-degree-based topological invariant, called Nirmala index, was recently put forward,
defined as the sum of the terms

√
d(u) + d(v) over all edges uv of the underlying graph, where d(u) is

the degree of the vertex u. Based on this index, we now introduce the respective “Nirmala matrix”, and
consider its spectrum and energy. An interesting finding is that some spectral properties of the Nirmala
matrix, including its energy, are related to the first Zagreb index.

Keywords: Nirmala index; Degree (of vertex); Energy (of graph); Zagreb index.

MSC: 05C50; 05C07; 05C92.

1. Introduction

I n this paper we consider simple graphs, i.e., graphs without directed, weighted, or multiple edges, and
without self-loops. Let G be such a graph, with vertex set V(G) and edge set E(G). Let ∣V(G)∣ = n and

∣E(G)∣ = m be the number of vertices and edges of G. By uv ∈ E(G) we denote the edge of G, connecting the
vertices u and v. The degree (= number of first neighbors) of a vertex u ∈ V(G) is denoted by d(u). For other
graph-theoretical notions, the readers are referred to textbooks [1–3].

In the mathematical and chemical literature, several dozens of vertex-degree-based graph invariants of
the form

TI(G) = ∑
uv∈E(G)

F(d(u), d(v)) (1)

have been and are currently studied, where F(x, y) is an appropriately chosen function with the property
F(x, y) = F(y, x). The oldest such invariant, conceived as early as in the 1970s, is the first Zagreb index, Zg [4].
Among the newest such invariants are the Sombor index, SO [5,6] and the Nirmala index, N [7,8]. These are
defined as

Zg = Zg(G) = ∑
uv∈E(G)

[d(u) + d(v)], (2)

SO = SO(G) = ∑
uv∈E(G)

√
d(u)2 + d(v)2, (3)

N = N(G) = ∑
uv∈E(G)

√
d(u) + d(v) . (4)

Recall that Zg if often written in the form

Zg(G) = ∑
u∈V(G)

d(u)2

which, of course, is equivalent to (2). The Sombor index (3) is constructed by using Euclidean metrics [5,6]. By
comparing (3) and (4), it is seen that the Nirmala index is a somewhat simplified variant of the Sombor index.
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Let the vertices of the graph G be labeled by 1, 2, . . . , n. Then the (0, 1)-adjacency matrix of G, denoted by
A(G), is defined as the symmetric square matrix of order n, whose (i, j)-elements is

A(G)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ij ∈ E(G),
0 if ij /∈ E(G),
0 if i = j .

The eigenvalues of A(G) form the spectrum of the graph G. For details of spectral graph theory, see [9].
Some time ago [10], it was attempted to combine spectral graph theory with the theory of

vertex-degree-based graph invariants. For this, using formula (1), an adjacency-matrix-type square symmetric
matrix AF(G) was introduced, whose (i, j)-elements are defined as

AF(G)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(d(i), d(j)) if ij ∈ E(G),
0 if ij /∈ E(G),
0 if i = j .

The theory based on the matrix AF and its spectrum was recently elaborated in some detail [11,12].
In this paper, we examine a special case of AF, associated with the Nirmala index N(G). We call it Nirmala

matrix, denote it by AN , and define via

AN(G)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
d(i) + d(j) if ij ∈ E(G),

0 if ij /∈ E(G),
0 if i = j .

(5)

The eigenvalues of AN(G) are denoted by ν1, ν2, . . . , νn, and are said to form the Nirmala spectrum of the
graph G. The Nirmala characteristic polynomial is defined as

φN(G, λ) = det (λ In −AN(G)),

in analogy to the ordinary characteristic polynomial [9]

φ(G, λ) = det (λ In −A(G)),

where In is the unit matrix of order n. Recall that νi , i = 1, 2, . . . , n, are the zeros of φN(G, λ), i.e., satisfy the
condition φN(G, νi) = 0.

2. Spectral properties of the Nirmala matrix

Lemma 1. Let ν1 ≥ ν2 ≥ ⋯ ≥ νn be the Nirmala eigenvalues of the graph G. Then
n
∑
i=1

νi = 0 and
n
∑
i=1

ν2
i = 2 Zg(G) where

Zg is the first Zagreb index (2).

Proof. The first equality is a direct consequence of AN(G)ii = 0 for all i = 1, 2, . . . , n. The second equality is
obtained from (5) as follows: Suppose that the vertices of G are labeled by 1, 2, . . . , n. Then

n
∑
i=1

ν2
i = TrAN(G)2

=
n
∑
i=1

n
∑
j=1

AN(G)ij AN(G)ji

= 2 ∑
ij∈E(G)

AN(G)ij AN(G)ji

= 2 ∑
ij∈E(G)

√
d(i) + d(j)

√
d(j) + d(i)

= 2 ∑
ij∈E(G)

[d(i) + d(j)] = 2 Zg(G) .
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Recalling that the sum of squares of the eigenvalues of the ordinary adjacency matrix is equal to 2m, from
Lemma 1 we see that in the spectral theory of Nirmala matrix, the the first Zagreb index will play the same
role as the number of edges plays in the ordinary spectral graph theory.

Lemma 2. Let ν1 be the greatest Nirmala eigenvalue. Then

ν1 ≥
2 N(G)

n

where N(G) is the Nirmala index (4). Equality is attained if and only if the graph G is regular.

Proof. According to the Rayleigh–Ritz variational principle, if X is any n-dimensional column-vector, then

XT AN(G)X
XT X

≤ ν1 .

Setting X = (1, 1, . . . , 1)T , we get

XT AN(G)X =
n
∑
i=1

n
∑
j=1

AN(G)ij = 2 ∑
ij∈E(G)

AN(G)ij = 2 ∑
ij∈E(G)

√
d(i) + d(j) = 2 N(G)

and
XT X = n .

In the case of regular graphs, X = (1, 1, . . . , 1)T is an eigenvector of AN(G), corresponding to the
eigenvalue ν1. Then, and only then, equality in Lemma 2 holds.

3. Nirmala energy and its bounds

The energy En(G) of a graph G is, by definition, equal to the sum of the absolute values of the eigenvalues
of A(G). For details on graph energy, see [13]. In analogy to this, we now define the Nirmala energy of G as

EnN(G) =
n
∑
i=1

∣νi∣ . (6)

It is no surprise that En(G) and EnN(G) have a number of analogous properties. In what follows, we state
two such results.

Theorem 1 (McClelland–type bound). If G is a graph on n vertices, with first Zagreb index Zg(G), then

EnN(G) ≤
√

2n Zg(G)

which is the analogue of the McClelland bound En(G) ≤
√

2nm [14].

Proof. Start with
n
∑
i=1

n
∑
j=1

(∣νi∣ − ∣νj∣)
2 ≥ 0

and use Equation (6) and the results of Lemma 1.
Equality in Theorem 1 will hold if and only if ∣ν1∣ = ∣ν2∣ = ⋯ = ∣νn∣ . Which are the graphs with such a

property awaits to be determined.
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Theorem 2 (Koolen–Moulton–type bound). Let G be a graph on n vertices, with Nirmala and first Zagreb indices
N(G) and Zg(G), respectively. Then

EnN(G) ≤ 2 N(G)
n

+

¿
ÁÁÁÀ2(n − 1)

⎡⎢⎢⎢⎢⎣
Zg(G) − (2 N(G)

n
)

2⎤⎥⎥⎥⎥⎦
(7)

which is the analogue of the Koolen–Moulton bound En(G) ≤ 2m
n +

√
2(n−1)[m−( 2m

n )2 ] [15]. If G is bipartite, then

EnN(G) ≤ 4 N(G)
n

+

¿
ÁÁÁÀ2(n − 2)

⎡⎢⎢⎢⎢⎣
Zg(G) − 2(2 N(G)

n
)

2⎤⎥⎥⎥⎥⎦
. (8)

Proof. We follow the reasoning by Koolen and Moulton [15,16], modified for the Nirmala energy. In an
analogous way as in Theorem 1, one can show that

n
∑
i=2

∣νi∣ ≤
√

2(n − 1) Zg′(G)

where

2 Zg′(G) =
n
∑
i=2

ν2
i = 2 Zg(G) − ν2

1

This yields,

EnN(G) − ∣ν1∣ ≤
√

2(n − 1)(Zg(G) − ν2
1)

i.e.,
EnN(G) ≤ ν1 +

√
2(n − 1)(Zg(G) − ν2

1) . (9)

Recall that ν1 > 0 and thus ∣ν1∣ = ν1.
Consider the function

f (x) = x +
√

2(n − 1)(Zg(G) − x2) .

It monotonously decreases in the interval (a, b) where a =
√

2Zg(G)/n and b =
√

2Zg(G). Therefore, the
inequality (9) remains valid if on its right–hand side, ν1 is replaced by 2 N(G)/n, see Lemma 2. This results in
the bound (7).

The bound (8) is obtained analogously [17], by taking into account that for bipartite graphs νi = −νn+1−i
holds for i = 1, 2, . . . , n, and therefore ∣νn∣ = ν1 .

Finding the conditions under which equality holds in (7) and (8) is difficult and we leave this question
unanswered.

4. Nirmala spectrum and energy of trees

In order to determine some of the main spectral properties of the Nirmala matrix of a tree, recall that the
(ordinary) characteristic polynomial of a tree T is of the form [9,18,19]

φ(T, λ) = xn +∑
k≥1

(−1)k m(T, k)λn−2k

where m(T, k) stands for the number of k-matchings (= selections of k mutually independent edges) in the tree
T. By definition, m(T, 1) = m = n − 1.

According to the Sachs coefficient theorem [9,20], for the Nirmala characteristic polynomial an analogous
expression would hold, namely

φN(T, λ) = xn +∑
k≥1

(−1)k mN(T, k)λn−2k .
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The term mN(T, k) is equal to the sum of weights coming from all k-matchings of T. Each particular k-matching
contributes to mN(T, k) by the product of the squares of the terms

√
d(u) + d(v), pertaining to the edges

contained in that matching. Thus, let M be a distinct k-matching of T, and let M(k) be the set of all such
k-matchings. Recall that for k ≥ 1, M(k) consists of m(T, k) elements, i.e., ∣M(k)∣ = m(T, k).

The weight of M is equal to

∏
uv∈E(M)

[
√

d(u) + d(v)]2 = ∏
uv∈E(M)

[d(u) + d(v)]

and therefore
mN(T, k) = ∑

M∈M(k)
∏

uv∈E(M)
[d(u) + d(v)] (10)

providedM(k) ≠ ∅, and mN(T, k) = 0 IfM(k) = ∅.
As seen, the structure-dependency of the Nirmala characteristic polynomial (i.e., of its coefficients) is

perplexed, and by no means easy to comprehend. Yet, we have the following simple result.
The signature of the spectrum is the number of positive, zero, and negative eigenvalues.

Theorem 3. The spectrum and Nirmala spectrum of a tree have equal signatures.

Proof. Because both the spectrum and the Nirmala spectrum of T are symmetric w.r.t. zero, it suffices to show
that both spectra have equal number of zero eigenvalues.

IfM(k) is non-empty, i.e., if m(T, k) > 0, then from Equation (10) we conclude that mN(T, k) > m(T, k) > 0,
whereas mN(T, k) = 0 if and only if m(T, k) = 0. Hence, the multiplicity of zeros of the polynomials φ(T, λ) and
φN(T, λ) are equal.

The following Coulson-type formula was obtained for the energy of trees [21,22]:

En(T) = 2
π

∞

∫
0

dx
x2 ln

⎡⎢⎢⎢⎣
1+∑

k≥1
m(G, k) x2k

⎤⎥⎥⎥⎦
dx

From it, far-reaching conclusions on the energy of trees could be deduced [13,22]. The analogous expression
for the Nirmala energy is

EnN(T) = 2
π

∞

∫
0

dx
x2 ln

⎡⎢⎢⎢⎣
1+∑

k≥1
mN(G, k) x2k

⎤⎥⎥⎥⎦
dx .

In view of Equation (10), it seems that this formula will be of little use for the study of the structure dependency
of Nirmala energy. Yet, because of d(u) + d(v) > 0 and mN(T, k) > m(T, k), we have:

Theorem 4. For any tree T with n > 1 vertices, EnN(T) > En(T) .

In connection with Theorem 3, we mention that if G is an r-regular graph, then AN(G) =
√

2r A(G)
and therefore EnN(G) =

√
2r En(G). Establishing the relations between EnN(G) and En(G) for non-regular

cycle-containing graphs remains a task for the future. We anyway conjecture that EnN(G) > En(G) holds in
the general case.
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