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Abstract

In this paper, we apply a novel Modified of Adomian Decomposition Method (MADM) for
solving Singular Boundary Value Problems (BVPs) of Emden-Fowler type of higher order.
The higher-order Emden-Fowler equation is characterized by two types. In addition, we test
the presented method by several linear and nonlinear examples, and compared the numerical
result with the exact solution to illustrate performance and reliability of this method in finding
approximate solutions as well as its successful in getting the complete solution in many case.

Keywords: A Novel Modified of ADM; Higher-order Emden-Fowler Equations; Singular boundary
value problems.

1 Introduction

The Emden-Fowler equation is singular differential equations which have great importance in
mathematics and other sciences such as fluid mechanics, quantum mechanics, chemical reactor
hypothesis and geophysics. Therefore, many scientists have sought to solve this type of equations
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and presented many method as cubic spline method [1], cubic B-spline method [2], Hermite functions
collocation method [3], homotopy perturbation method [4], Haar wavelet collocation method [5],
the Variational iteration method [6].

In the year 1980s, the Adomian Decomposition Method (ADM) appeared by the American scientist
George [7,8,9]. This method solved many equations that the traditional methods were unable to
solve.

Many studied that used this method showed the efficiency and effectiveness of this method in finding
approximate solution of different types of equations. The ADM yields a very rapid convergence of
the solution series in most cases, usually only few iterations leading to very accurate solutions. The
ADM has been applied to solve nonlinear singular boundary value problems for ordinary differential
equations by many researchers [10,11,12]. In this research, we examine the higher order Emden-
Fowler differential equations in the form

y(n+1) +
m+ n− r

x
y(n) +

(n− r)(m− 1)

x2
y(n−1) + f(x, y) = g(x), (1)

where f(x, y) and g(x) are known functions, n ≥ 1 and r ∈ {0, 1, ..., n}. Due to the existence of
the singularity at x = 0, such problems show difficulties in finding the solution to this equation.
We aim in this work to handle this type of higher order singular BVPs of Emden-Fowler type to
find approximate solutions by novel (MADM) which we introduce in this paper. For this reason,
we proposed a new differential operator and its inverse operator to solve two different types of
Emden-Fowler equations.

2 Higher-Order Emden-Fowler Equation

In the part, we characterize Emden-Fowler of higher order by two types, to derive the Emden-Fowler
type equations of higher order Eq.(1), we use the equation

x−2 dn−r

dxn−r
x2+n−m−r d

dx
xm−n+r dr

dxr
(y) + f(x, y) = g(x), (2)

where n− r ≥ 0. To find such distinct order Emden-Fowler equation we put n to distinct values.

First type: for m ̸= 1, n ̸= r,

y(n+1) +
m+ n− r

x
y(n) +

(n− r)(m− 1)

x2
y(n−1) + f(x, y) = g(x), (3)

under one of the followig

y(0) = a0, y
′(0) = a1, ..., y

(n−1)(0) = an−1, y
(r)(b) = an, (4)

when n ≥ 1, 0 ≤ r ≤ n, m ≤ (n− r).
Or

y(b1) = d1, y
′(b2) = d2, ..., y

(r−1)(bn−1) = dn−1, y
(r)(0) = dn,

y(r+1)(0) = dn+1. (5)

When n ≥ 1, 1 ≤ r ≤ n− 1, m ≥ 0.

Where the functions f(x, y) , g(x) are known and a0, a1, ..., an−1, an, b, b0, b1, ...,
bn−1, d0, d1, ..., dn−1, dn are constants.

Second type: when we put n = r in (2), we have

y(n+1) +
m

x
y(n) +Ny = g(x). (6)
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3 Modification of Adomian Method

We rewrite (1) in the form
Ly = g(x)− f(x, y), (7)

where the new differential operator L is defined by

L(.) = x−2 dn−r

dxn−r
x2+n−m−r d

dx
xm−n+r dr

dxr
(.). (8)

Under conditions (4), the inverse operator L−1 is defined by

L−1(.) =

∫ x

0

. . .

∫ x

0︸ ︷︷ ︸
r

xn−m−r

∫ x

b

xm−n−2+r

∫ x

0

. . .

∫ x

0︸ ︷︷ ︸
n−r

x2(.)dx...dx. (9)

The inverse operator under condition (5) is given as

L−1(.) =

∫ x

b0

. . .

∫ x

bn−1︸ ︷︷ ︸
r

xn−m−r

∫ x

0

xm−n−2+r

∫ x

0

. . .

∫ x

0︸ ︷︷ ︸
n−r

x2(.)dx...dx. (10)

Take L−1 to both sides of (7) to obtain

y(x) = ϕ+ L−1g(x)− L−1f(x, y). (11)

Such that
L(ϕ) = 0.

The ADM assumes that solution y(x) and the nonlinear f(x, y) can be decomposed into an infinite
series

y(x) =

∞∑
n=0

yn(x), (12)

and

f(x, y) =

∞∑
n=0

An, (13)

where the components yn(x) of the solution y(x) will be determined recurrently, and the An are
the Adomian polynomials, specific algorithms were seen in [13] to formulate Adomian polynomials.
The flowing algorithm:

A0 = F (y0),

A1 = F ′(y0)y1,

A2 = F ′(y0)y(2) +
1

2
F ′′(y0)y

2
1 ,

A3 = F ′(yo)y(3) + F ′′(y0)y1y2 +
1

3!
F ′′′(y0)y

3
1 , (14)

...

Can be used to construct Adomain polynomials, when F (y) is a nonlinear function. By substituting
(12) and (13) into (11), we have

∞∑
n=0

y(n) = ϕ(x) + L−1g(x)− L−1
∞∑

n=0

An. (15)

Through using ADM, the components yn can be determined as

y0 = ϕ(x) + L−1g(x),
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yn+1 = −L−1An, n ≥ 0, (16)

which gives
y0 = ϕ(x) + L−1g(x),

y1 = −L−1A0,

y2 = −L−1A1,

y3 = −L−1A3, (17)

...

From (14) and (17), we can determine the components yn(x), and hence the series solution of y(x)
in (15) can be immediately obtained. For numerical purposes, the n-term approximate

Ψn =

n−1∑
n=0

yn(x),

can be used to approximate the exact solution.

4 Applications

In this section, we will study some example of Emden-Fowler equations with boundary conditions
by using the presented technique in this paper.

Example 1. When n=3, r=0, m=2 in (3), we obtain the Emden-Fowler type equation

y(4) +
5

x
y(3) +

3

x2
− y = 180− x4, (18)

y(0) = 0, y′(0) = 0, y′′(0) = 0, y(1) = 1,

where

L(.) = x−2 d3

dx3
x3 d

dx
x−1(.).

So

L−1(.) = x

∫ x

1

x−3

∫ x

0

∫ x

0

∫ x

0

x2(.)dxdxdx.

Rewrite Eq. (18) in ADM operator form

Ly = 180− x4 + y. (19)

By using L−1 on both sides of (19) we get

y = 35.3377x4 + L−1(180− x4) + L−1y.

To find the solution, we use the iterative formula

y0 = x+ L−1(180− x4),

yn+1 = L−1yn, n ≥ 0, (20)

the first several calculated solution components are

y0 = 0.000283447x+ x4 − 0.000283447x8,

y1 = −0.000284022x+ 5.90514 × 10−7 x5 + 0.000283447x8 − 1.50162 × 10−8 x12 + . . . ,

y2 = 5.76594 × 10−7 x− 5.91713 × 10−7 x5 + 1.0252 × 10−10 x9 + 1.50162 × 10−8 x12
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−2.45364 × 10−13 x16,

y3 = −1.09876 × 10−9 x+ 1.20124 × 10−9 x5 − 1.02728 × 10−10 x9 + 3.91177 × 10−15 x13

+2.45364 × 10−13 x16 −+...,

y4 = 2.08445 × 10−12 x− 2.28908 × 10−12 x5 + 2.08548 × 10−13 x9 − 3.91972 × 10−15 x13

+4.99358 × 10−20 x17 + . . . ,

...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 + y4 = 3.9968 10−15 x+ x4 − 4.33439 10−15 x5 + 3.96658 10−16 x9

−7.9423 10−18 x13 + 4.99358 10−20 x17 + . . . .

It is easily observed that some terms appear in the first components yn(x) with opposite signs, such
as the term 0.000283447x8 appear in y0 and y1 with opposite sings, whenever we continue finding
solution, we reach the exact solution

y(x) = x4.

Example 2. When n=3, r=1, m= -1 in (3), we study the next equation

y(4) +
1

x
y(3) − 4

x2
y(2) = x8 − y2, (21)

y(0) = 1, y′(0) = 0, y′′(0) = 0, y′(1) = 4,

where

L(.) = x−2 d2

dx2
x5 d

dx
x−3 d

dx
(.).

So

L−1(.) =

∫ x

0

x3

∫ x

1

x−5

∫ x

0

∫ x

0

x2(.)dxdxdxdx.

The ADM operator form of Eq.(21) is

Ly = x8 − y2. (22)

By using L−1 on both sides of (22) we get

y = 0.999763x4 + 0.000473485x16 + L−1x8 − L−1y2.

To find the solution, we use the recursive relationship

y0 = 0.999763x4 + 0.000473485x16,

yn+1 = −L−1An, n ≥ 0, (23)

where the nonlinear term y2 has Adomian polynomials An as the following

A0 = y2
0 ,

A1 = 2y0y1, (24)

A2 = 2y0y2 + y2
1 ,

so, from (23) and (24) we get

y0 = 0.999763x4 + 0.000473485x16,

y1 = −0.000236652x4 + 0.0000788768x12 + 3.57316× 10−9 x24 + 1.5445 10−13 x36,

y2 = 1.05544× 10−7 x4 − 3.73415× 10−8 x12 + 1.29701× 10−9 x20 − 8.45796× 10−13 x24 + . . . ,
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y3 = −7.05475× 10−11 x4 + 2.54929× 10−11 x12 − 1.22805× 10−12 x20 + 3.77215× 10−16 x24

+ . . . ,

...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 = x4 − 0.0000788395x12 + 0.000473485x16 − 1.29578× 10−9 x20

−3.57232× 10−9 x24 − . . . .

In Table 1, we give the exact solutions and the ADM solution in [0,1].

Table 1. Numerical results for Example2

x Exact solution MADM solution Absolute Error

0.0 0.000000000 0.00000000 000000000

0.1 0.0001 0.0001 1.96×10−11

0.2 0.0016 0.008099 3.14×10−10

0.3 0.0081 0.03643534 1.62×10−9

0.4 0.0256 0.025599 6.13×10−9

0.5 0.0625 0.062499 2.42×10−8

0.6 0.24009 0.2401004 6.34×10−8

0.7 0.69071717 0.69038295 4.35×10−7

0.8 0.4096 0.409608 7.82925×10−6

0.9 0.6561 0.656165 0.00006534

1 1 1.000394 0.0003944

Example 3. When n=3, r=1, m=5 in (3), we obtain the Emden-Fowler type equation

y(4) +
7

x
y(3) +

8

x2
y(2) = 288 + x8 − y2, (25)

y(
1

2
) = 0.0625, y′(0) = 0, y′′(0) = 0, y3(0) = 0,

where

L(.) = x−2 d2

dx2
x−1 d

dx
x3 d

dx
(.).

So

L−1(.) =

∫ x

1
2

x−3

∫ x

0

x

∫ x

0

∫ x

0

x2(.)dxdxdxdx.

Rewrite Eq.(25) in ADM operator form

Ly = 288 + x8 − y2. (26)

By using L−1 on both sides of (26) we get

y = −1.10092 10−8 + x4 + 0.0000450938x12 − L−1y2.

To find the solution, we use the iterative formula

y0 = −1.10092 10−8 + x4 + 0.0000450938x12,

yn+1 = −L−1An, n ≥ 0, (27)

where the nonlinear term y2 has Adomian polynomials An as the following

A0 = y2
0 ,
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A1 = 2y0y1, (28)

A2 = 2y0y2 + y2
1 ,

so, from (27) and (28) we get

y0 = −1.10092 × 10−8 + x4 + 0.0000450938x12,

y1 = −1.10092 × 10−8 + 4.20844 × 10−19 x4 − 4.91483 × 10−12 x8 + 0.0000450938x12 + . . . ,

y2 = 1.86841 × 10−14 + 8.41687 × 10−19 x4 − 4.91483 × 10−12 x8 + 4.28348 × 10−23 x12 − . . . ,

y3 = −5.65141 × 10−20 + 4.20841 × 10−19 x4 + 8.3411 × 10−18 x8 + 8.56695 × 10−23 x12 − . . . ,

...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 = −3.73681 × 10−14 + x4 + 9.82965 × 10−12 x8 + 3.41882 × 10−16 x16

+ . . . .

——– Exact ——– ADM

Fig. 1. The exact solution y = x4, and the MADM solution y =
∑3

n=0 yn(x).

Example 4. When n=3, r=2, m=-3 in (3), we obtain the Emden-Fowler type equation

y(4) − 2

x
y(3) − 4

x2
y(2) = −8

(
9 + 85x4 − 113x8 + 3x12) e−4y, (29)

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′(1) = 2,

the exact solution is y(x) = log(1 + x4), where

L(.) = x−2 d

dx
x6 d

dx
x−4 d2

dx2
(.).

So

L−1(.) =

∫ x

0

∫ x

0

x4

∫ x

1

x−6

∫ x

0

x2(.)dxdxdxdx.

The ADM operator form of Eq.(29) is

Ly = −8
(
9 + 85x4 − 113x8 + 3x12) e−4y. (30)

By using L−1 on both sides of (30) we get

y = 0.0666667x6 − L−1(8
(
9 + 85x4 − 113x8 + 3x12) e−4).

90



Alaqel and Hasan; JAMCS, 35(2): 84-100, 2020; Article no.JAMCS.55916

To find the solution, we use the iterative formula

y0 = 0.0666667x6,

yn+1 = −L−1(8
(
9 + 85x4 − 113x8 + 3x12))An, n ≥ 0, (31)

where the nonlinear term e−4y has Adomian polynomials An as the following

A0 = e−4y0 ,

A1 = −4y1e
−4y0 , (32)

A2 = 4(−y2 + 2y2
1)e

−4y0 ,

so, from (31) and (32) we get
y0 = 0.0666667x6,

y1 = x4 + 0.731732x6 − 0.867347x8 − 0.00592593x10 + 0.103765x12 − . . . ,

y2 = −1.36951x6 + 0.367347x8 + 0.0650428x10 + 0.28354x12 + . . . ,

y3 = 0.648206x6 − 0.121735x10 − 0.053972x12 − . . . ,

...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 = x4 + 0.0770907x6 − 0.5x8 − 0.0626176x10 + 0.333333x12 − . . . .

Where the first terms of the exact solution series are

y(x) = x4 − 0.5x8 + 0.333333x12 − 0.25x16 + . . . .

In Table 2, we give the exact solutions and the MADM solution in [0,1].

Table 2. Numerical results for Example 4

x True solution ADM solution Absolute Error

0.0 0.000000000 0.00000000 000000000

0.1 0.000099 0.0001 7.7×10−8

0.2 0.001598 0.001603 4.92×10−6

0.3 0.008067 0.008123 0.0000558

0.4 0.025277 0.025586 0.000309

0.5 0.060624 0.061764 0.00114

0.6 0.121864 0.125043 0.003179

0.7 0.215192 0.222225 0.007032

0.8 0.343306 0.355584 0.012278

0.9 0.504465 0.520206 0.0157402

1 0.693147 0.70287 0.009723

Example 5. When n=3, r=2, m=3 in (3), we study the Emden-Fowler type equation

y(4) +
4

x
y(3) +

2

x2
y(2) = 16

(
9− 62x4 + 25x8) e−4y, (33)

y(0) = 0, y′(0.1) = 0.0039996, y′′(0) = 0, y3(0) = 0,

with exact solution log(1 + x4) where

L(.) = x−2 d2

dx2
x2 d2

dx2
(.).

91



Alaqel and Hasan; JAMCS, 35(2): 84-100, 2020; Article no.JAMCS.55916

So

L−1(.) =

∫ x

0

∫ x

0.1

x−2

∫ x

0

∫ x

0

x2(.)dxdxdxdx.

Rewrite Eq.(33) in ADM operator

Ly = 16
(
9− 62x4 + 25x8) e−4y. (34)

By using L−1 on both sides of (34) we get

y = 0.0666667x6 + L−1x8 − L−1(16
(
9− 62x4 + 25x8))e−4.

To find the solution, we use the iterative formula

y0 = 0.0039996x,

yn+1 = −L−1(16
(
9− 62x4 + 25x8))An, n ≥ 0, (35)

where the nonlinear term e−4y has Adomian polynomials An as the following

A0 = e−4y0 ,

A1 = −4y1e
−4y0 , (36)

A2 = 4(−y2 + 2y2
1)e

−4y0 ,

so, from (35) and (36) we get
y0 = 0.0039996x,

y1 = −0.00399687x+ x4 − 0.00575942x5 + 0.0000204759x6 − 5.57112 10−8 x7

−0.316327x8 + 0.00306142x9 − 0.0000156729x10 + 5.59506 10−8 x11 + 0.0229568x12 − . . . ,

y2 = −2.72832 10−6 x+ 0.00575549x5 − 0.0000409238x6 + 1.67019 10−7 x7 − 0.183673x8

−0.000641796x9 + 0.0000142157x10 − 8.19173 10−8 x11 + 0.238189x12 − . . . ,

y3 = −2.97968 10−9 x+ 3.92879 10−6 x5 + 0.00002042x6 − 1.66791 10−7 x7 + 7.50657 10−10 x8

−0.00241797x9 + 0.000018564x10 − 8.97757 10−8 x11 + 0.0721876x12 + . . . ,

...
The solution in a series form is given by

y(x) = y0+y1+y2+y3 = 3.91016 10−12 x+ x4−4.29638 10−9 x5−2.79257 10−8 x6−5.54831 10−8 x7

−0.5x8 + 1.65321 10−6 x9 + 0.0000171068x10 − 1.15742 10−7 x11 + 0.333333x12 − . . . .

Where the first terms of the exact solution series are

y(x) = x4 − 0.5x8 + 0.333333x12 − 0.25x16 + . . . .

In Table 3, we give the exact solutions and the ADM solution in [0,1].

Table 3. Numerical results for Example 5

x Exact solution ADM solution Absolute Error

0.0 0.000000000 0.00000000 000000000

0.1 0.000099 0.000099 3.17×10−13

0.2 0.001598 0.001598 1.43×10−12

0.3 0.008067 0.008067 1.22×10−11

0.4 0.025277 0.025277 6.47×10−9

0.5 0.060624 0.060624 2.85×10−7

0.6 0.0.121864 0.121868 4.54×10−6

0.7 0.215192 0.215223 0.00003069

0.8 0.343306 0.343312 6.48×10−6

0.9 0.504465 0.0.502894 0.0015709

1 0.693147 0.678501 0.014646
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Example 6. When n=4, r=3, m=-2 in (3), we obtain the Emden-Fowler type equation

y(5) − 1

x
y(4) − 3

x2
y(3) =

−48
(
64 + 80x2 − 44x4 + x6

)
x (4 + x2)

e4y, (37)

y(0) = −1.38629, y′(0) = 0, y′′(0) = −1

2
, y′′′(0) = 0, y′′′(2) =

1

8
,

with exact solution log( 1
4+x2 ) where

L(.) = x−2 d

dx
x5 d

dx
x−3 d3

dx3
(.).

So

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

x3

∫ x

2

x−5

∫ x

0

x2(.)dxdxdxdx.

In an operator form, Eq.(37) becomes

Ly =
−48

(
64 + 80x2 − 44x4 + x6

)
x (4 + x2)

e4y. (38)

By using L−1 on both sides of (38) we get

y = −1.38629− 0.25x2 + 0.000181159x6 − L−1 48
(
64 + 80x2 − 44x4 + x6

)
x (4 + x2)

e4.

To find the solution, we use the iterative formula

y0 = −1.38629− 0.25x2 + 0.000181159x6,

yn+1 = −L−1 48
(
64 + 80x2 − 44x4 + x6

)
x (4 + x2)

An, n ≥ 0, (39)

where the nonlinear term e4y has Adomian polynomials An as the following

A0 = e4y0 ,

A1 = 4y1e
4y0 , (40)

A2 = 4(y2e
4y0 + 2e4y0y2

1),

. . .

So, from (39) and (40) we get

y0 = −1.38629− 0.25x2 + 0.000181159x6,

y1 = 0.03125x4 − 0.00591649x6 + 0.00106957x8 − 0.00019812x10 + 0.0000343277x12 − . . . ,

y2 = 0.000151839x6 − 0.000093006x8 + 3.0815 10−6 x10 + 6.64429 10−6 x12 − . . . ,

y3 = −0.0000707257x6 − 7.90828 10−8 x10 − 2.81836 10−7 x12 + . . . ,

...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 = −1.38629− 0.25x2 + 0.03125x4 − 0.00565421x6 + 0.000976563x8

−0.000195117x10 + 0.0000406901x12 − . . . .

Where the first terms of the exact solution series are

y(x) = −1.38629− 0.25x2 + 0.03125x4 − 0.00520833x6 + 0.000976563x8 − 0.000195313x10
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+0.0000406901x12 − . . . .

Example 7. When n=4, r=3, m=2 in (3), we obtain the Emden-Fowler type equation

y(5) +
3

x
y(4) +

1

x2
y(3) =

−16
(
−192 + 400x2 − 76x4 + x6

)
x (4 + x2)5

e4y, (41)

y(0) = −1.38629, y′(
1

2
) = − 4

17
, y′′(1) = − 6

25
, y′′′(0) = 0, y′′′′(0) = 0,

with exact solution log( 1
4+x2 ) where

L(.) = x−2 d

dx
x

d

dx
x

d3

dx3
(.).

So

L−1(.) =

∫ x

0

∫ x

1
2

∫ x

1

x−1

∫ x

0

x−1

∫ x

0

x2(.)dxdxdxdx.

Rewrite Eq.(41) in ADM operator form

Ly =
−16

(
−192 + 400x2 − 76x4 + x6

)
x (4 + x2)5

e4y. (42)

By using L−1 on both sides of (42) we get

y = −1.38629− 0.115294x− 0.12x2 − L−1 16
(
−192 + 400x2 − 76x4 + x6

)
x (4 + x2)5

e4.

To find the solution, we use the iterative formula

y0 = −1.38629− 0.115294x− 0.12x2,

yn+1 = −L−1 16
(
−192 + 400x2 − 76x4 + x6

)
x (4 + x2)5

An, n ≥ 0, (43)

where the nonlinear term e4y has Adomian polynomials An as the following

A0 = e4y0 ,

A1 = 4y1e
4y0 , (44)

A2 = 4(y2e
4y0 + 2e4y0y2

1),

. . .

So, from (43) and (44) we get

y0 = −1.38629− 0.115294x− 0.12x2,

y1 = 0.107496x− 0.121633x2 + 0.03125x4 − 0.00256209x5 − 0.00422967x6 + 0.000732055x7

+0.000475465x8 − . . . ,

y2 = 0.00696894x− 0.00748561x2 + 0.00238881x5 − 0.00107005x6 − 0.000536909x7

+0.000494267x8 + . . . ,

y3 = 0.000723344x− 0.000770121x2 + 0.000154865x5 + 0.0000775716x6 − 0.000179134x7

+0.0000201773x8 + . . . ,
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...
The solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 = −1.38629− 0.000105401x− 0.249888x2 + 0.03125x4 − 0.0000184166x5

−0.00522215x6 + 0.0000160112x7 + 0.00098991x8 − . . . .

Example 8. When n=5, r=4, m=7 in (3), we obtain the Emden-Fowler type equation

y(6) +
8

x
y(5) +

6

x2
y(4) = y2 − x6, (45)

y(0) = 0, y′(0.5) = 0.75, y′′(0.1) = 0.6, y′′′(0.2) = 6, y(4)(0) = 0, y(5)(0) = 0,

the exact solution is y(x) = x3

re-written Eq.(45), as

Ly = y2 − x6, (46)

we give

L(.) = x−2 d

dx
x−4 d

dx
x6 d4

dx4
(.).

The inverse operator

L−1(.) =

∫ x

0

∫ x

0.5

∫ x

0.1

∫ x

0.2

x−6

∫ x

0

x4

∫ x

0

x2(.)dxdxdxdxdxdx. (47)

Applying L−1 on both sides of (46), we get

y(x) = 3.88053 10−9 x− 2.25705 10−11 x2 + 1. x3 − 6.68056 10−7 x12 + L−1y2,

using ADM for y2(x), as yield

∞∑
n=0

yn(x) = 3.88053 10−9 x− 2.25705 10−11 x2 + 1. x3 − 6.68056 10−7 x12 + L−1An, n ≥ 0,

the nonlinear term y2, we get it as

A0 = y2
0 ,

A1 = 2y0y1,

the first few components are as follows

y0 = 3.88053 × 10−9 x− 2.25705 × 10−11 x2 + x3 − 6.68056 × 10−7 x12,

y1 = −3.88053 × 10−9 x+ 2.25706 × 10−11 x2 − 7.52499 × 10−11 x3 + 1.79268 × 10−22 x8

−8.77681 × 10−25 x9 + 1.8332 × 10−14 x10 − 5.48042 × 10−17 x11 + 6.68056 × 10−7 x12 − . . . ,

y2 = 3.44924 × 10−16 x− 8.43561 × 10−18 x2 + 2.81462 × 10−17 x3 − 3.58535 × 10−22 x8

+1.75536 × 10−24 x9 − 1.8332 × 10−14 x10 + 5.48042 × 10−17 x11 − 1.00542 × 10−16 x12 + . . . ,

the solution in a series form are given by

y(x) = y0 + y1 + y2 = 4.05319 × 10−23 x− 1.70929 × 10−24 x2 + x3 − 1.79268 × 10−22 x8

+8.77682 × 10−25 x9 − 1.63084 × 10−21 x10 + 2.04868 10−23 x11 − 1.05879 × 10−22 x12 + . . . .
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Table 4. Comparison of numerical errors between the exact solution and the MADM
solutions

x Exact MADN Error

0.1 0.001 0.001 4.03×10−24

0.2 0.008 0.008 8.03×10−24

0.3 0.027 0.027 1.19×10−23

0.4 0.064 0.064 1.56×10−23

0.5 0.125 0.125 1.7×10−23

0.6 0.216 0.216 1.07×10−23

0.7 0.343 0.343 2.83×10−23

0.8 0.512 0.512 1.61×10−22

0.9 0.729 0.729 4.89×10−22

1.0 1.00 1.0000 1.37×10−21

——– Exact ——– ADM

Fig. 2. The exact solution y = x3, and the MADM solution y =
∑2

n=0 yn(x).

5 The Second Type of Emden-Fowler Equation of Higher
Order

The second Emden-Fowler type equation of n+1 order ordinary differential equation is defined in
the form

y(n+1) +
m

x
y(n) + f(x, y) = g(x), (48)

under one of the boundary conditions

y(0) = d0, y
′(0) = d1, ..., y

(n−1)(0) = dn−1, y
(n)(bn) = dn. (49)

or
y(b0) = a0, y

′(b1) = a1, y
′′(b2) = a2, ..., y

(n−1)(b(n−1)) = a(n−1), y
(n)(0) = an. (50)

Where N is the nonlinear operator ,g(x) is real function and a0, a1, ..., an−1, an, b
are constants.

In an operator form, Eq. (48) can be written as

Ly = g(x)− f(x, y), (51)

where the differential operatorL is

L(.) = x−m d

dx
xm dn

dxn
. (52)
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When m ≤ 0, n ≥ 1, we define the inverse operator L−1 by

L−1(.) =

∫ x

0

. . .

∫ x

0︸ ︷︷ ︸
n

x−m

∫ x

b

xm(.)dx . . . dx. (53)

When m ≥ 0, n ≥ 1, we present the inverse operator

L−1(.) =

∫ x

b1

. . .

∫ x

bn−1︸ ︷︷ ︸
n

x−m

∫ x

0

xm(.)dx . . . dx. (54)

Take L−1 to both sides of (51) to obtain

y(x) = ϕ+ L−1g(x)− L−1f(x, y). (55)

Example 9. We consider the Emden-Fowler type equation

y(5) +
36

x
y(4) =

ex
(
864 + 1356x+ 492x2 + 51x3 + x4

)
x

, (56)

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(3) = 3374.37, y′′′(0) = 6,

with exact solution x3ex where

L(.) = x−36 d

dx
x36 d4

dx4
(.).

So

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

∫ x

3

x−36

∫ x

0

x36(.)dxdxdxdx.

Rewrite Eq.(56) in ADM operator form

Ly =
ex

(
864 + 1356x+ 492x2 + 51x3 + x4

)
x

. (57)

By using L−1 on both sides of (57) we get the exact solution

y = x3ex.

Example 10. For n=4, m=3 in (48), consider the Emden-Fowler type equation

y(5) +
3

x
y(4) = 9 ex

3

x(100 + 348x3 + 207x6 + 27x9) + e2x
3

− y2, (58)

y(0.1) = 1.001, y′(0) = 0, y′′(0.5) = 4.03684, y′′′(0.6) = 23.4863, y′′′′(0) = 0,

with exact solution y(x) = ex
3

.
We put

L(.) = x−3 d

dx
x3 d4

dx4
(.),

L−1(.) =

∫ x

0.1

∫ x

0

∫ x

0.5

∫ x

0.6

x−3

∫ x

0

x3(.)dxdxdxdxdx.

The ADM operator form of Eq.(58) is

Ly = 9 ex
3

x(100 + 348x3 + 207x6 + 27x9) + e2x
3

− y2, (59)
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Take L−1 on both sides of (59) and using the boundary condition gives

y = 1.03562− 3.85315x2 +3.91438x3 +L−1(9 ex
3

x(100+ 348x3 +207x6 +27x9) + e2x
3

)−L−1y2.

Proceeding as before we obtained the recursive relationship

y0 = 0.999911 + 0.00976473x2 + 0.991703x3 + 0.00208333x5 + 0.5x6

+0.000170068x8 + 0.166667x9 + 0.0000252525x11 + 0.0416667x12 + 4.26924 10−6 x14

+0.00833333x15 + 0.00135885x18 + 0.000150376x21 + 6.90472 10−6 x24.

yn+1 = −L−1An, n ≥ 0, (60)

where An are Adomian polynomials of nonlinear term e4y, as below,

A0 = y2
0 ,

A1 = 2y0y1, (61)

A2 = y2
1 + 2y0y2,

. . .

From (60) and (61) we have

y1 = 0.0000897823− 0.00980894x2 + 0.0083279x3 − 0.00208296x5 − 3.87455 × 10−6 x7

−0.000168642x8−3.94138 ×10−9 x9−5.18821 ×10−7 x10−0.0000250427x11−3.11344 ×10−10 x12

− . . . ,

y2 = −1.43588 × 10−7 +0.0000154943x2 − 0.0000113515x3 − 3.7406 × 10−7 x5 +3.89174 × 10−6 x7

−1.43132 × 10−6 x8 + 7.91846 × 10−9 x9 + 5.17144 × 10−7 x10 − 2.09689 × 10−7 x11

+6.83334 × 10−10 x12 + . . . ,

y3 = 3.09374 10−10 − 3.33596 10−8 x2 +2.42159 × 10−8 x3 +5.81438 × 10−10 x5 − 5.79796 × 10−9 x7

+1.82741 × 10−9 x8 − 3.98966 × 10−9 x9 + 2.95389 × 10−9 x10 − 5.89592 × 10−10 x11

−3.72686 × 10−10 x12 + . . . ,

...

This means that the solution in a series form is given by

y = y0 + y1 + y2 + y3 = 0.99991− 0.0000287467x2 + 1.00002x3 − 1.11644 10−9 x5 + 0.5x6

+1.13953 10−8 x7 − 3.31116 10−9 x8 + 0.166667x9 + 1.27672 10−9 x10 − 4.90608 10−10 x11

+0.0416667x12 + . . .

In Fig. 3, we have plotted
∑3

0 yi(x), which is similar to the true solution y(x) = ex
3

.
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——– EXACT ——– ADM

Fig. 3. The exact solution y = ex
3

and the MADM solution y =
∑3

n=0 yn(x).

6 Conclusion

In this paper, two Emden-Fowler equations are studied, with great applicability in different fields
of science and technique. These higher-order equations with boundary conditions are introduced
to modified (ADM) to solve. This method is dependable to overcome the difficulty of the singular
point at x = 0. Illustrative example were studied to corroborate the efficiency and reliability of the
proposed method and to show the rapid convergence of the approximation series as the solution.
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