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ABSTRACT 
 

This paper studies the motion of an infinitesimal particle near the out-of-plane equilibrium points in 
the elliptic restricted three body problem (ER3BP) when the primaries are triaxial rigid bodies, 
sources of radiation with a Poynting-Robertson (P-R) drag force surrounded by a belt. It is observed 
that there exist two out-of-plane equilibria which lie in the ξζ- plane in symmetrical positions with 
respect to the orbital plane. The parameters involved in the system affect their positions. The 
position changes with an increase in triaxiality, radiation and belt in the presence of P-R drag force. 
We found that for the binary system the effect of triaxialty and the belt moves the out-of-plane 
equilibrium points in opposite directions. The position and linear stability of the out-of-plane 
equilibrium points are investigated numerically using first, arbitrary values for the parameters and 
then for the two binary systems (Xi-Bootis and Kruger 60) and they are found to be unstable in each 
case. 
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1. INTRODUCTION   
 
Till today, the three-body problem remains one of 
the most important problem in celestial 
mechanics. It has been one of the most 
researched field in space dynamics and 
astrophysics. Well known mathematicians and 
scientists have obtained interesting and 
significant results when studying and predicting 
the motion of natural bodies. 
 
Leonhard Euler in 1765 modified the three body 
problem into the restricted three body problem, a 
simplification of the general problem where one 
of the bodies is taken to have negligible or 
infinitesimal mass. The earliest and simplest 
particular solution was discovered by Euler in 
1765. In Euler’s solution, the three masses are 
collinear, positioned according to their masses. 

Then at every future time, the masses                     
remain collinear, and the distances                       
between them remain at the same ratio. This 
positions are the equilibrium points of the system 
and they lie on the line joining the primaries and 
are called collinear equilibrium points (L1,2,3)   
(see Fig. 1). Later on, Lagrange in 1772 
discovered another particular solution. In 
Lagrange’s solution the three masses occur at 
the vertices of an equilateral triangle. The 
masses then follow elliptical orbits around their 
center of mass while remaining in an equilateral 
triangle formation, the negligible mass remain 
stable at this point in its orbit (see Fig. 2).These 
points are the equilibrium points and they are two 
called Lagrangian triangular equilibrium points 
(L4,5). 
 
These equilibrium points lie on the ξη-plane. 

 

 
 

Fig. 1. The Euler solution: the three bodies remain collinear at all times, in elliptical orbits 
around the center of mass. Left: all masses equal. Right: unequal masses 

 

 
Fig. 2. The Lagrange solution: the three bodies form an equilateral triangle at all times. Left: 

three equal masses. Right: unequal masses 
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The existence of out-of-plane equilibrium points 
(OPEPs) in the ξζ- plane was discovered by 
Radzievskii [1,2] when studying the case of sun 
planet-particle and Galaxy-kernel-sun-particle 
and obtained the two equilibrium points L6,7 on 
the ξζ- plane and is symmetrical with respect to 
the ξη-plane. Since then several authors singh 
[3-7] based their studies on the Radviesky model 
under different characterizations in Elliptic 
restricted three-body problem (ER3BP). 
 
On the other hand [8-11] have studied the out-of-
plane points in the ER3BP under the influence of 
radiation pressure or Pr-drag or oblateness or a 
combination of one of these forces and they 
found that the OPEPs is unstable.  
 
Hussain and Umar [8] and [9] studied the OPEPs 
by considering the effect of the shapes (oblate 
and triaxial) of the primaries on the infinitesimal 
mass. [8] found that OPEPs are affected by the 
oblateness of the primary, radiation pressure and 
triaxiality of the secondary, semi-major axis, and 
eccentricity of the orbits of the principal bodies. 
But the OPEPs is unaffected by the semi-major 
axis and eccentricity of the orbits of the principal 
bodies. They found numerically that the binary 
system PSR 1903+0327 and DP-Leonis OPEPs 
is stable for low eccentricities. 
. 
Numerical and graphical computation of out-of-
plane equilibria by [10] for different values of the 
parameters (μ, α, e, k and σ) where μ, α, e, k and 
σ are mass parameter, albedo factor, 
eccentricity, ratio of the luminosity of smaller 
primary to luminosity of bigger primary 
considered as constant and oblateness factor 
due to smaller primary, respectively were used to 
analyse the effect of albedo on OPEPs and the 
equilibria are found to be unstable. 
 
Singh and Richard [11] studies the motion of the 
out-of-plane equilibrium points within the 
framework of the Elliptic Restricted Three-Body 
Problem (ER3BP) at J4 of the smaller primary in 
the field of stellar binary systems: Xi- Bootis and 
Sirius around their common center of mass in 
elliptic orbits. He proved that the positions and 
stability of the out-of-plane equilibrium points are 
unstable in the lyapunov sense.  
 
In addition to oblateness, triaxiality and radiation 
the study of OPEPs was extended to include the 
PR- drag force, one of the important component 
of radiation pressure force. The PR- Drag force is 
a component of radiation pressure and is 
tangential to the grain’s motion. It is an effective 

force that opposes the direction of the dust 
grain’s motion and causes a drop in the grain’s 
angular momentum. In the studies above on 
photogravitational ER3BP this component of 
radiation force was ignored in the estimation of 
radiation pressure force. Authors like [12-15] 
have studied the impact of pr drag in comblnation 
with other prtubing forces. 
 
In their paper [12] observed that OPEPs exist but 
incorporating the PR-drag results in non-zero y-
coordinates of the OPEPs. Also, while studying 
the stability around the binary systems Luyten-
726 and Sirius they found that at least two of the 
six roots of the characteristic equation, have 
positive real part and hence the OPEPs are 
unstable due to the presence of the PR- drag 
force. Using an analytical and numerical study, 
[13] shows that triangular equilibrium points exist 
in the plane of motion of the Sun-Earth system in 
the frame of the elliptic restricted problem of 
three bodies subject to the radial component of 
Poynting–Robertson (PR-drag) and radiation 
pressure factor of the bigger primary as well as 
dynamical flattening parameters of both primary 
bodies (i.e., Sun and Earth). However, triangular 
equilibrium points are linearly stable in the 
presence of the perturbing forces (including the 
PR-drag force) which shows that the perturbing 
forces have no significant effect on the positions 
of the triangular equilibrium points and their 
stability. Mishra and Bhola [14] examined the 
non-linear stability of triangular equilibrium points 
in the photogravitational elliptic restricted three 
body problem with Poynting-Robertson drag, 
where it was assumed the bigger primary is 
radiating and smaller primary an oblate spheroid. 
The condition of non-linear stability was 
estabilished using KAM theorem. They found 
three critical mass ratios and conclude that 
triangular equilibrium points are stable in the 
non-linear sense except at three critical mass 
ratios at which KAM theorem fails.  
 
A study of the generalization of the Elliptic 
Restricted Three-Body Problem (ER3BP) by 
considering the effects of radiation (bigger 
primary) and oblate spheroid (smaller primary) by 
[15] shows that out of plane exist in the three 
dimensional case and the locations of L6,7 are 
periodic and affected by A2 and radiation factor. 

 
Interest in binary systems has increased, in the 
last decade, this is in part because many extra 
solar planetary systems revealed the presence of 
belts of dust particles that are regarded as the 
young analogues of Kuiper belt. [16] and [17] 
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suggest that the position of the disc relative to 
the planets when they studied the effects of belts 
on planetary orbits and conclude that the planets 
might prefer to stay near the inner part instead of 
outer part of the belt. Later the R3BP was 
modified in their paper [18] to include the effect 
of additional gravitational force from the belt on 
the infinitesimal mass, which results in the 
formation of new libration (equilibrium) points. 
 

 
 

Image 1. The configuration of the problem 
 
In the studies conducted on belt more attention is 
given to motion of the particle around triangular 
equilibrium points very few articles are available 
in OPEPs. The model by [19] focus on the 
CR3BP when the two primaries are oblate 
spheroids and radiating with the gravitational 
potential from a belt. They obtained in addition to 
the usual five libration points two new collinear 
points as a result of the potential from the belt. 
The influence of the belt and non-sphericity of 
the primaries on the infinitesimal mass was 
studied by [20]. They did analytic and numerical 
treatment of motion of a dust grain particle 
around triangular equilibrium points when the 
bigger primary is triaxial and the smaller one an 
oblate spheroid with a potential from the belt. 
They found that triangular points are stable for 

0< <   and unstable for      
 

 
, where    is 

the critical mass ratio. It was also observed that 

the potential from the belt increase the range of 
stability.  
 
In another study by [21] where the more massive 
primary is a triaxial body and less massive one 
an oblate spheroid emitting radiation enclosed by 
a circumbinary disc (belt) in the presence of Pr- 
drag force it was proved that the potential from 
the belt is a stabilizing force as it can change an 
unstable condition to a stable one even when the 
mass parameter exceeds the critical mass value 
      . Also, [9] found that the position and 
stability of out-of-plane equilibrium points are 
significantlyly affected by oblateness and 
radiation pressure of the primaries and the 
eccentricity of the orbits..Our work is an 
extension of [9] with radiating-triaxial primaries 
with a P-R drag force and a potential from the 
belt in the framework of ER3BP.This work to the 
best of our knowledge does not yet exist in the 
literature. The OPEPs has not yet been 
extensively researched, hence works devoted to 
it are few. 
 
In this paper we investigate the effect of trixiality, 
radiation pressure with a P-R drag force and the 
potential of the belt on a test particle around the 
OPEPs in the framework of ER3BP.  
 
This paper is organized in 6 sections. The first 
section is introduction, the equations of motion 
are described in section 2, locations of 
equilibrium points can be found in section 3, 
while section 4 contains the linear stability 
analysis of the out-of-plane equilibrium points 
using numerical applications, section 5 is 
discussion and finally section 6 is conclusion.  
 

2. EQUATION OF MOTION  
 

The equation of motion of an infinitesimal particle 
in the ER3BP when the primaries are triaxial and 
radiating with a P-R drag force and a 
gravitational potential from the belt, in a 
dimensionless rotating coordinate system (ξ, η, 
ζ) are as follows: 
 

ξ" - 2η' =  ξ 

η" + 2ξ' = Ωη  
ζ" = Ωζ                                                        (1)  

 

Ω
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                                                          (4)  

 
The effect of the gravitational potential of the belt 
is expressed using a model that explains a 
flattened potential and which best describes the 
gravitational potential within a system given by 
[22] as: 
 

    ζ  = 
  

        ζ     

                               (5) 

  

r is the radial distance of the infinitesimal mass 

and is given by    =   +  , where   and   are 
the parameters which determine the density 
profile of the belt [22] and [23]    is the distance 
of any out-of-plane point from the origin and T is 
their sum, r1 and r2 are distances of the bigger 
and smaller primaries from the infinitesimal 

particle, respectively.q1 and q2 are their mass 

reduction factor (radiation factor),while          

and         denote their triaxiality, respectively. n 
is the mean motion, a and e are the semi major 
axis and the eccentricity of the elliptic orbits 
respectively. 
 

3. LOCATION OF OUT-OF-PLANE 
EQUILIBRIUM POINTS  

 

The equilibrium points of the infinitesimal mass is 
obtained if the equation ξ′ = η′= ξ′′ = η′′ = ζ′= ζ′′ = 
0 satisfies Equation of motion (1); they are the 
solutions of the system of equations. 
 

          . Hence we have:  

 

        
 

   
            

  
   

                     

   
  

              

   
    

   
                  

   
  

   + −1 2 23+ 3  + −12 3− 4 22 25−15  + −1 32 27 2 2− 15  + −1 3 2 22 27+   
  2+ + 2+ 2232+ 2η  22=0                                                                                                                                   
(5)  

            
       

 

   
       

  
   

                

   
  

             

  
    

              

   
    

  

 151−  1 1 22 17+   2 23+ 3 2 3− 4 22 25+3  3− 4 25 2−15  3− 42 27 2 2− 15  
 3 2 22 27+   2+ + 2+ 2232− 2( +µ−1)  22 = 0                                                                                             
(6)  
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Ωζ          
     

 

  
 

       

  
 

 
              

   
 

   
         

  
 

   
              

   
 

   
   

             

   
 

 

   2 23+ 3 2 3− 42 25 2+3  3 25 2−15  3− 42 27 2 2− 
15  3 2 22 27+    2+ 2−12+1 2+ + 2+ 223/2 = 0                            (7)  

 
The out-of-plane equilibrium points are the solution of above equations, when 
 

   ≠ 0,         ζ ≠ 0  
 
From (7) with ζ ≠ 0 we get: 
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Let   =         and   =    , then (8) becomes 
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Also from Equation (5) we write: 
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Expanding Equation (10) we obtained: 
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From (9) we have: 
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Substituting Equation (9) into Equation (11) and solving we obtained: 
 

     
 

     
      

  
  

     

  
  

   

              
 
 
     

             
  

     

              
 
 

 
 

    

 
 

  
   

      

  
 

 
     

  
 

 
             

  
     

              
 
 
      

  
 

  
  

  

  
 
  

           

   
 

 
      

  
 

  
     

  
 

  
        

   
 

  
             

  
     

              
 
 
     

   

   
     

 
  

  
  

           

   
  

           

  
  

       

  
   

        

   
    

               
  

     

              
 
 
    

   

   
   

i.e.                                                                               

    
      

  
  

     

  
  

   

              
 
 
       

            
  

     

              
 
 
     

 
Note that Q1 =     and this is factored out from the above equation to obtain equation 13 
  

       
 

  
  

         

   
  

      

  
  

     

  
   

      

   
   

             
  

     

              
 
 
     

   

   
  

                                                                                      

    
      

  
  

     

  
  

   

              
 
 
      

            
  

     

              
 
 
                                                 (13)  

  
Equation 13 is   represents coordinate x. 
 

We use the initial approximation           and                to obtain the positions of out-of-

plane points L6,7 numerically with the aid of the software package mathematica 10.4 in the form of 
power series to third order term in (2  -   ) from Equation (12) and (13) as: (see [6] and[9]): 
 

    
 

     
                                      

    
                          

       

 
 

     
                                                     

 
                     

3 2  2  1+2 1  2     1      2+2 2  1 3+6   

                      
            

             
 

                                                                  (14)  

  

                
                     

     
        

   

  
        

     
                        

            
 

                                                  (15) 

 
The equilibrium points (           given by equations (14) and (15) are called the out-of-plane 
equilibrium points. This is the solution of the out of plane equilibrium points. 
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4. LINEAR STABILITY OF OUT-OF-PLANE EQUILIBRIUM POINTS  
 

4.1 Variational Equation 
 
Let the positions of any out-of-plane points be denoted by (          and a small displacement from 

this position be denoted as (        having a new coordinates (                  in the 

neighbourhood of             
 
The variations can be written as: 
 

         =                                                                                                        (16) 
 
It has the velocity 
 

        ,    =       =    
 
and acceleration:  
 

          =       =    
 
Substituting these values into Equation (1) and expanding the R.H.S. by Taylor series we obtained the 
variational equation as: 
 

   2   ==         
  +           (               

           
           

   

   +     =         
  +        

   (                
 +          

           
  

          
           

    (     +           
 +          

            
                                       (17) 

 
We consider only linear terms in      . The second partial derivatives of   are denoted by subscript. 
The superscript 0,indicates that derivatives have been obtained at equilibrium point             
 

4.2 Characteristic Equation 
 
Let the trial solution be as follows: 
 

                 V     

   = P        = Q        = V     

   = P         = Q         = V       
 
then substituting these values into variational Equation (17) we get: 
 

P                    
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Multiplying through by      and rearranging we obtained the determinant as:  
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Expanding the determinant we have:  
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(18) 

 
Further expansion of Equation (18) yield the characteristic Equation: 
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The second partial derivatives evaluated at equilibrium point            as denoted by the superscript 
O are as follows: 
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5 2  +   2 3  42 207  35 2  +    3  22 209+ 15 2 3  2 207+3   02   02+ 2 12 
+1 02+ + 02+ 225/2                                               (20)  

  

5. NUMERICAL APPLICATION  
 
We present the effect of triaxiality, belt and 
radiation pressure on the locations (Eqns.14 and 
15) and stability (Equation 20) of OPEPs using 
arbitrary values In Tables 1- 4 , while in Tables 6-
9 the effects on the binary system (xi-Bootis and 

Kruger 60) are shown. The results in Tables 6-9 
were obtained by substituting the values of the 
orbital parameters (fixed) of the binary system 
(xi-Bootis and Kruger 60) and the varied values 
of triaxiality and radiation into (Equations 14 and 
15) and Equation 20 for the locations and 
stability respectively. 

 

 
 

Fig. 3. Graph showing the effect of triaxiality on the OPEPs of XI-Bootis 
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Table 1. The effect of Triaxiality on the location and stability of out-of-plane equilibrium points 

for   =0.3,   =0.87,           =0.9988,    =0.9977, Mb = 0.01, W2 =               
 

S/no Triaxiality Out-of plane points Roots of the characteristic equation 

            ξ                   

1.  0.00 0.00 0.00 0.00 0.521012 0.311723          120.2235           
2. 0.02 0.015 0.003 0.002 0.477810 0.269001                               
3. 0.03 0.019 0.004 0.003 0.49061 0.24443                       4.241001i 

4. 0.04 0.02 0.005 0.004 0.517438 0.219650                                 
5 0.05 0.03 0.006 0.005 0.539144 0.209341                             

 
Table 2. The effect of belt on the location and stability of out-of-plane equilibrium points for   

=0.3,   =0.87,           =0.9988,    =0.9977, W2 =               
 

S/no  Mb Out-of plane points Roots of the characteristic equation 

ξ                   

1 0.01 0.06735 0.741593   .364473 0.364473i  1.470823i  .364473 0.364473i 
2 0.02 0.04894 0.73965   .243416 0.765014i  14.51723i  .243416 0.765014i 

3 0.03 0.03646 0.72671   .459825 0.886517i  13.44601i  .459825 0.886517i 

4 0.04 0.03238 0.72136   .556463 0.876321i  11.52649i  .556463 0.876321i 

5 0.05 0.02671 0.71641   .524192 0.837649i  8.875206i  .524192 0.837649i 

 
Table 3. The Effect of radiaion pressure on the location and stability of out-of-plane 

                        =0.3, =0.87,       ,                                     
Mb= 0.01, W2 =               

 
S/ 
no 

Radiaion pressure Out-of plane points Roots of the characteristic equation 

      ξ                   

1 0.9960 0.9950 0.66735 0.412681   .54373 0.543728i  11.42462i  .54373 0.543728i 

2 0.9964 0.9954 0.67024 0.394326  3.24342  0.810034i  16.23703i 3.24342 0.810034i 

3 0.9968 0.9958 0.67646 0.343671  6.45986 0.886517i  27.42462i 6.45986 0.886517i 

4 0.9972 0.9962 0.68434 0.328763  10.5756 0.47632i  38.57823i 10.5756 0.47632i 

5 0.9976 0.9966 0.69101 0.310641  13.4140 0.357649i  45.41365i 13.4145 0.357649i 

 
Table 4. The Combined effect of the pertubations on the location and stability of out-of-plane 

                         = 0.3,  = 0.34 W2 =               
 

(a) 
 
S/no. Triaxiality Radiation factors Belt Mass ratio 

                   Mb   

1. 0.02 0.01 0.002 0.001 0.9980 0.9976 0.01 0.0375 
2. 0.03 0.02 0.003 0.002 0.9984 0.9980 0.02 0.0380 
3. 0.04 0.03 0.004 0.003 0.9988 0.9984 0.03 0.0385 
4. 0.05 0.04 0.005 0.004 0.9992 0.9988 0.04 0.0390 
5. 0.06 0.05 0.006 0.005 0.9996 0.9992 0.05 0.0395 

 
(b) 

 

out-of-plane        The characteristic roots 

ξ                   

0.633412 0.197065           19.2802            

0.633011 0.205634                             

0.632785 0.218767                     .5313i 

0.632145 0.224261                            

0.631004 0.234659                              
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Table 5. Numerical data for the Binary System 
 

Binary 
system 

Masses (Mʘ) Eccentricity (e) Semi-major axis (a) Luminosity 
Lʘ 

Spectral 
types 

M1 M2 L1 L2 

Xi Bootis 0.9 0.66 0.5117 4.9044 0.49 0.061 G8/k4 
Kruger 60 0.271 0.176 0.4100 2.3830 0.01 0.0034 M3/M4 

Source: NASA ADS 

 
Table 6. The effect of triaxiality on the location and stability of out-of-plane equilibrium points 

of xi-Bootis for   = 0.5117,   = 0.7304,   = 0.4231    = 0.9988,    = 0.9998, W2 =               
 
S/ 
no 

Triaxiality Out-of plane points Roots of the characteristic equation 

            ξ                   

1.  0.015 0.011 0.002 0.001 0.466010 0.275418  610.524 -173.012  

184.316  
173.012  

184.316  
2. 0.02 0.015 0.003 0.002 0.477810 0.269001  814.061 -175.981  

182.895  
175.981  

182.895  
3. 0.03 0.019 0.004 0.003 0.49061 0.24443  998.23 -174.887  

180.49  
174.887  

180.49  
4. 0.04 0.02 0.005 0.004 0.517438 0.219650  1627.48 -175.13  

176.832  
175.13  

176.832  
5. 0.05 0.03 0.006 0.005 0.539144 0.209341  1321.43 -173.39  

176.972  
173.39  

176.972  

 
Table 7. The effect of belt (Mb) on the location and stability of out-of-plane equilibrium points of 

xi-Bootis for   = 0.5117,   = 0.7304,   = 0.4231    = 0.9988,    = 0.9998.   =0.02,   =0.015, 

  =0.003,   =0.002, W2 =               
 

S/no Mb Out-of plane points Roots of the characteristic equation 

ξ                   

1 0.02 0.521012 0.211723    47.347306  113.5678             

2 0.03 0.513422 0.211965  47.748921                      

3 0.04 0.51200 0.221343   48.256439               4.241001 

4 0.05 0.51042 0.229867   48.84320                       

5 0.06 0.50964 0.239341    49.22418                        

 

 
 

Fig. 4. Graph showing the effect of the belt on the OPEPs of XI-Bootis 
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Table 8. The effect of triaxiality on the location and stability of out-of-plane equilibrium points 

of Kruger 60 for   = 0.4100,   = 0.5894,   = 0.3937   = 0.9992 and    = 0. 9996, W2 =         
      

 
S/No Triaxiality Out-of-plane points Roots of the characteristic equation 

            ξ                   

1.  0.02 0.002 0.002 0.001 0.946710 0.241070 -37.2193  

21.4739  
0 42.9477  
 

37.2193 21. 

47396  
2. 0.03 0.025 0.003 0.002 0.951193 0.216110 -38.567  

-22.0922i 

0 44.1875  
 

38.567  

22.0922i 
3. 0.04 0.035 0.004 0.003 0.958414 0.213279 -51.476  

28.7198  
0 57.5122  51.476  

28.7198  
4. 0.05 0.045 0.005 0.004 0.959130 0.207454 -100.461  

55.2628  
0 110.803  100.461  

55.2628  
5. 0.06 0.055 0.006 0.005 0.960314 0.204511 -154.48  

81.4207  
0 164.244  154.48  

81.4207  

 
Table 9. The effect of belt (Mb) on the location and stability of out-of-plane equilibrium points of 

Kruger-60 for   = 0.4100,   = 0.5894,   = 0.3937   = 0.9992 and    = 0. 9996 .   =0.02,   =0.015, 

  =0.003,   =0.002, W2 =               
 
S/no Mb Out-of plane points Roots of the characteristic equation 

ξ                   

1 0.01 0.321012 0.200534    54.223624  19.2802            
2 0.02 0.321342 0.201823   54.534534                    
3 0.03 0.321440 0.201944   54.655978            .5313i 

4 0.04 0.321452 0.202112   55.232720                    
5 0.05 0.3214634 0.202472    55.703529                     

 
 

 
 

Fig. 5. Graph showing the effect of triaxiality on the OPEPs of Kruger-60 
 

0.32 0.34 0.36 0.38 0.40

0.2

0.1

0.0

0.1

0.2



 
 
 
 

Singh and Isah; Int. Astron. Astrophys. Res. J., vol. 4, no. 4, pp. 49-64, 2022; Article no.IAARJ.94796 
 

 

 
62 

 

 
 

Fig. 6. Graph showing the effect of the belt on the OPEPs of Kruger-60 
 
In Table 5 we present the numerical data of the 
binary system xi-Bootis and Kruger 60. 

 
6. DISCUSSION  
 
The motion of a third body under the influence of 
triaxial and radiating primaries together with a 
circumbinary disc and a P-R drag force has been 
described in equation (1)-(4). The positions of 
out-of-plane equilibrium points are given in 
equations 14 and 15 and are first obtained 
analytically and then numerically by power series 
expansion about the triaxiality coefficient of the 
smaller primary in Equations 14 and 15 to third 
order term with the aid of the software 
MATHEMATICA 10.4.The stability of these 
points are obtained by solving the roots of 
Equation (19) numerically. The positions of out-
of-plane points and the characteristic roots 
obtained using arbitrary values for the 
parameters are shown in Tables 1-4 and Table 
6-9. The arbitrary values for the parameters were 
substituted into Equation (19) and solved 
numerically with MATHEMATICA 10.4.to get the 
roots seen in the Tables which are the 
eigenvalues of the characteristic Eqn. (19). 
 
We can see from the tables that the roots are 
either complex with both positive and negative 
real parts or purely real therefore the OPEPs are 
unstable. According to [24], EPs are stable only if 

the six roots    (i=1,2,3,4,5,6) are purely 
imaginary roots or complex roots with negative 
real parts and are unstable if    (i=1,2,3,4,5,6) 
are complex or real roots. 
 
Tables 1 and 2, shows that the point L6,7 shifts 
towards the line joining the primaries as the 
effects of triaxiality and belt are being increased 
respectively, while in Table 3 L6,7 is seen to move 
away from the line joining the primaries as the 
radiation factors were increased. The combined 
effects of all the parameters are shown in Table 
4.The arbitrary values assign to the parameters 
are shown in Table 4a. Table 4b shows their 
effects on OPEPs and its stability, In all cases 
the out-of- plane equilibrium points moves away 
from the ξ-axis when the values of the 
parameters were increased. The roots (    
(i=1,2,3,4,5,6)) in Tables 1-4 are complex or real 
roots,hence the OPEPs are unstable. The 
numerical data of the binary systems (xi- bootis 
and kruger-60) are shown in Table 5. The effects 
of triaxiality and the belt on the binary systems 
can be observed in Tables 6-9 and Figs. 3-6. 
These Tables and the graphs shows that 
increasing the values of triaxiality and belt, while 
keeping the orbital parametres of the Xi-bootis 
and Kruger-60 constant, results in a shift of the 
OPEPs. It can be seen in Table 6 that OPEPs 
shifts towards the ξ-axis this can be seen clearly 
in Fig. 3,this in contrast to the effect of the belt on 
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OPEPs of Xi-bootis in Table 7, where OPEPs 
shifts away from the the line joining the primaries 
(see also Fig. 4). The OPEPs in both Tables are 
unstable due to nature of their roots which are 
complex or real roots. The effects of triaxiality 
and the belt on Kruger-60 is similar to their 
effects on Xi-bootis. The effects of triaxiality 
moves the OPEPs towards the line joining the 
primaries (see Table 8 and Fig. 5), while the 
effect of the belt moves OPEPs away from the ξ-
axis (See Table 9 and Fig. 6).Similar to what we 
obtained in the case of xi-Bootis, the roots 
obtained for OPEPs of Kruger-60 are either 
complex or real as such OPEPs are unstable. 
The changes in the positions of OPEPs are as 
shown in the graphs (Figs. 2-6). The instability 
OPEPs have been confirmed by [6], and [9].  
 

7. CONCLUSION 
 
We have obtained the out of plane equilibrium 
points and their stability in the framework of 
ER3BP when the primaries are triaxial,radiating 
with P-R drag force and surrounded by a belt.It is 
found that the positions are affected by triaxiality, 
radiation and the belt.We found that for the 
binary systems the effect of triaxialty and the belt 
moves OPEPs in opposite directions-while the 
effect of triaxiality moves OPEPs towards the ξ-
axis,the belt moves OPEPs away from the ξ-axis. 
It was also observed that using arbitrary values 
and the values of the binary systems the OPEPs 
still remain unstable.Our OPEPs (Equations 14 
and 15) tally with that of [9] when             
and              
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