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Abstract: A computer program, MC-New, to calculate Newtonian aerodynamics is presented. The
aerodynamic coefficients of a geometry expressed by an analytic function are calculated in a Monte-
Carlo integration manner, in which the local forces on the randomly chosen sample points are
summed up. The verification study and the accuracy analysis show that the program can provide
good approximations of exact solutions. The example results of the parametric study on the Apollo-
like entry capsule geometry are presented, showing the potential capability of the MC-New program
as an efficient open-source tool for designing hypersonic vehicles.
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1. Introduction

It is known that the Newtonian theory gives a good approximation for the aerody-
namic coefficients of an object in the hypersonic flowfield with a high Mach number [1].
Under the Newtonian theory, pressure coefficients on a surface due to fluid impingement
can be calculated in a simple way; the pressure coefficients from the Newtonian theory
depend only on an angle between the flow direction and the surface’s normal direction,
and it does not need information on the flowfield around the surface. Of course, for accu-
rate predictions of the aerodynamic coefficients, it is necessary to simulate the flowfield
including physics that can alter the pressure distribution on the surface, such as viscosity,
thermal excitations, chemical reactions, and so on [2,3]. However, Computational Fluid
Dynamics computations considering these complex physics are generally time-consuming.
Even though the prediction accuracies are degraded, simpler methods, such as the Newto-
nian theory, are often preferred, particularly at the initial stage of designing a hypersonic
space vehicle.

When the geometries of the hypersonic space vehicles can be expressed by mathe-
matical functions, the total aerodynamic forces working on the capsule can be obtained
analytically by integrating the Newtonian pressure coefficients over the surface. However,
when the vehicle has an angle-of-attack against the freestream direction, the analytical
integrations become difficult, and the aid of numerical integration methods is needed [4,5].

There are some computational programs that employ Newtonian theory to calculate
the aerodynamics coefficients of hypersonic vehicles [6–9]. These programs calculate the
surface integral of the force by summing up the forces on triangular elements that spread
over the vehicle’s surfaces. Such panel methods usually require generating a computational
mesh system on the vehicle’s surfaces. One can have more accurate solutions when using
more finely resolved mesh systems that require larger storage memory size. Therefore, in
spite of the simplicity of the Newtonian theory, panel methods to calculate the Newtonian
aerodynamic coefficients still require a large working time to generate the computational
mesh system, and large computer memory to store the mesh point data. Moreover, in the
panel methods, it is difficult to clearly distinguish the areas visible and invisible from the
upstream when panels cross the boundary. It may cause inaccuracy in the results because
the different formulas of pressure coefficients should be used in the visible and invisible
areas under the Newtonian theory.
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In the present study, a computational program, MC-New, that calculates Newtonian
aerodynamic coefficients based on a meshless Monte-Carlo integration method, which
is free from a computational mesh generation procedure, has been developed. For a
combination of simple geometries, the total aerodynamic coefficients are calculated by a
superposition of coefficients for each geometry. The intersections between the different
geometries are automatically calculated in the program from the several parameters input
by users so that one can perform parametric studies of the geometric parameters more
effectively. The aerodynamic coefficients are evaluated as a sum of local pressure force
components on the sample points, which are randomly distributed on the surface. The
visibility from the upstream of the sample points is judged by the direction of the surface
normal vector, and the local pressure coefficients of the points are determined by the
Newtonian theory. Because the accuracy of the solutions depends on the total number of
sample points that are randomly chosen, one can simply improve the accuracy by adding
sample points on the existing results. In the paper, the mathematical formulation used in
MC-New is explained, and the developed code is verified by comparing the calculated drag
coefficients with the exact solutions for a sphere, a cone, a sphere-cone, and a cylinder. Then,
the developed code is further verified for a case of combined geometries with angle-of-
attacks, and the accuracy of the code is discussed. Lastly, as an example of the application
of MC-New program to a hypersonic vehicle design, a parametric study of the Apollo-like
geometry on the aerodynamic characteristics is presented.

2. Methods of Calculation
2.1. Aerodynamic Coefficients Based on Newtonian Theory

According to the Newtonian theory [1], when a fluid element impinges on the wall,
the fluid element loses the momentum component in the direction normal to the wall and
exerts a force on the wall whose magnitude is equivalent to the momentum loss, as shown
in the schematic in Figure 1.
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When the mass flow rate is
.

m and the freestream speed is V, the force Fn exerting on
the windward side of a flat plate is then given by

Fn wind = (
.

mV)n, (1)

and
Fn lee = 0, (2)

on the leeward wall because the flow does not go around according to the Newtonian
theory [1]. The normal component of momentum passing through an area A in a unit time
is given by

(
.

mV)n = ρV2
n A, (3)
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where Vn is the normal component of the velocity and given by the dot product of the
velocity vector V =

[
Vx Vy Vz

]t and the unit normal vector n = [nx ny nz]
t;

Vn = V · n. (4)

Then, the pressure on an inclined flat plate with the area of A in a flow with the
velocity V = [V 0 0]t parallel to the x-axis can be calculated by

p =
Fn

A
= ρV2[min(0, nx)]

2, (5)

in magnitude because the surface in the windward side has negative values of nx, and
when nx is positive, the pressure is zero. The pressure components in x, y and z direction
are then given by multiplying the normal vector by the pressure magnitude,

p = pn. (6)

The force exerted on an arbitrary three-dimensional surface can be calculated by
integrating the local pressure over the surface S,

F =
∫

S
pndA. (7)

Then, the drag and the lift coefficients are given by

CD =
Fx

1
2 ρV2 Aref

=
2

Aref

∫
S
[min(0, nx)]

2nxdA, (8)

CL,y =
Fy

1
2 ρV2 Aref

=
2

Aref

∫
S
[min(0, nx)]

2nydA, (9)

and
CL,z =

Fz
1
2 ρV2 Aref

=
2

Aref

∫
S
[min(0, nx)]

2nzdA, (10)

respectively.

2.2. Aerodynamic Coefficients on Surfaces with Pitch and Yaw Angle

Let a position vector of a point on a space vehicle’s body surface in the cartesian space
coordinate be expressed by

r = [x y z]t. (11)

Now, consider rotational transformations

R(α) =

cos α 0 − sin α
0 1 0

sin α 0 cos α

 (12)

and

R(β) =

cos β − sin β 0
sin β cos β 0

0 0 1

 (13)

where Ry(α) and Rz(β) are rotations about the y-axis and the z-axis and, respectively. When
a space vehicle is placed in the space coordinate with the pitch angle of α and the yaw angle
of β, as shown in Figure 2, the position vectors in the space coordinate are transformed into
vectors in the body-fixed coordinates by

r̃ = [x̃ ỹ z̃]t = Ry(α)Rz(β)r. (14)
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Conversely, position vectors defined in the body-fixed coordinates are expressed by

r = R−1
z (β)R−1

y (α)̃r (15)

in the space coordinate. Similarly, when the normal vector is given in the body-fixed
coordinates by

ñ = [ñx ñy ñz]
t, (16)

the expression in the space coordinate is

n = R−1
z (β)R−1

y (α)ñ, (17)

that is, nx
ny
nz

 =

 cos β sin β 0
− sin β cos β 0

0 0 1

 cos α 0 sin α
0 1 0

− sin α 0 cos α

ñx
ñy
ñz

. (18)

Then, the aerodynamic coefficients of the vehicle in the flowfield with the freestream
velocity, V = [V 0 0]t, can be obtained by substituting Equation (18) into Equations (8)–(10);

[CD, CLy , CLz ]
t =

2
Aref

∫
S
[min(0, nx)]

2[nx, ny, nz]
tdA. (19)

The local pressure and the local force vector in the body-fixed coordinate are given by

p̃ = pñ, (20)

and
dF̃ = pñdA, (21)

respectively, because the magnitude of local pressure does not change by the coordinate
transformation. Then, using the pressure expressed by Equation (5), the aerodynamic
coefficients for the forces in the three axis directions of the body-fixed coordinate, CA, CS,
and CN are calculated by

[CA, CS, CN ]
t =

2
Aref

∫
S
[min(0, nx)]

2[ñx, ñy, ñz]
tdA. (22)

Additionally, the moment coefficients about a point q̃ in the body-fixed coordinate can
be obtained by

C̃m =
1

1
2 ρV2 Areflref

∫
S
(̃r− q̃)× (pñ)dA, (23)

that is,

[Cm,x̃, Cm,ỹ, Cm,z̃]
t =

2
Areflref

∫
S
[min(0, nx)]

2[d̃x, d̃y, d̃z]
t × [ñx, ñy, ñz]

tdA (24)

where d̃ = r̃− q̃.
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2.3. Monte-Carlo Integration

Now, consider a surface in the body-fixed coordinate being expressed by a parametric
representation

r̃(η, ξ) = [x̃(η, ξ) ỹ(η, ξ) z̃(η, ξ)]t. (25)

Then, the normal vector of the surface in the transformed coordinates is given by

Ñ = [Ñx Ñy Ñz]
t
= r̃η × r̃ξ . (26)

Because the magnitude of the local normal vector does not change by coordinate
transformation, the integral Equation (7) can be written in terms of parameters η and ξ;

F =
∫

S
pndA =

∫ ∫
R

pn(̃r(η, ξ))|̃rη × r̃ξ |dηdξ, (27)

and the Equation (19) by

[CD, CLy , CLz ]
t =

2
Aref

∫ ∫
R
[min(0, nx)]

2[nx, ny, nz]
t |̃rη × r̃ξ |dηdξ, (28)

where AR is the area of the parametric domain given by

AR =
∫ ∫

R
dηdξ. (29)

To evaluate the integrals in Equation (26), the present study employs a Monte-Carlo
integration method; generate a sample point by a uniform random sampling in the para-
metric domain R, ηmin < η < ηmax and ξmin < ξ < ξmax, calculate the normal vector
on the sample points according to Equation (26), and then the integral Equation (28) is
approximately calculated by

[CD, CLy , CLz ]
t ≈ 2

Aref

AR
N

N

∑
i=1

[min(0, nx i)]
2[nx i, ny i, nz i]

t|Ni|, (30)

where N is the total number of sample points. The integrals in Equations (23) and (24) are
also evaluated similarly.
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2.4. Computation Process

The computation process flow chart of the MC-New program is shown in Figure 3. The
detailed descriptions of the usage are available in the document of Supplementary Materials.
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The flow of preprocessing is as follows. The geometry is divided into several blocks.
Each block is either a sphere, a cone, a shoulder (torus), a cylinder, or a circle. After reading
the number of blocks, the geometric parameters are read; the radius of the sphere, the
half-angle of the cone, and so on. The intersections between adjacent blocks are then
calculated, and the parameter ranges for surface integration are consequently determined.

Once the integration ranges are determined, the aerodynamics calculation process
starts. For each block, the aerodynamic coefficients are calculated as follows. Two param-
eters, η and ξ, are determined by uniform random number sampling to calculate a point
position vector expressed by Equation (25). The normal vector calculated for the sample
point is rotated by the input pitch and yaw angles according to Equation (18). If the rotated
normal vector has a negative value of x-coordinate, the point is classified as a visible point.
The local pressure vectors in Equations (6) and (20) are calculated for the visible points,
and the components are summed up for all the visible points. The sampling procedure
finishes when the number of sample points reaches the intended maximum value. Then,
the aerodynamic coefficients for the block are determined for the sums of the pressure
components according to Equation (30). The aerodynamic coefficients for the whole object
are calculated as the sums of the coefficients of the blocks. This trial is repeated for the times
that the user input. After each trial, cumulative averages of the coefficients are calculated.
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After finishing all the trials, the cumulative averages are taken as the final results of
aerodynamic coefficients and displayed as the results.

3. Results
3.1. Verification against Exact Solutions of Drag Coefficient for Simple Geometries

The developed code was verified by comparing the computed drag coefficient with the
exact solutions for simple geometries. The examined simple geometries are a sphere with
a diameter of 1 m, a cone with a base radius of 1 m and a half-angle of 45 deg, a cylinder
with a base radius of 1 m and the length of 1 m, and a sphere-cone with a base radius of
1 m, a nose radius of 0.5 m and a half-angle of 45 deg.

The drag coefficients in the hypersonic flow with Mach number of 10 are calculated
by using 3,000,000 sample points. The obtained drag coefficients are compared with the
analytical exact solutions in Table 1. For all the cases, the developed code predicts the
drag coefficients within 0.1% relative error compared to the exact solution. The pressure
coefficient distribution in Table 1 also shows that the sample points invisible from the
upstream are successfully identified.

Table 1. Comparisons of drag coefficients for various geometries and pressure coefficient distributions.

Geometry Sphere Cone Cylinder Sphere-Cone

Exact 1 1 1.3333 1.25
Present 0.9997 1.0000 1.3339 1.2499

Local Cp
(Hidden points

in grey)
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After finishing all the trials, the cumulative averages are taken as the final results of
aerodynamic coefficients and displayed as the results.

3. Results
3.1. Verification against Exact Solutions of Drag Coefficient for Simple Geometries

The developed code was verified by comparing the computed drag coefficient with the
exact solutions for simple geometries. The examined simple geometries are a sphere with
a diameter of 1 m, a cone with a base radius of 1 m and a half-angle of 45 deg, a cylinder
with a base radius of 1 m and the length of 1 m, and a sphere-cone with a base radius of
1 m, a nose radius of 0.5 m and a half-angle of 45 deg.

The drag coefficients in the hypersonic flow with Mach number of 10 are calculated
by using 3,000,000 sample points. The obtained drag coefficients are compared with the
analytical exact solutions in Table 1. For all the cases, the developed code predicts the
drag coefficients within 0.1% relative error compared to the exact solution. The pressure
coefficient distribution in Table 1 also shows that the sample points invisible from the
upstream are successfully identified.

Table 1. Comparisons of drag coefficients for various geometries and pressure coefficient distributions.

Geometry Sphere Cone Cylinder Sphere-Cone

Exact 1 1 1.3333 1.25
Present 0.9997 1.0000 1.3339 1.2499

Local Cp
(Hidden points

in grey)

3.2. Verification for a Case with Angle-of-Attacks

The program code has been further verified for the case that a blunted double-cone
is placed in a freestream with angle-of-attack shown in Figure 4. The test case was taken
from the work of Grant et al. [10], in which the Newtonian aerodynamic coefficients
are calculated by integration using Matlab software. Their results have been verified by
comparing them with the results from CBAERO code [11], which employs a panel method.
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The program code has been further verified for the case that a blunted double-cone
is placed in a freestream with angle-of-attack shown in Figure 4. The test case was taken
from the work of Grant et al. [10], in which the Newtonian aerodynamic coefficients
are calculated by integration using Matlab software. Their results have been verified by
comparing them with the results from CBAERO code [11], which employs a panel method.
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The pressure coefficient distributions calculated by MC-NEW are shown in Figure 5
for the case of the pitch angle of 10 deg and the yaw angle of 20 deg. In Figure 5, the visible
and hidden region in the view from the upstream is clearly divided, and the high-pressure
coefficient region appears on the windward side of the nose and the front cone where the



Aerospace 2022, 9, 330 8 of 14

normal vector makes small angles with the freestream. The number of visible points was
about 13 million, and the computation CPU time was about 2 s.

Aerospace 2022, 9, x 9 of 16 
 

 

3.2. Verification for a Case with Angle-of-Attacks 
The program code has been further verified for the case that a blunted double-cone 

is placed in a freestream with angle-of-attack shown in Figure 4. The test case was taken 
from the work of Grant et al. [10], in which the Newtonian aerodynamic coefficients are 
calculated by integration using Matlab software. Their results have been verified by com-
paring them with the results from CBAERO code [11], which employs a panel method. 

 
Figure 4. Schematic of a blunted double-cone geometry. 

The pressure coefficient distributions calculated by MC-NEW are shown in Figure 5 
for the case of the pitch angle of 10 deg and the yaw angle of 20 deg. In Figure 5, the visible 
and hidden region in the view from the upstream is clearly divided, and the high-pressure 
coefficient region appears on the windward side of the nose and the front cone where the 
normal vector makes small angles with the freestream. The number of visible points was 
about 13 million, and the computation CPU time was about 2 s. 

 
Figure 5. Pressure coefficient distribution on the blunted-cone surface calculated by the original 
Newtonian theory. 

The calculated axial, normal, and side force coefficients are compared with Grant’s 
result in Figure 6a, and the rolling, pitching, and yawing moment coefficients in Figure 
6b. The variations of coefficients according to the change in the pitching moment in the 
present results agree well with the Grant’s results. 

Figure 5. Pressure coefficient distribution on the blunted-cone surface calculated by the original
Newtonian theory.

The calculated axial, normal, and side force coefficients are compared with Grant’s
result in Figure 6a, and the rolling, pitching, and yawing moment coefficients in Figure 6b.
The variations of coefficients according to the change in the pitching moment in the present
results agree well with the Grant’s results.
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3.3. Accuracy Evaluation

To evaluate the aerodynamic coefficient prediction ability of the MC-NEW program
in terms of accuracy, the relation between the prediction error and the total sample point
number has been tested. Figure 7a shows the error decreasing history when increasing the
sample point number up to 1011, which are obtained from ten trials for predicting the drag
coefficient of a hemisphere. Because the Monte Carlo integration is a stochastic method
and the errors have deviations, it is difficult to know a clear relationship between the error
and the sample point number by several trials. As shown in the frequency histogram of the
error over 1000 trials in Figure 7b, the error distribution follows a normal distribution of a
black curve. Therefore, the deviations of the error have been evaluated by taking statistics
of 1000 trials with the various sample numbers between 104 and 109, and tabulated in
Table 2, and their fitting functions are also displayed in Figure 7a. It is generally known
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that the accuracy of the Monte Carlo integration increases proportionally to the reciprocal
of the square root of the sample number. This is the case and the standard deviations in
Table 2 are fitted roughly by the following expression;

σ =
0.8√

Nvisible
. (31)

By taking 3σ as a possible maximum absolute relative error, the relative error against
the analytical solution in the results from MC-NEW program is evaluated by

|εr,max| ≤
2.4√

Nvisible
, (32)

where Nvisible here should be the number of visible sample points that contribute to the
summation in Equation (30). According to Equation (32), MC-NEW has the capability to
predict the analytical Newtonian aerodynamic coefficients within the ±0.22% error with
the probability of 99.7% when one million sample points are used.

The accuracy of the prediction and the computational time are in a trade-off relation.
Rough standard computational CPU time as a function of a total number of sample points
is also shown in Figure 7a and Table 2, which are measured by using an Intel(R) Xeon(R)
Gold 5218R CPU with a clock rate of 2.10 GHz. The computational CPU time proportionally
increases with the sample point number. For practical use, sample point numbers from 106

to 108 seem to be a good compromise between the accuracy and the computational time.
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(a) The relation between the total sample point number and the relative error and the computational
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Table 2. Relations between total sample point number, parameters for normal distribution of the
error, and rough standards of computational CPU time.

Number of Mean Diviation CPU Time 1

Sample Points µ σ 2σ 3σ [s]

104 7.84 × 10−5 7.46 × 10−3 1.49 × 10−2 2.24 × 10−2 0.001
105 5.54 × 10−5 2.47 × 10−3 4.94 × 10−3 7.41 × 10−3 0.01
106 1.53 × 10−6 7.26 × 10−4 1.52 × 10−3 2.18 × 10−3 0.1
107 1.70 × 10−6 2.38 × 10−4 4.76 × 10−4 7.14 × 10−4 1
108 1.56 × 10−6 7.25 × 10−5 1.45 × 10−4 2.90× 10−4 10
109 4.75 × 10−7 2.26 × 10−5 4.52 × 10−5 6.78 × 10−5 100

1 The CPU time was measured by using a Intel(R) Xeon(R) Gold 5218R CPU@2.10 GHz.
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3.4. Example of Application: A Parametric Study of Nose and Shoulder Radius on Aerodyanmic
Performance of Apollo-like Entry Capsule

In order to show an example of the application of MC-NEW code to a conceptual study
of a space vehicle, a parametric study to examine the effect of nose and shoulder radius
on the aerodynamic performance of an Apollo-like entry capsule is performed. Here, the
Newtonian pressure coefficients are modified by multiplying correction factor considering
the pressure behind the shock wave [1]

1
γM2


[

(γ + 1)2M2

4γM2 − 2(γ− 1)

]γ/(γ−1)[
1− γ + 2γM2

γ + 1
− 1
], (33)

where M is the Mach number and γ is the specific heat ratio of the freestream.
The baseline test case is taken from Moss’s work [12] for the Apollo command module

capsule geometry shown in Figure 8. For the flowfield of Mach number of 30, the pressure
coefficient distributions calculated by MC-NEW are shown in Figure 9 for the case of
the pitch angle-of-attack of 60 deg. As shown in Figure 10, the variation of drag and lift
coefficients are the lift-to-drag ratio for the pitch angle-of-attack from −180 to 180 deg,
agreeing well with the values in Moss’s work.
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Figure 10. Comparisons between the present calculations and the results of Moss: (a) The variation
of the drag and the lift coefficients, and the lift-to-drag ratio against the angle-of-attack; (b) The
variation of the pitching moment coefficients about the center of gravity, and about the nose of the
capsule against the angle-of-attack.

Now, the parametric study is performed by varying the nose and the shoulder radius
in the range of 2 < RN < 7 m and 0.05 < Rsh < 1 m, respectively. The surface local pressure
distributions for selected cases are shown in Figure 11. It is shown that the connections
between the nose sphere, the shoulder, and the frustum cone are well defined for all the
cases. The obtained drag coefficients at 0-degree angle-of-attack and the maximum lift-
to-drag ratio are shown in Figure 12 as maps on the nose and the shoulder radius field.
It is shown that these aerodynamic coefficients increase as the nose radius increase but
decrease as the shoulder radius increases. It is also shown that aerodynamic coefficients
are insensitive to the shoulder radius when the nose radius is close to the fixed base radius,
Rb < 1.9558 m. Figure 13 shows the variation of the pitching moment about the fixed center
of gravity and of the stable trim angle when the nose and the shoulder radius are changed.
As seen in Figure 13a, the absolute peak values of the pitching moment as well as the
gradient of the moment with respect to the pitch angle decrease when the shoulder radius
increase. For the cases with a large shoulder radius, the stable trim angle cannot be found
in the range −90 < α < 90 deg, as seen in Figure 13b. It is shown that the absolute value of
trim angle increases with the shoulder radius increases and has a minimum value for the
nose radius variation.

As shown in this example, one can utilize the present MC-NEW code for the conceptual
design of a space vehicle.
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4. Discussion

The present Monte-Carlo-based method has the following advantages over the com-
monly used panel methods. First, users are free from the computational mesh generation.
From the input parameters of geometries, such as radius or half-angle, the program cal-
culates intersections between geometries. Therefore, parametric studies on geometries
can be performed more efficiently without consuming the time for mesh regeneration.
Secondly, the accuracy of the solutions is clear. The accuracy of the Monte-Carlo integration
is determined by a function of sample points, and the relation for the present program is
given by Equation (32). This program provides good approximations of exact solutions
when using enough sample points.

Although the physical accuracy of the Newtonian theory itself can be limited, the
program will be useful as a simple tool for designing hypersonic vehicles at the initial
design stage, for providing analytical solutions to be a reference for verifications of other
codes, and for producing massive data to apply data-science approaches.

Currently, the present program can treat axisymmetric convex surfaces expressed
by analytical functions, and the code will be extended for more general geometries in
the future.

5. Conclusions

The present study presents a computer program, MC-New, to calculate Newtonian
aerodynamic coefficients without generating computational mesh system. The surface
geometries of hypersonic vehicles are expressed by a combination of simple geometry given
in analytical functions, and the surface integral of the force is evaluated in a Monte-Carlo
manner; the force components of randomly distributed sample points are summed-up to
calculate aerodynamic coefficients. The developed code was verified against analytical
solutions and the results in the past literature. The accuracy analysis in terms of the repro-
duction of exact solutions unveiled that MC-NEW can predict the analytical Newtonian
aerodynamic coefficients within the ±0.22% error with the probability of 99.7% when one
million sample points are used. The computation time for a one million sample points
calculation is as short as 0.1 s. The presented program can be utilized as a simple tool for
designing hypersonic vehicles at the initial design stage as well as for providing reference
values for verification of the results by other means. The code will be further improved
to have capabilities for more complex geometries in the future. The current version of
MC-New is an open-source program released under the MIT license, and the Fortran code
can be downloaded as a Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/aerospace9060330/s1, MC-NEW_v2022.1.zip: Fortran code of MC-NEW v2022.1, the manual
of MC-NEW, example inputs and outputs.
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