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Abstract

Let (G, ∗) be a group and X any set, an action of a group G on X, denoted as G×X → X,
(g, x) 7→ g.x, assigns to each element in G a transformation of X that is compatible with the
group structure of G. If G has a subgroup H then there is a transitive group action of G on
the set (G/H) of the right co-sets of H by right multiplication. A representation of a group
G on a vector space V carries the dimension of the vector space. Now, given a field F and a
finite group G, there is a bijective correspondence between the representations of G on the finite-
dimensional F-vector spaces and finitely generated FG-modules. We use the FG -modules to
construct linear ternary codes and combinatorial designs from the permutation representations
of the group L3(4). We investigate the properties and parameters of these codes and designs.
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We further obtain the lattice structures of the sub-modules and compare these ternary codes
with the binary codes constructed from the same group.

Keywords: Ternary linear codes; simple groups; designs; linear groups.
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1 Introduction

In coding theory, a linear code is an error-correcting code for which any linear combination of
code-words is also a codeword. Error correcting codes have become an integral parts in the design
of reliable data transmissions and storage systems often due to the noise present that distorts the
transmitted information. Coding theory was pioneered by Claude Shannon after his seminal paper;
”A mathematical theory of communication” in 1948 (see [1]) and R.W. Hamming who wrote the
paper, ”Error detecting and error correcting codes” in 1950 (see [2]) where he provided the first
examples of error detecting and correcting codes. They introduced a relationship between coding
theory and information theory, two previously independent fields of mathematics.

Linear codes can be constructed from finite groups through the modular theoretic approach. The
associated permutation modules of the group over the field Fq are determined and thus the subsequent
maximal sub-modules. Each of the sub-modules is a q-ary code invariant under the group. This
method has been used in the enumeration of binary linear codes from several groups such as
PSU4(2), PSU3(3) and L3 (4) as seen in [3]. Further, linear codes can be generated from incidence
matrices of the combinatorial designs obtained from the primitive permutation representations
of finite simple groups. The combinatorial designs are usually generated from the orbits of the
stabilizers of the elements from the set that the group acts on. Some of the codes generated using
this approach are from the groups J1, J2 and Co2 (see [4, 5]).

The construction and classification of binary linear codes from simple groups seems to have received
more attention compared to the ternary linear codes as seen in [6, 7] among others. Our primary
reference works are the study of linear binary codes generated from the simple group L3 (4) (see[8,
9]). The projective special linear group L3 (4) is a classical simple group of order 20160 with nine
maximal sub groups of degrees 21, 21, 56, 56, 56, 120,120,120 and 280. In an attempt to bridge
the gap between the binary and ternary linear codes, we study the ternary linear codes that are
obtained from the 3-modular representation of the Group L3 (4)and compare our results with those
of the linear binary codes.

We construct the ternary linear codes from the primitive representation of the group L3 (4) under
the field GF(3). This method enables us to exhaustively enumerate all the ternary linear codes
from the maximal sub-modules of the maximal subgroups of L3 (4) as well as classify them. We
further determine the relationship between these ternary linear codes and the combinatorial designs
obtained from the support of the code words of the ternary linear codes obtained from the group.
Due to their sizes, we work on the maximal subgroups of the degrees 21, 56 and 120. We also
present the obtained lattice diagrams which shall provide an insight to the internal properties of L3

(4).

2 Fundamental Principles

A simple group G is a group with no proper normal subgroups. In 1982, the finite simple groups
were classified into four categories; cyclic groups of prime power order, alternating groups of degree
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at least five, the Chevalley and twisted Chevalley groups and the 26 sporadic groups [10]. The
Chevalley and twisted Chevalley groups, also referred in some cases as the classical groups and
groups of Lie type are further classified into; linear, unitary, orthogonal and symplectic groups.
The linear group, also referred to as the General Linear Groups, denoted GL(V) is the group of all
endomorphisms on a vector space V over a field F under addition and composition of maps. The
special linear group SL(n,q) is the group of all invertible n× n linear matrices with determinant 1.
The projective special linear group, PSL(n,q) is the quotient group of the special linear group and
its center, that is

PSL(n, q) = SL(n, q)/Z(SL(n, q))

Given a set X, either finite or infinite, a transformation of X is a bijective self-map f : X → X .
Such a bijective self-map is called a permutation or an automorphism of X. The collection of all
such transformations form a group under composition called the Automorphism group denoted as,
AutX = f : X → X|f is bijective. Let (G, ∗) be a group and X any set. An action of a group G
on X is a map: G × X → X, (g, x) → g.x which satisfies: g1.(g2.x) = (g1 ∗ g2).x for all g1, g2 ∈ G
and all x ∈ X and e,g:x = x for all x ∈ X. If G has a subgroup H then there is a transitive group
action of G on the set (G \H) of the right cosets of H by right multiplication. From this it follows
that the study of transitivity is equivalent to that of coset spaces.

A permutation group G is transitive on Ω if for all α, β ∈ Ω, there exists an element g ∈ G such
that the image αg of α under g is equal to β. The regular representation of a group G is the
permutation representation induced by the action of G on itself by left multiplication. The regular
representation of a group G over a field F corresponds to viewing FG as a module over itself with
the usual left multiplication. Let F and L be finite fields, then, L is an extension field of F if and
only if F ⊆ L [11]. We denote the field extension by L/F. An irreducible FG -module over a field
F is said to be absolutely irreducible if it is irreducible for any extension field L/F. Any proper
sub-module of a finitely generated module is contained in a maximal sub-module.

A linear code generated by a k × n generator matrix G is called an [n, k] code. The elements of
a code C are called the code words of the code. A linear code of dimension k contains precisely
qk code words. If all the code words are sequences of the same length n, then C is called a block
code of length n. For a code C, the dual code C⊥ = {g|g · x = 0 ∀x ∈ C}. A linear code C
is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. Ternary codes are defined over the field
F3. The Hamming distance of a code d(u, v), u, v ∈ C is the number of positions in which the
entries of two code words in a code differ. The weight of a codeword, denoted as w(x) for x ∈ C
is the number of non-zero co-ordinates in the code words. The minimum weight is equal to the
minimum distance among all non-zero codewords. If C is a linear code of length n over Fn

q then any
isomorphism of C onto itself is called an automorphism of C. The set of all automorphisms of C is
called automorphism group of C, denoted by Aut(C).

If D is a (v; k, λ) design, then the b× v matrix A = (aij) where

aij =

{
1, if the i-th block contains j;
0, otherwise.

(2.1)

is called an incidence matrix of the design. A design is trivial if every k − set of points is incident
with a block of the design. It is called simple if distinct blocks are not incident with the same set
of k points, self dual if it is isomorphic to its dual and symmetric, if b = v, i.e., its incidence matrix
is a square matrix.
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3 Construction and Preliminary Results

In this section, we present existing lemmas and theorems that we use in our work and discuss the
methods of constructions used.

Theorem 3.1. (see [12]) Any transitive action of a group G on a subgroup H is equivalent to the
action of G by left multiplication on a coset space G=H.

Theorem 3.2. (See [13]) If F is a field and G a finite group, then there is a bijective correspondence
between finitely generated FG -modules and representations of G on finite dimensional F -vector
spaces.

Theorem 3.3. (Maschke’s theorem) Let G be a finite group and F a field whose characteristic is 0
or a prime p that does not divide the order of G. Then every FG -module V is completely reducible
i.e if V is an FG-module and U any submodule of V, then there exists a submodule W of V such
that V = U ⊕W . In particular, the algebra FG is semi-simple. (See Proof in [14])

Theorem 3.4. (Krull-Schmidt Theorem) Every module M can be written as M= M1 ⊕ M2 ...
⊕...⊕Mn where Mi are indecomposable. Furthermore, if M = M1 ⊕ M2 ⊕ ... ⊕ Mn and also
M = N1 ⊕N2 ⊕ ...⊕Np where Nj are also indecomposable, then n = p and the Mj are isomorphic
to the Nj , in some order. (See Proof in [15])

Lemma 3.5. Let C be a code over F3, every codeword of C has weight divisible by 3 if and only if
C is self orthogonal.

Theorem 3.6. (See [16] Theorem 5.2.5) Let D be a self-dual 1- design obtained by taking all the
images under G of a non-trivial orbit △ of the point stabilizer in any of G′s primitive representations
and on which G acts primitively on points and blocks, then the automorphism group of D contains
G.

Theorem 3.7. (see [16]Theorem 5.2.6) If C is a linear code of length n of a symmetric 1− (v; k, λ)
design D over a finite field Fq, then the automorphism group of D is contained in the automorphism
group of C.

Lemma 3.8. . Let G be a finite group and Ω a finite G-set, then the Fq G- submodules of F are
precisely the G-invariant codes (i.e., G-invariant subspaces of F.) Proof. see [5]

Lemma 3.9. If C is a code, then C is invariant under the group G if and only if G ⊆ AUT (C)
Proof. See[17]

From the Lemma 3.9 above, it follows that, suppose G is a group, given a representation of the
group elements of the group G by permutations, we can work modulo 3 to obtain a representation of
the group G on a vector space V over the field F3. The invariant subspaces are then all the ternary
linear codes C for which G is a subgroup of Aut(C). Let G be a permutation group of degree n
and V the corresponding F3 permutation module, the sub-modules of V are called the G-invariant
ternary codes.

3.1 Construction method 1

This method is described in [5]. Let G be a permutation group on a finite field F, the G-invariant
sub-modules of F can be regarded as linear codes in F (see Lemma 3.8).

Lemma 3.8 sets the baseline for this method where all the sub-modules of the permutation module
are required. The decomposition of the permutation module over a field follows from Maschke’s
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Theorem in which case, it can be written as a sum of its irreducible sub-modules. An application
of Krull-Schmidt’s Theorem further shows that the module of a finite length can be written as a
direct sum of indecomposable sub-modules and this decomposition is unique up to isomorphism
and the order of the summands. In view of the mentioned results, this method was used in the
study of the binary codes generated from L3(4) (see[5]). Further, using this method, all the binary
codes from the permutation representations of the groups PSU4(2) and PSU3(3) obtained have
been completely characterized by Brooke, (see[3]).

Given a permutation group G acting on a finite set Ω and ρ: G → GL(V ) where ρ(g)(x) = g(x) with
g ∈ G and x ∈ V , we follow the following steps: First we recognize F3Ω as a permutation module
and using Meat-Axe, we find all the maximal F3Ω-submodules. The non-isomorphic sub-modules
are then used to determine the lattice diagrams of the permutation module. The sub-modules are
the G-invariant codes and therefore, we check their isomorphic and equivalent copies. This method
enables us to enumerate all the ternary linear codes obtained from this group. However, one of its
shortcomings is that we are unable to find the minimum weights and automorphism groups of the
codes with large dimensions.

3.2 Construction method 2

This method of constructing linear codes from groups is described in [18,19]. In this method we
construct combinatorial designs from the orbits of the stabilizers of elements from the set that the
group acts on. From the incidence matrices of these designs we are able to construct linear codes
under various fields Fq. This Method described by Key and Moori[18] is described by the Theorem
and Lemma below.

Theorem 3.10. 1 Let G be a finite primitive permutation group acting on the set Ω of size n.
Let α ∈ Ω and let △ ̸= α be an orbit of the stabilizer Gα of α. If B =△g: g ∈ G and, given
δ ∈△, ϵ = α, δg : g ∈ G, then D = (⊕, β) forms a 1 - (n, | △ |, | △ |) design with n blocks with G
acting as an automorphism group primitive on points and blocks of the design.

Proof. (see [18]). The group G acts transitively on X and hence it is a 1-design with [G : G△] blocks.
Since △ is an orbit of Gx, Gx ⊆ G△ and given that G is primitive on X, we have Gx is maximal
in G, hence Gx = G△, therefore, the number of blocks is n. Further, let g, g′ ∈ G. Consider △g

and △g
′
two blocks of D, hence G is transitive on the blocks. If δg ∈△g, then G ⊆ Aut(D) and the

result follows.

Lemma 3.11. If the group G acts primitively on the points and the blocks of a symmetric 1-design
D, then the design can be obtained by orbiting a union of a point stabilizer.

Proof. Suppose G acts primitively on points and blocks of the 1 -(v, k, k) design D, let β be the
block set of D, then if β is any block of D, β = βG. Thus |G| = |β||Gβ | and since G is primitive,
Gβ is maximal and thus Gβ = Gα for some point. Thus Gα fixes β, so this must be a union of
orbits of Gα.

We use the above 2 construction methods to enumerate the ternary linear codes and combinatoric
designs from L3(4). We also discuss the comparison between the binary and ternary linear codes
obtained from this group.

4 Ternary Linear Codes Invariant under L3(4)

The group L3 (4) is a non abelian finite simple group of order 20,160. It is the group of all 3 ×3
non singular matrices of dimension 1 over F4 and a subgroup of 15 sporadic simple groups. It has

5



Kariuki et al.; ARJOM, 15(4): 1-17, 2019; Article no.ARJOM.52223

a rich geometric structure that enables study of the interplay between the codes and combinatoric
designs. Table 1 below represents the primitive representations as provided in the Atlas of Finite
Groups (See [9]).

Table 1. Maximal Subgroups of L3(4)

No. Degree Maximal Subgroups No. of. orbits Orbit length

1 21 24: A5 2 1, 20
2 21 24: A5 2 1, 20
3 56 A6 3 1, 10, 45
4 56 A6 3 1, 10, 45
5 56 A6 3 1, 10, 45
6 120 L3(2) 4 1, 21, 42, 56
7 120 L3(2) 4 1, 21, 42, 56
8 120 L3(2) 4 1, 21, 42, 56
9 280 32 : Q8 8 1, 9, 18(3), 72(3)

4.1 Codes and designs using construction method 1

Using this method, we obtain the FqG-sub-modules of F which shall be the G-invariant codes and
with the help of Meataxe, we compute the irreducible representations of L3(4). We enumerate all the
non trivial ternary linear codes generated from the maximal sub-groups of dimensions 21, 56 and 120.
Every conjugacy class of maximal sub groups of L3(4) contains a permutation module over the field
GF3. From these permutation modules, we generate a chain of maximal sub modules recursively as
every maximal sub-module represents a ternary linear code. This process terminates after obtaining
an irreducible sub-module. We then determine the equivalence of the codes represented by these sub-
modules since the dimensions of the sub-modules are those of our codes. Excluding the isomorphic
copies, we enumerate and classify all the non trivial ternary linear codes invariant under L3(4).

4.2 A 21 dimensional representation

The group G acts primitively as a rank 2 group of degree 21 on each of the orbits 24 : A5 with
orbits of lengths 1 and 20. The module of dimension 21 splits into two absolutely irreducible
constituents of dimensions 1 and 19 over GF3 with multiplicities 2 and 1 respectively. It has only
one irreducible maximal sub-module of dimension 1. This is an absolutely irreducible sub module.
The 21-dimensional module has one maximal sub- module of dimension 20. This 20-dimensional
module has one maximal irreducible sub module of dimension 1.

Remark 4.1. The ternary linear codes obtained from MAGMA using these maximal sub-modules
are all trivial unlike the 8 non-trivial binary codes generated from the same representation as seen
in [8].

4.3 A 56 dimensional representation

As can be observed from table 4, the group G acts primitively as a rank 3 group of degree 56 on
each of the orbits A6 with orbits of lengths 1, 10 and 45. The permutation Module of dimension
56 has only two irreducible sub modules of dimensions 1 and 19. It splits into three absolutely
irreducible constituents of dimensions 1, 15 and 19 with multiplicities 3, 1 and 2 respectively. We
recursively find all maximal sub-modules of each module, terminating the process after obtaining
an irreducible maximal sub-module. The 56-dimensional permutation module has two maximal sub
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modules of dimensions 37 and 55. The 55-dimensional module has one maximal sub module of
dimension 36. The 37 dimensional module has 14 maximal sub-modules, one of dimension 22 and
thirteen of dimension 36. From all the 36 dimensional sub modules, 5 of them are non isomorphic.
Each of the five non-isomorphic 36-dimensional sub modules has five maximal sub modules; one of
dimension 21 and four of dimension 35. From all the 35 dimensional sub modules, 5 of them are
non isomorphic.

The module of dimension 22 has thirteen maximal sub modules, each of dimensions 21. From all the
21 dimensional sub modules, five are non isomorphic. Each of the 35 dimensional modules has two
maximal sub modules, one of dimension 20 and another of dimension 34. All the 34 dimensional sub
modules are isomorphic. Each of the five 21 dimensional modules has four 20 dimensional maximal
sub modules from which five of them are non isomorphic. Of the five modules of dimension 20,
four have one maximal sub module of dimension 19 which is irreducible. The remaining one has
two irreducible maximal sub modules each, one of dimension 1 and the other of dimension 19. The
module of dimension 34 has one irreducible maximal sub module of dimension 19. We therefore
obtain 26 maximal sub modules from this permutation module. These are of dimensions;1, 19, 20,
20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 34, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 37 and 55. This
information is represented in the lattice diagram below.
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Fig. 1. 56-dimensional lattice diagram

4.4 Ternary linear codes from a 56 dimensional representation

From the sub-modules listed above, we obtain 16 non trivial ternary linear codes invariant under

L3(4) and their respective duals. In the tables below, we indicate the codes generated, denoting

them as C56,i and their duals as C⊥
56,i for i = 1, 2, · · · , 16 respectively.
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Table 2. Ternary linear codes of length 56

C56,i Code [n,k,d] Code Dual Codes [n,k,d] Code

C56,1 [56, 19, 18]3 C⊥
56,1 [56, 37, 7]3

C56,2 [56, 20, 16]3 C⊥
56,2 [56, 36, 7]3

C56,3 [56, 20, 18]3 C⊥
56,3 [56, 36, 8]3

C56,4 [56, 20, 14]3 C⊥
56,4 [56, 36, 8]3

C56,5 [56, 20, 18]3 C⊥
56,5 [56, 36, 7]3

C56,6 [56, 20, 18]3 C⊥
56,6 [56, 36, 8]3

C56,7 [56, 20, 11]3 C⊥
56,7 [56, 36, 8]3

C56,8 [56, 20, 16]3 C⊥
56,8 [56, 36, 7]3

C56,9 [56, 21, 16]3 C⊥
56,9 [56, 35, 8]3

C56,10 [56, 21, 11]3 C⊥
56,10 [56, 35, 8]3

C56,11 [56, 21, 11]3 C⊥
56,11 [56, 35, 8]3

C56,12 [56, 21, 14]3 C⊥
56,12 [56, 35, 8]3

C56,13 [56, 21, 14]3 C⊥
56,13 [56, 35, 8]3

C56,14 [56, 21, 16]3 C⊥
56,14 [56, 35, 7]3

C56,15 [56, 21, 11]3 C⊥
56,15 [56, 35, 8]3

C56,16 [56, 22, 11]3 C⊥
56,16 [56, 34, 8]3

We also provide a partial listing of their weight distributions, their properties and the Automorphism

group of every non-trivial ternary linear code invariant under L3(4) in the tables below.

Table 3. Weight distributions of the codes from a 56-dimensional representation

Table 4. Continuation of table 3
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Table 5. Continuation of table 4

Table 6. Continuation of table 5

Table 7. Continuation of table 6

Name 53 54 55 56

C56,1 5320

C56,2 5320 672

C56,3 10360

C56,4 3360 5320 564

C56,5 5320 252

C56,6 5320

C56,7 18480 5320 548

C56,8 5340

C56,9 10360 672 252

C56,10 21840 5320 1344 1112

C56,11 18480 10360 1052

C56,12 3360 5320 1068

C56,13 3360 15400 564

C56,14 5320 672 504

C56,15 18480 5320 548

C56,16 21840 15400 1344 2120
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Table 8. Weight distributions of the dual codes from a 56-dimensional representation

Name dim 0 7 8 10 11 12 13 14 15

C⊥
56,16 34 1 630 13104 206640 362880 3679200 16813440

C⊥
56,15 35 1 3150 29232 40320 430920 1370880 10827360 52069248

C⊥
56,14 35 1 630 13104 2352 433440 992880 9388800 50652000

C⊥
56,13 35 1 630 13104 28224 246960 1078560 10257120 49815360

C⊥
56,12 35 1 630 13104 10080 378000 1139040 8830080 50790096

C⊥
56,11 35 1 630 23184 13440 37290 1824480 10315440 52043040

C⊥
56,10 35 1 630 17136 549360 1411200 10231200 52657920

C⊥
56,9 35 1 240 630 14784 5040 315000 1370880 9046800 49322448

C⊥
56,8 36 1 3150 29232 99120 738360 3432240 29692800 151911648

C⊥
56,7 36 1 630 23184 61824 756000 4092480 2795120 152998272

C⊥
56,6 36 1 630 17136 22512 1118880 3593520 26242560 154449792

C⊥
56,5 36 1 240 630 18816 43344 869400 3911040 27327600 152145504

C⊥
56,4 36 1 240 3150 30912 65520 882000 3931200 26496720 152531568

C⊥
56,3 36 1 480 630 26544 25872 816480 4470480 267602240 150899616

C⊥
56,2 36 1 3150 47376 563760 1282680 4929120 30567600 158987808

C⊥
56,1 37 1 480 3150 50736 162980 2492280 12111120 80771760 459754848

Table 9. Continuation of table 8

Name 16 17 18 19 20 21

C⊥
56,16 90852300 403945920 1785733320 7067128320 26258710212 89888334624

C⊥
56,15 268104690 1220546880 5335324680 21227330880 78794205588 269657119008

C⊥
56,14 262607436 1226504160 5313471240 21281027040 78784631436 270051593184

C⊥
56,13 264383532 1214897040 5334105000 21265735680 78806918484 269900138160

C⊥
56,12 262563084 1228132080 5324967480 21276712800 78729719292 270096257376

C⊥
56,11 266644476 1231826400 5325385800 21229115040 78692697804 269898554592

C⊥
56,10 269917452 1226252160 5323521000 21220476480 78720552036 269796024864

C⊥
56,9 263806746 1224447840 5333817720 21279012720 78767847396 269860159152

C⊥
56,8 786922290 3665007360 15959805960 63838444320 236416543356 809843984640

C⊥
56,7 783597276 3691149840 15952225800 63846891360 236182924236 810326203632

C⊥
56,6 785094156 3697182720 15929727240 63853544160 236188491420 810375128928

C⊥
56,5 788113914 3681891360 15959211240 63840552720 236248906572 809987575680

C⊥
56,4 784480704 3689421120 15961877400 63858684240 236245360932 810044789040

C⊥
56,3 784308504 3695388480 15949292520 63866782560 236236893396 810005462208

C⊥
56,2 802027170 3693039840 15950552520 63696013920 236151876828 809482719456

C⊥
56,1 2353596798 11075248800 47828139240 191569234080 708676525284 2430444925152
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Table 10. Properties of the codes and their duals

Remark 4.2. From the results in the tables above, we make the following deductions;

(i) There are no self-dual ternary codes invariant under L3(4) as is the case in binary codes.

(ii) L3(4) is not realized as a full Automorphism group of any code.

(iii) C56,1 ⊂ C56,7 ⊂ C56,11 ⊂ C56,16 , C56,1 ⊂ C56,8C56,1 ⊂ C56,7 ⊂ C56,10 ⊂ C56,15.

(iv) C56,3 ⊂ C56,11 , C56,2 ⊂ C56,14 and C56,6 ⊂ C56,12.

(v) C56,5 ⊂ C56,9

Our results are summarized below.

Theorem 4.1. Let C56,i denote the ternary codes for i = 1, 2, ..., 16 and C⊥
56,i their respective

duals for i = 1, 2, · · · , 16. Then,

(i) The linear ternary code C56,1 is a [56, 19, 18]3 self-orthogonal irreducible code. It is not optimal
and is at a distance of 3 from optimal. Its dual is the [56, 37, 7]3 code.

(ii) C56,3 is a [56, 20, 18]3 self -orthogonal code whose automorphism group is L3(4) : 22. It is
not isomorphic to C56,6 that has the same properties.

(iii) The Automorphism group of the codes C56,i for i := 1, 4, 7, 8, 10, 13, 15 and 16 is L3(4).2
3.

(iv) The Automorphism group of the codes C56,i for i := 2, 3, 6, 11, 12 and 14 is L3(4).2
2.

(v) The Automorphism group of codes C56,i for i := 5 and 9 is L3(4).2.

Proof. Case (i) The code words of the code [56, 19, 18]3 have weights all divisible by 3 as can
be observed in tables 3, · · · , 7. It ia also clear from the weight distribution tables above that the
weights of these code words are divisible by 3. But, it well known(cf.[13]) that a ternary code is self
orthogonal if the weight of all the code words are divisible by 3. It follows that [56, 19, 18]3 is self
orthogonal. From the Grassl tables, the optimal ternary linear code of length 56 and dimension 19
has a minimum weight of 21 (see [20]). From this, we conclude that [56, 19, 18]3 is a not optimal
and is at a distance of 3 from the optimal. The code [56, 19, 18]3 is represented by the maximal
sub-module of dimension 19. This maximal sub-module is irreducible as it decomposes into the
trivial 1 and 0 dimensional sub-modules. The code [56, 19, 18]3 is therefore irreducible.

Case (ii) The linear code C56,3 has code words with weights all divisible by 3 from the weight
distribution provided above. Similarly, it follows that C56,3 is self orthogonal. The Automorphism
Group of C56,3 has order 80640 = 22 × 20160. The composition factors of this automorphism group
are two cyclic groups of order 2 and a primitive group of order 20160. The code C56,3 is invariant
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under L3(4) and hence by a result in [8], L3(4) ⊆ Aut(C56,3). On the other hand, the code words of
C56,6 have weights all divisible by 3 hence C56,6 is also self orthogonal. The Automorphism Group
of C56,6 has order 80640 = 22× 20160. The composition factors of this automorphism group are
two cyclic groups of order 2 and a primitive group of order 20160, similar to that of C56,3. The
code C56,6 is invariant under L3(4) and hence L3(4) ⊆ Aut(C56,6). We thus conclude that the
Aut(C56,3) = Aut(C56,6) ∼= L3(4).2

2.

Case (iii) From table 10, the order of the automorphism groups of the codes C56,i for i =
1, 7, 8, 10, 13, 15 and 16 is 161,280. We obtained the composition factors of this group of order
161,280 to be three cyclic subgroups of order 2 and a primitive group of order 20160 fromMAGAMA.
Since these codes are all invariant under L3(4), it follows that L3(4) ⊆ Aut(C56,i) for i = 1, 7, 8,
10, 13, 15 and 16. Therefore, Aut(C56,i) = L3(4).2

3 for the cited cases.

Case (iv) Let G be the automorphism group of the codes C56,i for i := 2, 3, 6, 11, 12 and
14. Computations from magma show that the automorphism groups of these codes have an
order of 161280 and are isomorphic. As proved in part (iii) above, the composition factors of
this automorphism group are two cyclic groups of order 2 and a primitive group of order 20160.
These codes are invariant under L3(4) and hence L3(4) ⊆ Aut(C56,i). We thus conclude that the
automorphism group is L3(4).2

2.

Case (v) Follows a similar fashion used in proofs of parts (iii) and (iv) with modifications. Thus,
Aut(C56,i) = L3(4).2 for i=5,9.

4.5 Ternary linear codes of length 120 invariant under L3(4)

From table 1 and the Atlas of Finite groups, the group L3(4) acts primitively as a rank 4 group of
degree 120 on each of the orbits L3(2) of lengths 1, 21, 42 and 56. The 120 dimensional permutation
Module splits into three absolutely irreducible constituents of dimensions 1, 15, 15, 15 and 19 with
multiplicities 3, 2, 1, 1 and 3 respectively. It has only two irreducible sub modules of dimensions 1
and 15. These are absolutely irreducible sub modules. The 120-dimensional permutation module
has two maximal sub modules of dimensions 105 and 119. The 105 dimensional module has 2
maximal sub modules, one of dimension 86 and another of dimension 104. The 119-dimensional
module has two maximal sub modules one of dimension 100 and the other of dimension 104. The 104
dimensional sub modules are isomorphic. The 86 dimensional module has 6 maximal sub-modules,
the 100 dimensional module has 2 maximal sub-modules while the 104 dimensional module has 4
maximal sub-modules. From these sub-modules, we have two non-isomorphic 71 dimensional ones,
4 pairs of 85 dimensional isomorphic sub-modules, and one 99 dimensional sub-module. Working
recursively, we get 67 non isomorphic sub modules of the dimensions as follows; 1, 15, 16, 20, 21,
34, 35(7), 36(2), 49(2), 50(8),51(2), 54, 55(4), 56, 64, 65(4), 66, 69(2), 70(8), 71(2), 84(2), 85(7),
86, 99, 100, 104, 105 and 119. From these maximal sub-modules, the non trivial codes obtained are
of dimensions 15, 16, 20, 21, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 49, 49, 50, 50, 50, 50, 50, 50, 50,
50, 51, 51, 54, 55, 55, 55, 55, 56 and their respective duals. Figure 2 below illustrates the lattice
diagram of the maximal sub-modules.

From the maximal sub-modules, we obtained 32 non trivial ternary linear codes up to isomorphism
invariant under L3(4) as well as their respective duals. In the tables below, we indicate the codes
generated, denoting them as C120,i and their duals as C⊥

120,i for i = 1, 2, · · · , 32 respectively. Due to
the large dimensions of some of these codes, we did not manage to find the minimum distance of all
the codes. We provide a partial listing of their weight distributions, and the properties obtained.
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Fig. 2. 120 degree subgroup lattice diagram

Table 11. Codes of dimension 120 and their duals

C120,i C⊥
120,i C120,i C⊥

120,i

C120,1 [120, 15, 48]3 C⊥
120,1 [120, 105]3 C120,17 [120, 50]3 C⊥

120,17 [120, 70]3
C120,2 [120, 16, 48]3 C⊥

120,2 [120, 104]3 C120,18 [120, 50, 16]3 C⊥
120,18 [120, 70]3

C120,3 [120, 20, 30]3 C⊥
120,3 [120, 100, 6]3 C120,19 [120, 50]3 C⊥

120,19 [120, 70]3
C120,4 [120, 21, 30]3 C⊥

120,4 [120, 99, 6]3 C120,20 [120, 50]3 C⊥
120,20 [120, 70]3

C120,5 [120, 34, 24]3 C⊥
120,5 [120, 86]3 C120,21 [120, 50]3 C⊥

120,21 [120, 70]3
C120,6 [120, 35, 30]3 C⊥

120,6 [120, 85]3 C120,22 [120, 50]3 C⊥
120,22 [120, 70]3

C120,7 [120, 35, 15]3 C⊥
120,7 [120, 85]3 C120,23 [120, 50]3 C⊥

120,23 [120, 70]3
C120,8 [120, 35, 15]3 C⊥

120,8 [120, 85]3 C120,24 [120, 50]3 C⊥
120,24 [120, 70]3

C120,9 [120, 35, 24]3 C⊥
120,9 [120, 85]3 C120,25 [120, 51, 16]3 C⊥

120,25 [120, 69]3
C120,10 [120, 35, 24]3 C⊥

120,10 [120, 85]3 C120,26 [120, 51, 16]3 C⊥
120,26 [120, 69]3

C120,11 [120, 35, 16]3 C⊥
120,11 [120, 85]3 C120,27 [120, 54, 15]3 C⊥

120,27 [120, 66]3
C120,12 [120, 35, 24]3 C⊥

120,12 [120, 84]3 C120,28 [120, 55, 15]3 C⊥
120,28 [120, 65]3

C120,13 [120, 36, 22]3 C⊥
120,13 [120, 84]3 C120,29 [120, 55, 15]3 C⊥

120,29 [120, 65]3
C120,14 [120, 36, 16]3 C⊥

120,14 [120, 71]3 C120,30 [120, 55, 15]3 C⊥
120,30 [120, 65]3

C120,15 [120, 49]3 C⊥
120,15 [120, 71]3 C120,31 [120, 55, 15]3 C⊥

120,31 [120, 65]3
C120,16 [120, 49]3 C⊥

120,16 [120, 70]3 C120,32 [120, 56, 15]3 C⊥
120,32 [120, 64]3
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Table 12. Weight distributions of some codes from a 120-dimensional representation

Name dim 0 30 32 36 42 43 44 46 47 48 49 50

C120,1 15 1 1260

C120,2 16 1 1260
C120,3 20 1 112 210 560 1120 3360 5040 6720 1260 13272
C120,4 21 1 112 210 1040 2772 1120 5400 10080 6720 1400 26880 14616

Table 13. Continuation of table 12

dim 51 52 53 54 55 56 57 58 59 60

15 2240 26208
16 2240 11520 43176
20 25200 6720 55400 60480 78360 94080 156240 107520 428680
21 3360 31920 10080 73920 149184 280170 399840 287280 823200 912856

Table 14. Continuation of table 13

dim 62 63 64 65 66 67 68 69

15 240 108360 362880
16 26160 300440 1095360

20 1182720 815360 2313360 2287488 6731760 8442720 19092780 29302560
21 2919840 3973760 5901000 6621216 20017200 33201840 53337900 86382240

Remark 4.3. From the tables above, we make the following observations;

(i)We only found the Automorphism Groups of the codes C120,1, C120,3 C120,4 and C120,12 due to
the large sizes of the codes.

(ii)C120,1 ⊂ C120,3 ⊂ C120,4.

(iii) L3(4) is not realized as a full Automorphism group of the codes . It is however a subgroup of
all the Automorphism groups of these codes.

We obtained no optimal linear ternary codes. We observe this by comparing the minimum weights
of the codes obtained to the Grassl table for codes of length 120 and dimensions 15, 16, 20, 21, 34,
35, 36, 49, 50, 51, 55 and 56 respectively.

Theorem 4.2. Let C120,i denote the ternary codes for i = 1, 2, · · · , 32 and C⊥
120,i, their respective

duals, then;

(i)The linear ternary code C120,i, [120, 15, 48]3 is irreducible, self-orthogonal and not optimal.
The automorphism group of this code is L3(4) · 23.

(ii)The ternary linear codes C120,3 and C120,4 are self -orthogonal codes whose automorphism
group is isomorphic to L3(4) · 23.

Proof. : Case (i). The [120, 15, 48]3 code is the maximal submodule of dimension 15. The
composition factors of this submodule are trivial, of dimensions 1 and 0 as can be observed from
the lattice figure 2. Therefore, this code is irreducible. From the weight distribution which is
partially listed, the weights of all the codewords of [120, 15, 48]3 are divisible by 3 and thus self-
orthogonal. Also, from the Grassl tables we identify that [56, 19, 18]3 is not optimal.

Case (ii). From the weight distribution of the ternary linear code C120,3, all the weights of its
codewords are divisible by 3. As in the proof of Case (i), above, it follows that this code is self
orthogonal. MAGMA computations show that the Automorphism group of this codes is of order
161280 = 23 × 20160. Up to isomorphism, this group decomposes into a primitive subgroup of
order 20160 and three cyclic subgroups of order 2. The order of L3(4) divides the order of the
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automorphism group of C120,3. We now prove that the group of order 20160 is L3(4). The code
C120,3 is invariant under L3(4) and thus L3(4) is a subset of the Automorphism group. Similarly,
the weights of the codewords of C120,4, are all divisible by 3 so this code is self orthogonal. Its
automorphism group is also of order 161280 = 23× 20160. Up to isomorphism, this group also
decomposes into a primitive subgroup of order 20160 and three cyclic subgroups of order 2. The
code C120,4 is invariant under L3(4) and thus L3(4) is a subset of the Automorphism group. We
can then deduce thatAut(C56, 3) ∼= Aut(C56,4) ∼= L3(4) · 23.

5 Codes and Designs by Construction Method 2

We used the method derived by Key and Moori [18] to generate ternary linear codes from the 21,
56 and 120 -dimensional representations of L3(4). Using this method, we generate 1−(n, | △ |, | △ |)
symmetric designs for n = 21,56 and 120 from the orbits of the stabilizers of the elements of the
subgroups. Further, we obtain the union of these stabilizers and generate designs from their orbits.
For a design D and the prime 3, the ternary code of the design is the code over F3 generated by
the rows of the incidence matrix. From this, we construct the ternary linear codes and discuss their
Automorphism groups. The results are presented in the table below.

Table 15. Designs and the codes generated

Length of orbits t− (v, k, λ) Design [n, k, d]3Code Code as Rep. Aut(Des) Aut(Code)
10 1-(56,10,10) [56, 56, 1]3 Trivial code L3(4).22

11 2-(56,11,2) [56, 20, 11]3 C56,7 L3(4).22 L3(4).23

21 1-(120,21,21) [120, 99, 6]3 C⊥
120,4 L3(4).22

22 1-(120,22,22) [120, 36, 22]3 C120,113 L3(4).22

42 1-(120,42,42) [120, 99, 6]3 C⊥
120,4 L3(4).22

43 1-(120,43,43) [120, 21, 30]3 C120,4 L3(4).22

45 1-(56,45,45) [56, 19, 18]3 C56,1 L3(4).22 L3(4).23

46 1-(56,46,46) [56, 56, 1]3 Trivial code L3(4).22

56 1-(120,56,56) [120, 120, 1]3 Trivial code L3(4).22

57 1-(120,57,57) [120, 100, 6]3 C⊥
120,3 L3(4).22

63 1-(120,63,63) [120, 99, 6]3 C⊥
120,4 L3(4).22

77 1-(120,77,77) [120, 21, 30]3 C120,4 L3(4).22 L3(4).23

98 1-(120,98,98) [120, 36, 22]3 C120,13 L3(4).22

Using this method, we were able to construct three trivial ternary linear codes. From table 1, we
obtain the lengths of the orbits of the stabilizers of the elements of the subgroups. These are; 1,
10, 20, 21, 42, 45 and 56. We obtain the designs constructed from these orbits. Further, the unions
of these orbits generate orbits of lengths; 11, 22, 43, 46, 57, 63, 77 and 98. All the designs from
these orbits are listed in the table above. The table also contains the codes constructed from the
incidence matrices of these designs.

Remark 5.1. From table 15 above, we make the following observations;

(i)The trivial codes [21, 21, 1]3, [56, 56, 1]3, [56, 56, 1]3 and [120, 120, 1]3 are constructed from the
incidence matrices of the designs 1 - (21, 20, 20), 1 - (56, 10, 10), 1 - (56, 46, 46) and 1 -(120,
56, 56) respectively.

(ii) We obtained 10 non trivial codes using this method, all previously generated using the first
method of construction.

(iii)The unique 2 - (56, 11, 2) self-dual symmetric design as found in [8], was also obtained using
this method.
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(iv) Isomorphic linear ternary codes such as [120, 36, 22]3 were constructed from the incidence
matrices of the designs 1 - (120, 22, 22) and 1 - (120, 98, 98).

Theorem 5.1. The [120, 99, 6]3 ternary linear code represented as the C⊥
120,4 code in table 15 was

constructed from the incidence matrix of the 1 - (120, 21, 21) and 1 - (120, 42, 42) designs. Its
dual code is [120, 21, 30]3 with the automorphism group isomorphic to L3(4).2

3.

Proof. From the four orbits of lengths 1, 21, 42 and 56 we generate the 1 - (120, 1, 1), 1 - (120, 21,
21), 1 - (120, 42, 42) and 1 - (120, 56, 56) designs respectively. From the incidence matrices of these
designs, we were able to generate ternary linear codes and their duals. The first and last designs
generated trivial codes while the second and forth generated the ternary linear code [120, 99, 6]3.
This code has an automorphism group of order 161280. From our magma computations, we were
able to find the dual of this code which is the [120, 21, 30]3 code with an automorphism group of
order 161280. The composition factors of this automorphism group are two cyclic groups of order 2
and a primitive group of order 20160. There are two primitive groups of order 20160 which are A8

and L3(4). These codes are invariant under L3(4) which leads to the deduction that L3(4) is a subset
of the automorphism group. Further calculations from MAGMA show that the automorphism group
of the design is of order 80640. So, it holds that G ⊂ Aut(Des), Aut(Des) ⊂ Aut(C56,6). Therefore,
we can deduce that L3(4) ⊂ Aut(C56,6). It therefore holds that Aut(C56,6) ⊂ L3(4).2

3.

Theorem 5.2. The self-orthogonal non trivial ternary linear code C56,1 with minimum weight 18
is constructed from the incidence matrix of the 1 - (56, 45, 45) self -dual symmetric design. C56,1

is the [56, 19, 18]3 with the automorphism group Aut(C56,1) ∼= L3(4) : 23. The automorphism
group of the design is Aut(Des) ∼= L3(4) : 22

Proof. : The automorphism group of C56,1 has an order of 80640 = 22 × 20160. The composition
factors of Aut(C56,1) are three cyclic groups of order 2 and a primitive group of order 20160. There
are two primitive groups of order 20160 which are A8 and L3(4). This code is invariant under
L3(4) which leads to the deduction that L3(4) is a subset of its automorphism group. Therefore,
Aut(C56,1) = L3(4).2

2. Let Aut(Des) denote the automorphism group of the 1 - (56, 45, 45)
design that was obtained from an orbit of length 45. From our MAGAMA computations, we
found that the order of Aut(Des) is 80640. But it follows that G ⊂ Aut(Des) and Aut(Des) ⊂
Aut(C56,1). Since |Aut(Des)| = 80640 and |Aut(C56,1)| = 161280, by Lagrange’s Theorem, it holds
that Aut(Des) ⊂ Aut(C56,1) and since G ⊂ Aut(Des), then Aut(Des) ∼= L3(4).2

2. Again, from
the weight distribution tables, it holds that C56,1 is the code [56, 19, 18]3 which is a self-orthogonal
code.
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