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Abstract 
 

The equivalent linearization method introduced by Caughey is a powerful tool for analyzing random 
oscillations. The method is also easy to apply for deterministic oscillations. However, with strong 
nonlinear systems, the error of this method is usually quite large and even not acceptable. In conjunction 
with a weighted averaging, the equivalent linearization method has shown more accuracy than the 
classical one in which the conventional averaging value is used. Combining advantages of the classical 
equivalent linearization method and accuracy of the weighted averaging, the proposed method has shown 
that it is a useful tool for analyzing nonlinear oscillations including strong nonlinear systems. In this 
paper, the proposed method is applied to analyze a nonlinear Duffing – harmonic oscillator. The present 
results are compared with the results obtained by using other analytical methods, exact results and 
numerical results. 
 

 
Keywords: Equivalent linearization method; weighted averaging; nonlinear oscillators. 
 

1 Introduction 
 
Oscillation is a common phenomenon in nature and engineering. In engineering, oscillations occur in many 
fields, such as oscillation of machinery in mechanics, oscillation of buildings or bridges in the field of 
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construction, oscillation of traffic vehicles, or oscillation of circuits, and so on. Each oscillation phenomenon 
is often described mathematically by nonlinear differential equations. It is difficult to find exact solutions of 
these equations. Numerical methods have given us very effective tools to describe these oscillations. 
However, the frequency-amplitude relationship, the most important feature of oscillation problems, is very 
difficult to find by using numerical methods. Thus, approximate analytical methods are needed to analyze 
response of nonlinear oscillations. Some approximate analytical methods have been introduced recently, 
such as the Parameter Perturbation method (PPM) [1], the Variational Iteration Method (VIM) [2], the 
Homotopy Perturbation Method (HPM) [3], the Energy Balance Method (EBM) [4], the Parameter 
Expansion Method (PEM) [5], the Variational Approach (VA) [6], the Hamiltonian Approach (HA) [7]; the 
Homotopy Analysis Method (HAM) [8], the Amplitude-Frequency Formulation (AFF) [9,10] and the 
Equivalent Linearization method (ELM) [11]. These approximate analytical methods are effectively 
analytical tools for investigating nonlinear oscillation problems.  
 

The Equivalent Linearization method was proposed by Caughey [11] in 1963 for purpose of analyzing 
random nonlinear oscillations. This method is based on the classical ELM of Kryloff and Bogoliubov for 
deterministic nonlinear systems [12]. ELM [11] is used very commonly for analyzing random nonlinear 
systems. However, this method is only effective for weak nonlinear systems. There were some developments 
of this method such as the non-parametric ELM based on first-order reliability method [13], the tail-
equivalent linearization method [14], ELM using Gaussian mixture [15] and the regulated Gaussian ELM 
[16, 17]. 
 
In a conventional approach of ELM, the nonlinear system is replaced by an equivalent linear system in 
which the parameters of the equivalent linear system are determined by minimizing a measure of the 
discrepancy between the responses of the nonlinear and linear systems called the mean-square criterion [11]. 
To improve the accuracy of ELM, some extensions of the mean-square criterion was proposed such as a dual 
criterion [18,19] and local mean square error criterion [20]. Recently, Anh et al. [21,22] introduced a new 
development of ELM based on the weighted averaging value. Instead of using the conventional/classical 
averaging value [12] in which the averaging value is calculated in one period of oscillation for harmonic 
functions, Anh et al. proposed a new method for estimating the averaging value of deterministic functions by 
introducing a weighted coefficient function, the new averaging value is called the weighted one. With this 
new proposal, accuracy of the ELM has been greatly improved. The new proposed method has been applied 
very effectively in analysis of deterministic strong nonlinear oscillations [22-25].  In this paper, the proposed 
method is further extended in analysis of a Duffing-harmonic oscillator. The present solutions are compared 
with the ones achieved by different approximate analytical methods, the numerical solutions and the exact 
solutions. 
 

2 The Nonlinear Duffing-harmonic Oscillator 
 
In this paper, we consider a nonlinear Duffing-harmonic oscillator given as [26]: 
 

3
3

1 2
2

0,
1

k u
u k u

k u
  


                                                            (1) 

 

with the initial conditions: 
 

(0) , (0) 0.u A u                                                                      (2) 

 
where k1, k2 and k3 are constants. 
 
The equivalent linearization method will be applied to find the appromimate analytical solution of Eq. (1). 
First, we rewrite Eq. (1) in the following form: 
 

2 3 3
2 1 1 2 3(1 ) 0.k u u k u k k u k u                                                          (3) 
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We introduce the linear form of the nonlinear Eq. (1) as follows: 
 

2 0.u u                                                               (4) 
 
where   is known as the approximate frequency of oscillation and needs to be determined.  The coefficient 
  can be found by many different criteria, in which the most common criterion is the mean square criterion 
requiring the mean square of equation error between the nonlinear equation (3) and the linear equation (4) be 
minimum  [11]: 
 

 
2

22 2 3 2
2 1 1 2 3( ) ( ) Min .e u k u u k u k k k u u


                                     (5) 

 

where �  is the averaging operator; the mean square criterion (5) states that when the error between the 

nonlinear equation (3) and the linear one (4) is minimum, the solution of the linear equation will be closest 

to the solution of the nonlinear equation. From the condition 

2

2

( )e u






 , we get a equation for 

determining the coefficient 2  as follows: 
 

3 2 4 2 2
2 1 1 2 3( ) 0.k u u k u k k k u u                                       (6) 

 
The periodic solution of linear Eq. (4) with the initial conditions (2) has the form: 
 

cos( ).u A t                                                                    (7) 

 
The classical averaging value of a harmonic function can be get as [12]: 
 

   
2

0 0

1 1
( ( )) ( cos( )) cos( ) cos( )

2

T

c c
f u t f A t f A t dt f A d

T



   


                 (8) 

 

here 2 /T    is the period of oscillation and t  . The averaging values in Eq. (8) is called the 
classical averaging value which often leads to solutions of strong nonlinear systems with large and 
sometimes unacceptable errors. In order to improve this issue, in this paper, a new method is proposed to 
determine the averaging values in Eq. (6) called weighted averaging value. As proposed by Anh et al. [21, 
22], the averaging value can be determined by: 
 

 
0

( ) ( ) ,
d

w
f t h t f t dt                                                                  (9) 

 

where ( )h t  is the weighted coefficient function  satisfying the following condition [21, 22]: 
 

0

( ) 1.
d

h t dt                                                (10) 

 

A specific weighted coefficient function will be used in this paper as follows: 
 

2 2( ) ,s th t s te                                  (11) 
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herein, s is a positive constant. We can easily check that ( )h t  given in Eq. (11) satisfies the condition (10)  

as d  .  Based on the weighted coefficient function ( )h t  given in Eq. (11), the weighted averaging 

value of a function ( )f t  can be calculated by using Eq. (9): 

 

   2 2 2

0 0

( ) ,s t s

w
f t s te f t dt s e f d      

 
                                                  (12) 

We can see that the weighted averaging value of the function f(ωt) is the Laplace transform of  function 
2 ( )s tf t  as follows: 

 

 2

0

( ) ( ).s

w
f t s e f d F s   


                                             (13) 

 
The averaging value of function f(ωt) does not depend on the time t  but depends on  the parameter s (in 
expression of the weighted coefficient function h(t)).  The parameter s is called the adjustment parameter, 
accuracy of the obtained solution depends on the choice of value of the parameter s. The choice of value of 
the parameter s has been examined by authors in many cases [22-25], the obtained results will be very 
accurate when s = 2.  
 
Based on the periodic solution in Eq. (7), we can calculate averaging operators in Eq. (6) by using Eqs. (12) 
and (13): 
 

2 2 2 2 2 2 2 2 2 2

0 0

4 2
2

2 2

cos ( ) cos ( ) cos ( )

2 8
,

( 4)

s t s

w w
u A t A s te t dt A s e d

s s
A

s

      
 

   

 




 
                    (14) 

 

 

4 4 4 4 2 2 4 4 2 4

0 0

8 6 4 2
4

2 2 2 2

cos ( ) cos ( ) cos ( )

28 248 416 1536
,

( 4) ( 16)

s t s

w w
u A t A s te t dt A s e d

s s s s
A

s s

      
 

   

   


 

 
                   (15) 

 

3 4 2 4 4 2 2 2 4

0

8 6 4 2
4 2 2 4 4 2

2 2 2 2

0

cos ( ) cos ( )

28 248 416 1536
cos ( ) .

( 4) ( 16)

s t

s

u u A t A s te t dt

s s s s
A s e d A

s s





    

    







   

   
   

 







                      (16) 

 
Substituting Eqs. (14)-(16) into Eq. (6), we obtain the approximate frequency of oscillation: 
 
 

4 2 2 2 8 6 4 2 2
1 1 2 3

4 2 2 2 8 6 4 2 2
2

( 2 8)( 16) ( )( 28 248 416 1536)
.

( 2 8)( 16) ( 28 248 416 1536)

k s s s k k k s s s s A

s s s k s s s s A


        


       
                        (17) 



When s=2, we have the approximate frequency:
 

1 1 2 3
2

2

0.72( )

1 0.72

k k k k A

k A


 




 
Thus, from Eq. (7), the approximate solution 
 

1 1 2 30.72( )
( ) cos .

1 0.72

k k k k A
u t A t

  
  

  
 

To show accuracy of the present results, we compare the present solution given in Eq. (19) with the 
numerical one using the 4th–order Runge
and k3=20. 
 

Fig. 1. Comparison between the present solution with the numerical solution
 
For purpose of comparing the current solution with published solutions using different approximate 
analytical methods, we consider some following cases:
 

2.1 Case 1: k2=0 
 
If k2=0, from Eq. (1) we have a cubic Duffing oscillator:
 

3
1 3 0.u k u k u       

 
Eq. (20) was analyzed by authors in ref. [24]. From Eqs. (18) and
frequency: 
 

2
1 30.72 ,k k A            

 
and the approximate solution of oscillation as follows:
 

 1 3( ) cos 0.72 .u t A k k A t 

Hieu – Dang; ARJOM, 15(4): 1-14, 2019; Article no.

=2, we have the approximate frequency: 

2
1 1 2 3

2

0.72( )
.

k k k k A

k A

 
          

Thus, from Eq. (7), the approximate solution of oscillation can be get as follows: 

2
1 1 2 3

2
2

0.72( )
( ) cos .

1 0.72

k k k k A
u t A t

k A

  
 
  

     

To show accuracy of the present results, we compare the present solution given in Eq. (19) with the 
order Runge-Kutta method,  the result is presented in Fig. 1 for 

 
Comparison between the present solution with the numerical solution

For purpose of comparing the current solution with published solutions using different approximate 
consider some following cases: 

=0, from Eq. (1) we have a cubic Duffing oscillator: 

                                                

Eq. (20) was analyzed by authors in ref. [24]. From Eqs. (18) and (19), we can get the approximate 

0.72 ,                                                     

and the approximate solution of oscillation as follows: 

2
1 3( ) cos 0.72 .u t A k k A t                                                
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          (18) 

          (19) 

To show accuracy of the present results, we compare the present solution given in Eq. (19) with the 
1 for k1=20, k2=100 

 

Comparison between the present solution with the numerical solution 

For purpose of comparing the current solution with published solutions using different approximate 

                                   (20) 

(19), we can get the approximate 

                                    (21) 

                                   (22) 



The approximate frequency of Eq. (20) can be achieved by using the Parametrized Perturbation method 
(PPM) [27] and the Energy Balance method (EBM) [28] as follows:
 

1 30.75 .PPM EBM k k A   

 
The exact frequency of this oscillation is given by [27]:
 



/2

2
0 3 1

2

4 2
1 cos ( ) 2

exact

k A t k




 



 
Accuracy of the present solution is shown in Table 1 and Fig
and the coefficients of system (k1 and 
in Table 1. We can see that the relative errors of the EBM and PPM frequencies reach to 2.2% while
relative error of the current frequency is only 0.15% when the initial amplitude of oscillation increases. With 
the fixed coefficients k1=20, k3=20 
approximate solutions and exact solut
 

Fig. 2. Time history and phase portrait of the cubic Duffing oscillation
 

Table 1. Comparison of the approximate frequencies with the exact frequency, case 1
 

A k1 k3  exact [27]
 

0.1 1 1 1.0037 
10 10 3.1741 
100 100 10.0374 

1 1 1 1.3177 
10 10 4.1671 
100 100 13.1777 

10 1 1 8.5335 
10 10 26.9855 
100 100 85.3358 

50 1 1 42.3729 
10 10 133.9951 
100 100 423.7299 
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The approximate frequency of Eq. (20) can be achieved by using the Parametrized Perturbation method 
(PPM) [27] and the Energy Balance method (EBM) [28] as follows: 

2
1 30.75 .k k A                                              

The exact frequency of this oscillation is given by [27]: 

3 1

2
.

1 cos ( ) 2

dt

k A t k



 2

                                            

Accuracy of the present solution is shown in Table 1 and Fig. 2. For some values of the initial amplitude (
and k3), values of approximate frequencies and exact frequency are showed 

in Table 1. We can see that the relative errors of the EBM and PPM frequencies reach to 2.2% while
relative error of the current frequency is only 0.15% when the initial amplitude of oscillation increases. With 

=20 and the initial amplitude A=5, time history and phase portrait of 
approximate solutions and exact solution of the cubic Duffing oscillation are presented in Fig. 

 
Time history and phase portrait of the cubic Duffing oscillation 

Comparison of the approximate frequencies with the exact frequency, case 1

 ,EBM PPM  [27, 28]
 

R. error (%) present  R. error (%)

1.0037 0.0001 1.0035 0.0147
3.1741 0.0001 3.1736 0.0147
10.0374 0.0001 10.0359 0.0147
1.3228 0.3869 1.3114 0.4771
4.1833 0.3869 4.1472 0.4771
13.2287 0.3869 13.1148 0.4771
8.7177 2.1586 8.5440 0.1220
27.5680 2.1586 27.0185 0.1220
87.1779 2.1586 85.4400 0.1220
43.3128 2.2179 42.4381 0.1538
136.9671 2.21796 134.2013 0.1538
433.1281 2.2179 424.3819 0.1538
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The approximate frequency of Eq. (20) can be achieved by using the Parametrized Perturbation method 

                  (23) 

                               (24) 

2. For some values of the initial amplitude (A) 
), values of approximate frequencies and exact frequency are showed 

in Table 1. We can see that the relative errors of the EBM and PPM frequencies reach to 2.2% while the 
relative error of the current frequency is only 0.15% when the initial amplitude of oscillation increases. With 

=5, time history and phase portrait of 
 2. 

 

Comparison of the approximate frequencies with the exact frequency, case 1 

R. error (%) 

0.0147 
0.0147 
0.0147 
0.4771 
0.4771 
0.4771 
0.1220 
0.1220 
0.1220 
0.1538 
0.1538 
0.1538 



2.2 Case 2: k1=0 
 
From Eq. (1), we have a Duffing oscillator with a rational elastic term:
 

3
3

2
2

0.
1

k u
u

k u
 


      

 
From Eq. (18), the approximate frequency can be get as:
 

2
3

2
2

0.72
.

1 0.72

k A

k A
 


         

 
and from Eq. (19), we can obtain the approximate solution o
 

30.72
( ) cos .

1 0.72

k A
u t A t

k A

 
  

  
 

With k2=1 and k3=1, the approximate frequency of oscillation given in Eq. (25) was achieved by using the 
Parameter Expansion method (PEM) [27], and the exact frequency of oscillation was given in ref. [29]. 
 

Table 2 shows comparison of the present frequency and the PEM f
some values of the initial amplitude (
Responses of the oscillation obtained by using different analytical methods and the numerical method are 
showed in Fig. 3 with  k1=20 and k3=20.
 

Table 2. Comparison of the approximate frequencies with the exact frequency, case 2
 

A 
exact [29] PEM

0.01 0.0085 0.0087
0.05 0.0423 0.0432
0.1 0.0844 0.0863
0.5 0.3874 0.3974
1 0.6368 0.6547
5 0.9669 0.9744
10 0.9909 0.9934

 

 
Fig. 3.Time history and phase portrait of  the Duffing oscillation with rational elastic term
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From Eq. (1), we have a Duffing oscillator with a rational elastic term: 

                                           

From Eq. (18), the approximate frequency can be get as: 

.                                                   

and from Eq. (19), we can obtain the approximate solution of oscillation: 

2
3

2
2

0.72
( ) cos .

1 0.72

k A
u t A t

k A

 
 
 
 

                                             

=1, the approximate frequency of oscillation given in Eq. (25) was achieved by using the 
Parameter Expansion method (PEM) [27], and the exact frequency of oscillation was given in ref. [29]. 

Table 2 shows comparison of the present frequency and the PEM frequency with the exact frequency for 
some values of the initial amplitude (A). From Table 2, we can see accuracy of the present solution. 
Responses of the oscillation obtained by using different analytical methods and the numerical method are 

=20. 

Comparison of the approximate frequencies with the exact frequency, case 2

PEM [27] R. error (%) 
present  R. error (%)

0.0087 2.2432 0.0085 0.0000
0.0432 2.2212 0.0424 0.1654
0.0863 2.2396 0.0846 0.1896
0.3974 2.5789 0.3906 0.8826
0.6547 2.8063 0.6469 1.6034
0.9744 0.7622 0.9733 0.6567
0.9934 0.2493 0.9931 0.2230

Time history and phase portrait of  the Duffing oscillation with rational elastic term
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                                  (25) 

                                    (26) 

                                     (27) 

=1, the approximate frequency of oscillation given in Eq. (25) was achieved by using the 
Parameter Expansion method (PEM) [27], and the exact frequency of oscillation was given in ref. [29].  

requency with the exact frequency for 
). From Table 2, we can see accuracy of the present solution. 

Responses of the oscillation obtained by using different analytical methods and the numerical method are 

Comparison of the approximate frequencies with the exact frequency, case 2 

R. error (%) 

0.0000 
0.1654 
0.1896 
0.8826 
1.6034 
0.6567 
0.2230 

 

Time history and phase portrait of  the Duffing oscillation with rational elastic term 



2.3 Case 3: k1=-1, k2=0 and k3
 

We have a Duffing oscillator with double
 

3 0.u u u           
 

System (28) has three equilibrium points: the central equilibrium point 

equilibrium points 1u     are stable. The periodic solution

amplitude A. For the case of 0 1A 

for the case of  2A  , the periodic solution is symmetric and extends across three equilibrium points.
 

For the case of  2A  , from Eq. (18), the approximate frequency of oscillation can be obtained as:
 

2
31 0.72 .k A        

 

The present period presentT , the approximate period achieved by the Energy Balance method  

the exact period exactT  [30] are listed in Table 3 for some values of the initial amplitude (

solution [30], the approximate solution achieved by the Energy Balance method [26] and the present solution 
are plotted in Fig.4 for the initial amplitude 
 

Table 3. Comparison of the approximate periods with the exact period for double

 

A 
exactT [30] EBMT [26]

1.42 15.0844 8.7784
1.45 11.2132 8.2725
1.5 9.2237 7.5778
1.7 6.3528 5.8150
2 4.6857 4.4429
5 1.5286 1.4914
10 0.7471 0.7304
50 0.1484 0.1451
100 0.0742 0.0726
100 0.0074 0.0073

 

 
Fig. 4.Time history and phase portrait of responds of  the Duffing oscillation with doule

Hieu – Dang; ARJOM, 15(4): 1-14, 2019; Article no.

3=1 

We have a Duffing oscillator with double-well potential (negative linear stiffness): 

                                             

System (28) has three equilibrium points: the central equilibrium point 0u   is unstable and the other two 

are stable. The periodic solutions of this oscillation depend on the initial 

0 1A   and  1 2A  , the equilibrium points 1u    are stable. And, 

periodic solution is symmetric and extends across three equilibrium points.

, from Eq. (18), the approximate frequency of oscillation can be obtained as:

1 0.72 .                               

, the approximate period achieved by the Energy Balance method  

[30] are listed in Table 3 for some values of the initial amplitude (

solution [30], the approximate solution achieved by the Energy Balance method [26] and the present solution 
4 for the initial amplitude A=1.5. Again we can see accuracy of the present solution.

Comparison of the approximate periods with the exact period for double-well Duffing 

oscillation ( 2A ) 

EBM [26] R. error (%) 
presentT  R. error (%)

8.7784 41.8047 9.3477 38.0306
8.2725 26.2253 8.7656 21.8278
7.5778 17.8442 7.9797 13.4869
5.8150 8.4655 6.0438 4.8639
4.4429 5.1817 4.5825 2.2024
1.4914 2.4335 1.5239 0.3074
0.7304 2.2353 0.7457 0.1873
0.1451 2.2237 0.1481 0.2021
0.0726 2.1563 0.0741 0.1347
0.0073 1.3513 0.0074 0.0000

Time history and phase portrait of responds of  the Duffing oscillation with doule-well potential, 
A=1.5 
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                                      (28) 

is unstable and the other two 

s of this oscillation depend on the initial 

1  are stable. And, 

periodic solution is symmetric and extends across three equilibrium points. 

, from Eq. (18), the approximate frequency of oscillation can be obtained as: 

                                     (29) 

, the approximate period achieved by the Energy Balance method  EBMT  [26] and 

[30] are listed in Table 3 for some values of the initial amplitude (A). The exact 

solution [30], the approximate solution achieved by the Energy Balance method [26] and the present solution 
an see accuracy of the present solution. 

well Duffing 

R. error (%) 

38.0306 
21.8278 
13.4869 
4.8639 
2.2024 
0.3074 
0.1873 
0.2021 
0.1347 
0.0000 

 

well potential, 
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 For the case of  1 2A  , we introduce a new variable: 
 

 1.x u                                                   (30) 
 

Substituting Eq. (30) into Eq. (28), we get: 
 

2 32 3 0,x x x x                                                (31) 
 

with the initial conditions: 
 

(0) , (0) 0,x A x 


                                                                        (32) 

 

where 1A A 


. We will find the approximate solution of Eq. (31), the linear equation of Eq. (31) has the 
form: 
 

2 0.x x                                                      (33) 
 

Employing the mean square criterion, the coefficient 
2  can be get as: 

 
2 3 4

2

2

2 3
.

x x x

x


 
                                                           (34) 

 

Using the weighted averaging value, averaging operators in Eq. (34) can be obtained as: 
 

4 2
2 2

2 2

2 8
.

( 4)
w

s s
x A

s

 





                                                                               (35) 

 

2 6 4 2
3 3

2 2 2 2

( 11 43 63)
.

( 1) ( 9)w

s s s s
x A

s s

  


 


                                                  (36) 

 

8 6 4 2
4 4

2 2 2 2

28 248 416 1536
.

( 4) ( 16)w

s s s s
x A

s s

   


 


                                        (37) 

 
Substituting Eqs. (35)-(37) into Eq. (34) and with s=2, we get the approximate frequency of oscillation for 
this case: 
 

22 1.9824 0.72 .A A   
 

                                                  (38) 
 

Note that 1A A 


, from Eq. (38), the approximate frequency is given as: 
 

22 1.9824( 1) 0.72( 1) .A A                                   (39) 
 

Thus, the approximate solution for this case can be get: 

 

 2( ) ( 1)cos 2 1.9824( 1) 0.72( 1) 1.u t A A A t                     (40) 



To show accuracy of the obtained solution, the exact period  

the Energy Balance method EBMT  [26] and the present period 

of the initial amplitude A. We can conclude that the proposed method gives more excellent approximate 

periods than the EBM for the oscillation amplitude 
 

Table 4. Comparison of the approximate periods with the exact period for double

 

A 
exactT [30] EBMT

1.05 4.3061 4.3045
1.1 4.1781 4.1748
1.15 4.0582 4.0530
1.2 3.9460 3.9384
1.25 3.8417 3.8303
1.3 3.7468 3.7282
1.35 3.6688 3.6316
1.4 3.6897 3.5399
1.41 3.8506 3.5222
1.412 3.9755 3.5164

 

Fig. 5 shows comparison of  the present solution and the EBM solution with the exact solution for the initial 
amplitude A=1.4.  
 

 
Fig. 5. Time history and phase portrait of responds of  the Duffing oscillation with doule

 

2.4 Case 4: k2=1 
 
With k2=1, Eq. (1) becomes: 
 

 

3
3

1 2
0.

1

k u
u k u

u
  


        

 

From Eq. (18), the approximate frequency of  oscillation given by Eq. (41) can be obtained as:
 

1 1 3
2

0.72( )

1 0.72

k k k A

A


 



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To show accuracy of the obtained solution, the exact period  exactT  [30], the approximate period obtained by 

[26] and the present period presentT  are showed in Table 4 for some values 

. We can conclude that the proposed method gives more excellent approximate 

periods than the EBM for the oscillation amplitude 1 2A  . 

Comparison of the approximate periods with the exact period for double-well Duffing 

oscillation (1 2A  ) 

EBMT [26] R. error (%) 
presentT  R. error (%)

4.3045 0.0373 4.3349 0.0067
4.1748 0.0781 4.2309 0.0126
4.0530 0.1267 4.1309 0.0179
3.9384 0.1923 4.0347 0.0225
3.8303 0.2961 3.9420 0.0261
3.7282 0.4964 3.8529 0.0283
3.6316 1.0139 3.7671 0.0268
3.5399 4.0576 3.6845 0.0014
3.5222 8.5261 3.6684 0.0473
3.5164 11.548 3.6652 0.0781

5 shows comparison of  the present solution and the EBM solution with the exact solution for the initial 

Time history and phase portrait of responds of  the Duffing oscillation with doule
potential, A=1.4 

0.                                                  

From Eq. (18), the approximate frequency of  oscillation given by Eq. (41) can be obtained as: 

2
1 1 30.72( )

.
k k k A
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[30], the approximate period obtained by 

4 for some values 

. We can conclude that the proposed method gives more excellent approximate 

well Duffing 

R. error (%) 

0.0067 
0.0126 
0.0179 
0.0225 
0.0261 
0.0283 
0.0268 
0.0014 
0.0473 
0.0781 

5 shows comparison of  the present solution and the EBM solution with the exact solution for the initial 

 

Time history and phase portrait of responds of  the Duffing oscillation with doule-well 

                                      (41) 

 

                                 (42) 



The approximate frequency of oscillation for this case can be achieved by using the Energy Balance method 
[26] as follows: 
 

3
1 3 2

( ) 2 ln 1 / 2 ln(1 ) .EBM

k
k k A A

A
      

 

 

Fig. 6. Time history and phase portrait of  Duffing
 

Comparisons of the present solution and EBM solution for this oscillation are presented in Table 5 and Fig
6. We can see very good agreement of two approximate solutions. Fig
 

Table 5. Values of the approximate frequencies achieved by the Energy Balance method and the 
current method for Duffing

 

k1 k3 A

1 1 0.1
1
5
10
50
100

1 100 0.1
1
5
10
50
100

100 1 0.1
1
5
10
50
100

100 100 0.1
1
5
10
50
100
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The approximate frequency of oscillation for this case can be achieved by using the Energy Balance method 

 2 23
2

( ) 2 ln 1 / 2 ln(1 ) .
k

k k A A
A

                                   

Time history and phase portrait of  Duffing-harmonic oscillation with A

Comparisons of the present solution and EBM solution for this oscillation are presented in Table 5 and Fig
6. We can see very good agreement of two approximate solutions. Fig. 6 is plotted with k1=20 and 

Values of the approximate frequencies achieved by the Energy Balance method and the 
current method for Duffing-harmonic oscillation 

A 
EBM [26] 

present  

0.1 1.0037 1.0037 
1 1.1936 1.1910 
5 1.3956 1.3955 
10 1.4094 1.4094 
50 1.4140 1.4140 
100 1.4142 1.4142 
0.1 1.3207 1.3095 
1 6.5927 6.5468 
5 9.7855 9.7845 
10 9.9817 9.9815 
50 10.047 10.0471 
100 10.0492 10.0492 
0.1 10.0004 10.0004 
1 10.0212 10.0209 
5 10.0473 10.0473 
10 10.0492 10.0492 
50 10.0498 10.0498 
100 10.0499 10.0499 
0.1 10.0371 10.0357 
1 11.9358 11.9105 
5 13.9555 13.9548 
10 14.0937 14.0936 
50 14.1402 14.1402 
100 14.1416 14.1416 
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The approximate frequency of oscillation for this case can be achieved by using the Energy Balance method 

                     (43) 

 

A=1 

Comparisons of the present solution and EBM solution for this oscillation are presented in Table 5 and Fig. 
=20 and k3=20. 

Values of the approximate frequencies achieved by the Energy Balance method and the 

present  
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4 Conclusion  
 
In this work, the equivalent linearization method in conjunction with a weighted averaging is applied in 
analysis of a nonlinear Duffing – harmonic oscillator. This method is a development of the classical 
equivalent linearisation method. In the proposed method, the averaging value is calculated in a new way 

called the weighted averaging value by introducing a weighted coefficient function ( )h t . Accuracy of the 

proposed method is verified by comparing the obtained results with the published ones for some specific 
cases. The proposed method is very simple for applying and gives the results in very high accuracy for both 
nonlinear systems. The present method will be an effective tool in analyzing nonlinear oscillations.  
 

Acknowledgements 
 
This work is supported by Thai Nguyen University of Technology (TNUT) (no. “T2018-B27”). 
 

Competing Interests 
 
Author has declared that no competing interests exist. 
 

References 
 
[1] He JH. Some new approaches to duffing equation with strongly and high order nonlinearity (ii) 

parametrized perturbation technique. Communications in Nonlinear Science and Numerical 
Simulation. 1999;4(1):81–83. 
 

[2] He JH. Variational iteration method-a kind of non-linear analytical technique: some examples. 
International Journal of Non-Linear Mechanics. 1999;34(4):699–708. 
 

[3] He JH. Homotopy perturbation technique. Computer methods in applied mechanics and engineering. 
1999;178(3-4):257–262. 
 

[4] He JH. Preliminary report on the energy balance for nonlinear oscillations. Mechanics Research 
Communications. 2002;29(2-3):107–111. 
 

[5] He JH. An elementary introduction to recently developed asymptotic methods and nanomechanics in 
textile engineering. International Journal of Modern Physics B (IJMPB). 2008;22(21):3487–3578. 
 

[6] He JH. Variational approach for nonlinear oscillators. Chaos, Solitons & Fractals. 2007;34(5):1430–
1439. 
 

[7] He JH. Hamiltonian approach to nonlinear oscillators. Physics Letters A. 2010;374(23):2312–2314. 
 

[8] Liao S. Homotopy analysis method and its application [thesis]. Shanghai Jiao Tong University, 
Shanghai, China; 1992. 
 

[9] He JH. Nonperturbative methods for strongly nonlinear problems. Dissertation.de-Verlag im Internet 
GmbH. 2006;290. 
 

[10] He JH. Amplitude-Frequency Relationship for Conservative Nonlinear Oscillators with Odd 
Nonlinearities. International Journal of Applied and Computational Mathematics. 2017;3:1557-1560. 
 



 
 
 

Hieu – Dang; ARJOM, 15(4): 1-14, 2019; Article no.ARJOM.52367 
 
 
 

13 
 
 

[11] Caughey  TK. Equivalent linearization technique. The Journal of the Acoustical Society of America. 
1963;35:1706–1711. 
 

[12] Krylov N, Bogoliubov N. Introduction to nonlinear mechanics. New York: Princenton University 
Press; 1943. 
 

[13] Der Kiureghian A. First- and second-order reliability methods. In: Nikolaidis E, Ghiocel DM, Singhal 
S, editors. Engineering design reliability handbook. Boca Raton (FL): CRC Press. 2005;Chapter 14. 
 

[14] Fujimura K, Der Kiureghian A. Tail-equivalent linearization method for nonlinear random vibration. 
Probabilistic Engineering Mechanics. 2007;22:63–76. 
 

[15] Ziqi Wang, Junho Song. Equivalent linearization method using Gaussian mixture (GM-ELM) for 
nonlinear random vibration analysis. Structural Safety; 2016. 
 

[16] Anh ND, Di Paola M. Some Extensions of Gaussian Equivalent Linearization. In: International 
Confernce on Nonlinear Stochastic Dynamics;    Hanoi, Vietnam, 7–10 December. 1995;5–16. 
 

[17] Isaac Elishakoff,  Lova Andriamasy, Melanie Dolley. Application and extension of the stochastic 
linearization by Anh and Di Paola. Acta Mechanica. 2009;204(1-2):89–98. 
 

[18] Anh ND. Duality in the analysis of responses to nonlinear systems. Vietnam Journal of Mechanics. 
2010;32:263–266. 
 

[19] Anh ND, Hieu NN, Linh NN. A dual criterion of equivalent linearization method for nonlinear 
systems subjected to random excitation. Acta Mechanica. 2012;223(3):645–654. 
 

[20] Anh ND, Hung LX, Viet LD. Dual approach to local mean square error criterion for stochastic 
equivalent linearization. Acta Mechanica. 2013;224(2):241–253. 
 

[21] Anh ND. Short Communication - Dual approach to averaged values of functions: a form for 
weighting coefficient. Vietnam Journal of Mechanics. 2015;37(2):145 –150. 
 

[22] Anh ND, Hai NQ, Hieu DV. The Equivalent Linearization Method with a Weighted Averaging for 
Analyzing of Nonlinear Vibrating Systems. Latin American Journal of Solids and Structures. 2017; 
14:1723- 1740. 
 

[23] Dang Van Hieu, Ninh Quang Hai and Duong The Hung.  Analytical Approximate Solutions For 
Oscillators With Fractional Order Restoring Force And Relativistic Oscillators. International Journal 
of Innovative Science, Engineering & Technology. 2017;4(12):28-35. 
 

[24] Hieu DV, Hai NQ,  Hung DT. The Equivalent Linearization Method with a Weighted Averaging for 
Solving Undamped Nonlinear Oscillators. Journal of Applied Mathematics; 2018. 
 

[25] Hieu DV, Hai NQ. Analyzing of Nonlinear Generalized Duffing Oscillators Using the Equivalent 
Linearization Method with a Weighted Averaging. Asian Research Journal of Mathematics. 2018; 
9(1):1-14. 
 

[26] Momeni M, Jamshidi N, Barari A, Ganji DD. Application of He's energy balance method to Duffing-
harmonic oscillators. International Journal of Computer Mathematics. 2010;88(1):135-144. 
 

[27] Bayat M, Pakar I, Domairry G.  Recent developments of some asymptotic methods and their 
applications for nonlinear vibration equations in engineering problems: A review. Latin American 
Journal of Solids and Structures. 2012;9(2):145–234. 



 
 
 

Hieu – Dang; ARJOM, 15(4): 1-14, 2019; Article no.ARJOM.52367 
 
 
 

14 
 
 

[28] Younesian D, Askari H, Saadatnia Z, KalamiYazdi M. Frequency analysis of strongly nonlinear 
generalized Dufing oscillators using He’s frequency-amplitude formulation and He’s energy balance 
method. Computers & Mathematics with Applications: An International Journal. 2010;59(9):3222–
3228. 
 

[29] Ganji SS, Ganji DD, Davodi AG, Karimpour S. Analytical solution to nonlinear oscillation system of 
the motion of a rigid rod rocking back using max–min approach. Applied Mathematical Modelling. 
2010;34:2676–2684. 
 

[30] Wu BS, Sun WP, Lim CW. Analytical approximations to the double-well Duffing oscillator in large 
amplitude oscillations. Journal of Sound and Vibration. 2007;307:953–960. 

_______________________________________________________________________________________ 
© 2019 Hieu–Dang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 

 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle4.com/review-history/52367 


