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Abstract

Aims/ Objectives: To investigate the influence of a model parameter on the convergence of
two finite difference schemes designed for a convection-diffusion-reaction equation governing the
pressure-driven flow of a Newtonian fluid in a rectangular channel.
Methodology: By assuming a uni-directional and incompressible channel flow with an
exponentially time-varying suction velocity, we formulate a variable-coefficient convection-
diffusion-reaction problem. In the spirit of the method of manufactured solutions, we first obtain
a benchmark analytic solution via perturbation technique. This leads to a modified problem
which is exactly satisfied by the benchmark solution. Then, we formulate central and backward
difference schemes for the modified problem. Consistency and convergence results are obtained
in detail. We show, theoretically, that the central scheme is convergent only for values of a model
parameter up to an upper bound, while the backward scheme remains convergent for all values of
the parameter. An estimate of this upper bound, as a function of the mesh size, is derived. We
then conducted numerical experiments to verify the theoretical results.
Results: Numerical results showed that no numerical oscillations were observed for values of the
model parameter less than the theoretically derived bound.
Conclusion: We therefore conclude that the theoretical bound is a safe value to guarantee
non-oscillatory solutions of the central scheme.
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1 Introduction

Let ϵ, h, t0, T, k ∈ R, (z, t) ∈ R × (R+ ∪ {0}) and u∗ : R → R. We consider the following problem:
find the unknown u(z, t) such that:

∂u(z, t)

∂t
+ ϵf(t)

∂

∂z
u(z, t) =

∂2

∂z2
u(z, t)− Px, z ∈ (0, h), t ∈ (0, T ),

u(0, t) = u(h, t) = 0, ∀t ∈ [0, T ],

u(z, 0) = u∗(z), ∀z ∈ [0, h],

(1.1)

where 0 ≤ |f(t)| ≤ fmax < ∞, for all t ∈ [0, T ]. In this study, we consider

f(t) = e−kt. (1.2)

(1.3)

Fig. 1. Physical set up of flow in a horizontal channel

The above problem (1.1)-(1.2) governs the flow of a viscous fluid in a horizontal rectangular channel
with vertical dimension h and constant pressure gradient, Px, along the horizontal direction, see
figure 1. The velocity components are (u(z, t), 0, ϵf(t)), and the problem is thus to find the only
unknown velocity component, u. Problems of this type have been extensively applied to fluid
flows with and without heat and/or mass transfer, see [1, 2, 3, 4, 5, 6, 7]. Most of these studied
have adopted approximate analytic methods which are only valid for small values of relevant model
parameter(s). Also, the studies that adopted numerical methods have not focused on understanding
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the influence of the smallness or largeness of the model parameters on the properties of the
considered numerical schemes.

Numerical analysis of diffusion-reaction with and without convection have also been studied widely.
It is well known that traditional discretization methods face difficulties when applied to convection-
diffusion problems, especially when convection dominates diffusion. Consequently, different methods
have been proposed to study these problems. Morosanu et al. [8] investigate the error and stability
analyses of a nonlinear diffusion-reaction problem. Three different approaches for approximating
nonlinearities were discussed and the convergence results obtained.

Mickens [9] constructed nonstandard finite difference scheme for nonlinear diffusion-reaction models
with reaction terms that are polynomial functions of the dependent variables. The constructed
schemes are positivity preserving, and the authors also provided rules for constructing such schemes.
This work was extended in [10] to convection-diffusion-reaction (CDR) problems with linear convec-
tion, and the Fischer equation is utilized for illustrating the method. Mingrong [11] also proposed a
method for splitting nonlinear reaction terms leading to a modified upwind method that is second-
order accurate in space; error estimate in l∞-norm was obtained.

James and co-workers [12] developed a method based on the unifying Eulerian-Lagrangian particle
scheme and operator splitting approach. In [13], a positive preserving explicit scheme is developed
for CDR problems with constant advection coefficients and reaction terms that are sum of positive
and negative functions of the solution variable; a strategy for the generalization is presented. A
draw back of the scheme is that it is not unconditionally consistent, hence requires complicated
procedure to fix the consistency issues [14, 15]. Ndivhuwo [14] investigated different numerical
schemes for linear and nonlinear convection-diffusion-reaction models. Consistency, stability and
spectral analysis were conducted for the schemes. It was found that the standard upwind schemes
and a nonstandard upwind schemes are both consistent while the unconditionally positive finite
difference scheme [13] is not. In [16], a class of exact finite difference schemes are proposed and
used to derive nonstandard implicit schemes which preserve nonnegativity and boundedness of exact
solutions of the continuous problem. A review of nonstandard finite difference methods can be found
in [17], see also [18] for another nonstandard scheme that is stable, implicit and three-level. Other
related work on CDR can be found in [19, 20].

The methods outlined above target some special properties of analytical solutions, especially the
non-negativity issue, and they are more complicated to apply than corresponding standard methods
such as the upwind scheme [21, 22]. In fluid dynamics problems in which the sought solution is the
fluid velocity, we do not really care about the sign of computed solutions, hence standard methods,
if properly applied, may be adequate.

Moreso, fluid dynamics models (and others too) usually include some parameters of interest. These
parameters may be part of the coefficients of the diffusive (viscous) or convective (inertia) terms.
For small values of such model parameters, such as ϵ, an approach to obtain an analytic solution
is via regular perturbation method, see [3, 23] for examples. And indeed, such obtained solutions
reasonably approximate the exact solutions provided the parameter remains small. However, when
the parameter becomes large such analytic solutions hugely deviate from the true solution of the
problem. Bearing this effect (on perturbation methods) in mind, we are curious to know if such
effects may also exist for numerical methods. In particular, we want to know if and how the values of
the parameter affect the convergence of numerical methods designed for problem (1.1)-(1.2), so that
one can understand when these methods are being properly applied to this model. We investigate
this for two standard finite-difference schemes being one central scheme and one backward scheme.
Note: the parameter of interest in this study is ϵ.

In section 2, we use the perturbation method to derive an analytic solution (here called perturbation
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solution) for problem (1.1)-(1.2). We then present the error term or residual with which the
perturbation solution fails to satisfy problem (1.1)-(1.2). This then leads to a modified model
which is exactly satisfied (for all values of ϵ) by the obtained perturbation solution. In section 3, we
present the two schemes and analyse them for error and convergence in section 3.2. The numerical
results are presented and discussed in section 4 and the paper is concluded in section 5.

2 Analytical Solution By Perturbation Method

We assume ϵ to be small, hence propose an analytical solution using perturbation method. To this
end, we assume a solution of the form:

u(z, t) = u0(z) + ϵe−ktu1(z). (2.1)

Substituting into (1.1), the order one, O(1), terms give the problem:

d2u0

dz2
= Px,

u0(0) = u0(h) = 0,

(2.2)

while the O(ϵ) terms give the following problem:

d2u1

dz2
+ ku1 =

du0

dz
,

u1(0) = u1(h) = 0.

(2.3)

Solving (2.2)-(2.3) and substituting into (2.1), we obtain the following approximate solution for
(1.1):

u(z, t) =
Px

2
z(z − h) + ϵe−kt

(
Acos(

√
kz) +Bsin(

√
kz) +

Px

k
(z − h

2
)

)
, (2.4)

where A = Pxh
2k

, and B = −
Pxh
2k

(1+cos(h
√
k))

sin(h
√
k)

.

2.1 The modified problem

It is easy to show that the analytic solution (2.4) satisfies the model problem (1.1) with a residual,
R(z, t) given by

R(z, t) = ϵ2
√
ke−2kt

(
Bcos(

√
kz)−Asin(

√
kz) +

Px

k
√
k

)
= O(ϵ2) (2.5)

which vanishes as soon as ϵ → 0. One can also observe that the solution (2.4) satisfies the steady
state solution of (1.1) exactly, namely

us(z, t) := lim
t→∞

u(z, t) =
Px

2
z(z − h), (2.6)

which is the exact steady-state solution of problem (1.1).

With the above residual, it is easy to verify that the solution (2.4) is an exact solution of the
following modified problem:

∂u(z, t)

∂t
+ ϵe−kt∂zu(z, t) =∂2

zzu(z, t)− Px +R(z, t), (z, t) ∈ (0, h)× (t0, T ),

u(0, t) =u(h, t) = 0, ∀t ≥ 0,

u(z, 0) =
Px

2
z(z − h) +Acos(

√
kz) +Bsin(

√
kz)

+
Px

k
(z − h

2
) ∀z ∈ [a, b].

(2.7)
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The above problem shall be referred to as the Modified Problem.

3 Numerical Schemes for the Modified Problem

We shall formulate the numerical schemes for (2.7) instead of (1.1), so that we can use (2.4) as a
benchmark for the numerical experiments. This is in line with the method of manufactured solutions
[24, 25] for verifying numerical schemes and codes.

Let M ∈ Z+, SI := {0, 1, 2, 3, · · · ,M} and SN := {0, 1, 2, · · · }. Define ∆z := h
M

and ∆t be given.
We discretize the domain, zi = i∆z ∀i ∈ SI , and in time tn = n∆t ∀n ∈ SN . We also define
cni ≈ c(xi, t

n). We consider the following two numerical schemes:

un+1
i − un

i

∆t
+ ϵe−ktn+1

un+1
i+1 − un+1

i−1

2∆z
=
un+1
i+1 − 2un+1

i + un+1
i−1

(∆z)2

− Px +R(zi, tn+1) (3.1)

and

un+1
i − un

i

∆t
+ ϵe−ktn+1

un+1
i − un+1

i−1

∆z
=
un+1
i+1 − 2un+1

i + un+1
i−1

(∆z)2

− Px +R(zi, tn+1) (3.2)

which we call, here, the central and backward schemes respectively. We will investigate the above
schemes by comparing their accuracies and convergence for different values of ϵ. In particular, our
primary goal is to understand how the consistency and convergence of the above schemes depend
on the parameter, ϵ.

3.1 Error analysis

We define the truncation error, Tn
c,i for the central scheme (3.1), as follows:

Tn
c,i =

u(zi, t
n+1)− u(zi, t

n)

∆t
+ ϵe−ktn+1 u(zi+1, t

n+1)− u(zi−1, t
n+1)

2∆z

− u(zi+1, t
n+1)− 2u(zi, t

n+1) + u(zi−1, t
n+1)

(∆z)2
+ Px −R(zi, t

n+1),

and we also define the truncation error, Tn
b,i for the backward scheme (3.2), as follows:

Tn
b,i =

u(zi, t
n+1)− u(zi, t

n)

∆t
+ ϵe−ktn+1 u(zi, t

n+1)− u(zi−1, t
n+1)

∆z

− u(zi+1, t
n+1)− 2u(zi, t

n+1) + u(zi−1, t
n+1)

(∆z)2
+ Px −R(zi, t

n+1).

Theorem 3.1 (Consistency of Central Scheme). The truncation error, Tn
c,i satisfies:

|Tn
c,i| ≤

∆t

2
Mtt +

(∆z)2

6
(2ϵfmaxMzzz +Mzzzz)

for all n ∈ SN ; i ∈ SI ,

(3.3)

where fmax := max |e−kt|,Mtt := max |utt(z, t)|,Mzzz := max|uzzz(z, t)| and Mzzzz := max|uzzzz(z, t)|
taking all over (z, t) ∈ [0, 1]× [0, T ] . Note that subscript, z, indicates partial derivatives.
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Proof. By the Taylor’s theorem:

u(zi, t
n+1)− u(zi, t

n)

∆t
= ut(zi, t

n+1) +
∆t

2
utt(zi, ρ

n+1), ρn+1 ∈ (tn, tn+1).

u(zi+1, t
n+1)− u(zi−1, t

n+1)

2∆z
= ux(zi, t

n+1) +
(∆z)2

6

(
uzzz(νl, t

n+1) + uzzz(νr, t
n+1)

)
,

νl ∈ (zi−1, zi), νr ∈ (zi, zi+1).

u(zi+1, t
n+1)− 2u(zi, t

n+1) + u(zi−1, t
n+1)

(∆z)2
= uzz(zi, t

n+1)

+
(∆z)2

12

(
uzzzz(µl, t

n+1) + uzzzz(µr, t
n+1)

)
, µl ∈ (zi−1, zi), µr ∈ (zi, zi+1).

Hence,

Tn
c,i = ut(zi, t

n+1) + ϵe−ktn+1

uz(zi, t
n+1)− uzz(zi, t

n+1) + Px −R(zi, tn+1)

=
∆t

2
utt(zi, ρ

n+1) + ϵe−ktn+1 (∆z)2

6

(
uzzz(νl, t

n+1) + uzzz(νr, t
n+1)

)
− (∆z)2

12

(
uzzzz(µl, t

n+1) + uzzzz(µr, t
n+1)

)
≤ ∆t

2
utt(zi, ρ

n+1) + ϵe−ktn+1 (∆z)2

6

(
uzzz(νl, t

n+1) + uzzz(νr, t
n+1)

)
+

(∆z)2

12
(Mzzzz +Mzzzz)

≤ ∆t

2
Mtt + ϵfmax

(∆z)2

6
2Mzzz +

(∆z)2

6
Mzzzz

=
∆t

2
Mtt +

(∆z)2

6
(2ϵfmaxMzzz +Mzzzz) .

Hence, the result.

Theorem 3.2 (Consistency of Backward Scheme). The truncation error, Tn
b,i of the backward

scheme (3.2) satisfies:

|Tn
b,i| ≤

∆t

2
Mtt + ϵfmax

∆z

2
Mzz +O((∆z)2).

for all n ∈ SN ; i ∈ SI ,
(3.4)

where fmax := max |e−kt|,Mtt := max |utt(z, t)| and Mzz := max|uzz(z, t)| taking all over (z, t) ∈
[0, 1]× [0, T ].

Proof. By the Taylor’s theorem:

u(zi, t
n+1)− u(zi−1, t

n+1)

∆z
= uz(zi, t

n+1) +
(∆z)

2
uzz(si, t

n+1),

si ∈ (zi−1, zi).

Hence,

Tn+1
b,i = ut(zi, t

n+1) + ϵe−ktn+1

uz(zi, t
n+1)− uzz(zi, t

n+1) + Px +R(zi, tn+1)

=
∆t

2
utt(zi, ρ

n+1)− ϵe−ktn+1 ∆z

2
uzz(si, t

n+1) +O((∆z)2)

≤ ∆t

2
Mtt + ϵfmax

∆z

2
Mzz +O((∆z)2).

Hence, the result.
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3.2 Convergence analysis

Define the following:

A0 =
∆t

2∆z
ϵe−ktn+1

, µ0 =
∆t

(∆z)2
. (3.5)

Theorem 3.3 (Convergence of Central Scheme). Let ū(zi, t
n) be the exact solution of (2.7) and

un
i be the numerical solution computed with the scheme (3.1). Assuming that

ϵ ≤ 2

∆zfmax
, (3.6)

then

max
1≤i≤N−1

|ū(zi, tn)− un
i | ≤ T

[
∆t

2
Mtt +

(∆z)2

6
(2ϵfmaxMzzz +Mzzzz)

]
for all n ∈ SN .

Proof. Define the error eni = ū(zi, t
n) − un

i and the maximum error, En = maxi |eni |. The central
scheme (3.1) can be written as

(−A0 − µ0)u
n+1
i−1 + (1 + 2µ0)u

n+1
i + (A0 − µ0)u

n+1
i+1 = un

i −∆t(Px −Rn+1
i ).

Combining this with the truncation error equation give the following error equation:

(1 + 2µ0)e
n+1
i = (A0 + µ0)e

n+1
i−1 + (µ0 −A0)e

n+1
i+1 + eni +∆tTn

c,i

≤ |(A0 + µ0)||en+1
i−1 |+ |(µ0 −A0)||en+1

i+1 |+ |eni |+ |∆tTn
c,i|. (3.7)

The inequality (3.6) implies

ϵfmax
∆t

2∆z
≤ ∆t

(∆z)2
,

that is,

A0 = ϵe−ktn+1 ∆t

2∆z
≤ ϵfmax

∆t

2∆z
≤ ∆t

(∆z)2
= µ0.

Hence, the inequality (3.7) becomes:

(1 + 2µ0)e
n+1
i ≤ (A0 + µ0)|en+1

i−1 |+ (µ0 −A0)|en+1
i+1 |+ |eni |+ |∆tTn

c,i|

≤ (A0 + µ0)E
n+1 + (µ0 −A0)E

n+1 + En +∆t|Tn
c,i|

≤ 2µ0E
n+1 + En +∆tTc,max.

Taking maximum over i, we have

En+1 ≤ En +∆tTc,max ≤ E0 + (n+ 1)∆tTc,max

or

En ≤ E0 + n∆tTc,max = n∆tTc,max ≤ TTc,max

≤ T

[
∆t

2
Mtt +

(∆z)2

6
(2ϵfmaxMzzz +Mzzzz)

]
(by theorem 3.1 above).
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Remark 3.1. The inequality (3.6) gives a theoretical upper bound on ϵ for the central scheme (3.1)
to be convergent.

Theorem 3.4 (Convergence of Backward Scheme). Let ū(zi, t
n) be the exact solution of (2.7) and

un
i be the numerical solution computed with the scheme (3.2), then

max
1≤i≤N−1

|ū(zi, tn)− un
i | ≤ T

(
∆t

2
Mtt + ϵfmax

∆z

2
Mzz +O((∆z)2)

)
for all n ≥ 1.

Proof. Define the error eni = ū(zi, t
n)−un

i and the maximum error, En = maxi |eni |. The backward
scheme (3.2) can be written as

(−A0 − µ0)u
n+1
i−1 + (1 +A0 + 2µ0)u

n+1
i − µ0u

n+1
i+1 = un

i −∆t(Px −Rn+1
i ).

Combining this with the truncation error equation give the following error equation:

(1 +A0 + 2µ0)e
n+1
i = (A0 + µ0)e

n+1
i−1 + µ0e

n+1
i+1 + eni +∆tTn

b,i

≤ |(A0 + µ0)||en+1
i−1 |+ |µ0||en+1

i+1 |+ |eni |+ |∆tTn
b,i|

≤ (A0 + 2µ0)E
n+1 + En +∆tTb,max.

Taking maximum over i, we have

En ≤ E0 + n∆tTb,max = n∆tTb,max ≤ TTb,max

≤ T

(
∆t

2
Mtt + ϵfmax

∆z

2
Mzz +O((∆z)2)

)
(by theorem 3.2 above).

Hence this scheme converges for all values of the model parameter.

Remark 3.2. By setting R(xi, t
n+1) to zero in the two schemes, we have that all the above

theoretical results are also true for problem (1.1).

4 Numerical Results

We now present some numerical experiments for the numerical schemes discussed above. When
not specified, we investigate the results with the following data: h = 0.2, k = 0.5, Px = 1.0 and for
various values of ϵ.

4.1 Experimental order of convergence (EOC)

We numerically verify the theoretical results obtained for the order of convergence of the presented
schemes. This is done via an experimental order of convergence (eoc) study, and the goal is to
numerically verify the theoretical derived order of accuracy of the schemes. The formula for the
eoc can be found in [1], see also [26]. For this purpose, we use ∆t = 0.005, ϵ = 100.0, k = 0.5, Px =
1.0, h = 0.2 and for various numbers of grid points, namely Npts = 3×2j for j = 0, 1, 2, · · · , 11. The
results for each grid spacing is outputted at time t = 0.5, and the errors (in 2-norm) are computed.
The errors and computed eoc for the both schemes are displayed in table 4.1. The results confirm
that the central and backward schemes have spatial accuracy of second and first orders, respectively,
as theoretically obtained.

8
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Table 1. Experimental Order of Convergence

Npt Errorcentral EOCcentral Errorbackward EOCbackward

3 0.0160733830815 - 0.00201165875699 -

6 0.00103402234412 3.958334349258829 0.00102656371945 0.9705624185080126

12 0.000195312455426 2.404411500567002 0.00052234246 0.9747552923027915

24 4.37756536488e-05 2.157583329463647 0.000264277857679 0.9829404268652807

48 1.04336838914e-05 2.0688800909313216 0.000133127379183 0.9892482462607187

96 2.55058205972e-06 2.032350207574197 6.6851013295e-05 0.9937859754012208

192 6.30468800041e-07 2.01632963431968 3.35034993538e-05 0.9966376389468367

384 1.56441552848e-07 2.010801216255631 1.67719316502e-05 0.998262933233761

768 3.8666953969e-08 2.016450737378392 8.39091320949e-06 0.9991491186068366

1536 9.3211912107e-09 2.052514876648072 4.19649071027e-06 0.9996444451184606

3072 2.03359980337e-09 2.196478541317043 2.09828760576e-06 0.9999709499361441

6144 4.76141336684e-10 2.094574007513257 1.04893637694e-06 1.0002852630539303

4.2 Presence of oscillatory solutions

We investigate the schemes for the presence of numerical oscillations using various values of ϵ.

Figure 2 shows the results for small values of ϵ (0 < ϵ ≤ 1) using only 21 numerical grid points.
We make the following observations (i) The numerical solutions (both) highly agree with the exact
solution for all values of ϵ, and (ii) The two schemes compute very close results. These results are
replicated in figure 3. which are obtained using 101 grid points and for the same values of ϵ. The
conclusion from these experiments is that for small values of ϵ, the numerical schemes are very
highly accurate even with very small number of grid points.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
z

0.005

0.004

0.003

0.002

0.001

0.000

u

 Number of Grid Points = 21
 Theoretical Bound on  is 200.0

Exact solution for  =0.1
Central scheme for  =0.1
Backward scheme for  =0.1
Exact solution for  =0.6
Central scheme for  =0.6
Backward scheme for  =0.6
Exact solution for  =1.0
Central scheme for  =1.0
Backward scheme for  =1.0

Fig. 2. Small values of the parameter using 21 grid points
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0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
z

0.005

0.004

0.003

0.002

0.001

0.000
u

 Number of Grid Points = 101
 Theoretical Bound on  is 1000.0

Exact solution for  =0.1
Central scheme for  =0.1
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Fig. 3. Small values of the parameter using 101 grid points

Next, we increase the values of the model parameter to 10, 50 and 200. The results for 21 grid
points are shown in figure 4. We can see that the numerical schemes experience more error than
when ϵ is small. In particular, the backward scheme is much less accurate than the central scheme,
and the errors increase as ϵ increases, keeping the number of grid points is kept constant - it is worst
for ϵ = 200. Now, we increase the grid points to 101 in figure 5. and observe that the errors in the
numerical solutions reduce drastically, especially for the central scheme. For the central scheme,
the theoretically estimated threshold for ϵ using this grid spacing is 1000 which is far more than the
values used in the experiments reported in this figure . We can see that no instability is observed
for the central scheme. We also tested other values of ϵ and found that the central scheme will never
produce oscillatory solutions as long as ϵ is less than its threshold of 1000. Infact, we observed that
even with values of ϵ more than 1000 it the central scheme still computes non-oscillatory solutions.
The oscillations only appear when ϵ is very much larger than the threshold (multiples of it). So, 1000
is a safe upper bound to guarantee non-oscillatory solutions for the central scheme. The numerical
results show that the backward scheme never produces oscillatory solutions no matter how large
the value of ϵ.
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Fig. 4. Results with ϵ = 10, 50, 200 using 21 grid points
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Fig. 5. Results with ϵ = 10, 50, 200 using 101 grid points

Finally, we take ϵ to be very large values (up to millions). Figure 5 shows the results for 1.0×106 ≤
ϵ ≤ 1.0 × 107 using 101 grip points, so that the theoretical bound on ϵ for this grid is still 1000.
We can see that both numerical schemes remain stable for values of ϵ as large as one million.
For ϵ = 4.0 × 106 we can see that the central scheme becomes unstable (see the kicks), while the
backward scheme becomes less accurate than it is for ϵ = 1.0× 106. This is a numerical verification
that the theoretical result truly proposes a safe bound for the stability of the central scheme. The
instability becomes worse on increasing the parameter to ten million, see figure 6.
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Fig. 6. Results with ϵ = 1× 106, 4× 106, 1× 107 using 101 grid points
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Fig. 7. Results with ϵ = 1× 106, 4× 106, 1× 107 using 202 grid points

Since the theoretical results relate the bound on the parameter to the grid spacing, it means that
in order to eliminate the oscillatory behavior of the solutions the grid spacing has to be reduced.
Hence, we decrease the grid spacing by using 202 grid points, the results are shown in figure 7. We
can see that the oscillation disappears and the central scheme becomes highly accurate even more
than the backward scheme.

5 Conclusion

Theoretical and numerical investigation of two numerical schemes have been carried out in this
study. The finite difference methods are adopted because of their ease of use and implementation,
moreover unlike the analytical methods, the scheme and code can be easily reused for more complicated
problems without spending days doing hand calculations. One central and one backward scheme
are considered and the influence of a model parameter analysed. It is theoretically proven and
numerically verified that the stability of the central scheme is influenced by the value of a model
parameter. We derive an estimate for the upper bound of the parameter. No numerical oscillation
is observed below this theoretically obtained threshold. It is also observed that the theoretical
threshold is a severe under-estimation of the numerically observed bound, hence we conclude that
the theoretical bound is a very safe value to guarantee convergence.
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