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Table 1. Main Biochemical characteristics of Bacillus cereus strains used in this work. 
 

Strains 
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e Resistance to βLactams 

CAZ AMP OX KF CRO 

B. cereus 14 1 - + + - - + + R R R R R 
B. cereus 18 5 - + + - + + + R R R R R 
B. cereus 44 5 - + + - + + + R R R R R 
B. cereus 80 3 - + + - + + + R R R R R 
B. cereus 82 4 - + + - + + + R R R R R 
B. cereus 100 4 + + + + + + + R R R R R 
B. cereus 107 6 + + ± + + + + R R R R R 
B. cereus 109 2 - + + - + + + R R R R R 
B. cereus 110 7 - + + - - + + R R R R R 
B. cereus 120 3 - + + - + + + R R R R R 
B. cereus 123 6 + + ± - + + + R R R R R 
B. cereus 89 2 - + + - - + + R R R R R 
B. cereus103 1 - + + - + + + R R R R R 
B. cereus126 8 + ± + - + + + R R R R R 

 

(+) positive reaction, (-) negative reaction. (a)Sources: (1): Pasteurized milk storage tank, (2): Pasteurized recombinated milk storage tank (3): 
Raw recombinated milk storage tank, (4): raw milk storage tank, (5): canalization of pasteurized milk; (6): canalization of pasteurized 
recombinated milk; (7): Canalization of raw recombinated milk; (8): Canalization of raw milk. (b) ADH: Arginine dihydrolase, (c) GEL: Gelatinase 
production, (d)GLU: D-Glucose utilization, (e) SAC:  D-saccharose utilization,(f)AMY: Amygdalin utilization. 

 
 
 

such as hydrophobicity and electronegativity (Andersson 
et al., 1998), however, some differences have been reported 
within the B. cereus group. Some spores of this group are 
hydrophilic (Andersson and Rönner, 1998; Tauveron et 
al., 2006) and the exosporium size and the length of the 
hair-like nap can be very different (Sylvestre et al., 2003; 
Tauveron et al., 2006). 

In this paper, the physico-chemical characterization of 
fourteen (14) spores has been carried. These spores 
come from our B. cereus collection isolated from dairy 
equipment surfaces of a dairy plant located in Tlemcen 
(north-western of Algeria). The method of microbial 
adhesion to hydrocarbon (MATH) was used to examine 
the hydrophobic characteristics of B. cereus spores and 
the spore zeta potential was also measured. 

On the other hand, we investigated if the exosporium 
and spore surfaces, the length and the number of 
appendages were important for spore adhesion to the 
stainless steel surface. This work deals with the 
optimization of cleaning procedures and thermochemical 
disinfection using detergents and disinfectants already 
marketed in Algeria. 
 
 
MATERIALS AND METHODS 
 
Origin of B. cereus strains and stock spore production 
 
Samples came from inner tanks surfaces of pasteurized and 
unpasteurized local milk, tanks of pasteurized and unpasteurized 
recombined milk and from packaging lines.  

Fourteen  B.  cereus  strains  from  our  collection  of  155  strains 

isolated in 2010-2012 from dairy plant processing lines located in 
Tlemcen (north-western of Algeria) were analyzed in this study 
(Table 1). All the equipment was sampled after the cleaning and 
sanitizing procedures.  

Biochemical identification of B. cereus was done by deter-
mination of respiratory enzymes: catalase, cytochrome-oxidase 
(TMPD test) and the reduction of nitrate. Additional biochemical 
tests for β-galactosidase (ONPG), ornithine decarboxylase (ODC), 
lysine decarboxylase (LDC) and the arginine-dihydrolase (ADH) 
activity, production of H2S, use of the citrate, production of indole 
and Voges-Proskauer reaction, gelatin liquefaction and degradation 
of some sugars were performed. These tests were done using the 
API20E plate (bioMerieux SA, Lyon, France, test kit) (EL Sersy and 
Mohamed, 2011). 

We also looked for: Extracellular hydrolytic activity as for amylolytic 
and proteolytic activity:, namely the search of the caseinase activity, 
and the determination of lipolytic activity (lecithinase test). Resis-
tance to Four β-lactam antibiotics: ceftazidime (CAZ), ampicilline 
(AMP), céfalotine (KF), oxacilline (OX) and ceftriaxone(CRO)  (Bio-
Rad- Exosporium structure was observed by transmission electron 
microscopy (Table 1).  

Sporulation was induced by adding MgSO4 (40 ppm w/v) and 
CaCl2 (100 ppm w/v) in nutrient agar, and followed by microscopic 
observations. When at least 90% of spores were observed (in 
general after 4 to 6 days at 37°C), the culture was harvested and 
subsequently washed with sterile distiller water (three times) then 
centrifuged (4000 rev/min) for 15 min in an Eppendorf Centrifuge 
5810 R (Leguerinel et al., 2000). 

The spore suspensions were stored at 4°C in sterile distiller 
water until use. Before each experiment two additional washes with 
sterile distiller water were performed. 
 
 

Determination of physico-chemical properties of spores 
 

In  order  to  characterize  the  spore hydrophobic property, a MATH 



 
 
 
 
partitioning method was used, based on the affinity of spores to an 
apolar solvent, that is, hexadecane (Sigma). The surface hydro-
phobicity of bacterial cells has been previously determined by 
several methods based on the precipitation of cells by salts 
(Leguerinel et al., 2000), hydrophobic interaction chromatography 
(Doyle et al., 1984; Smyth et al., 1978), and adherence to various 
liquid hydrocarbons including hexadecane (Craven and Blankenship, 
1987; Kutima and Foegeding, 1987; Doyle et al., 1984; Rosenberg 
et al., 1980) but the hexadecane-aqueous partition system used in 
our work is one of the simplest and fastest methods described.  

Spore suspensions in a saline solution (0.85% NaCl solution) 
were adjusted to an absorbance of 0.5 to 0.6 at 600 nm (A0) in 
glass tubes (10 x 75 mm). Three milliliter aliquots of each spore 
suspension and 500 μL of hexadecane were vortexed four times 
ranging from 5 to 150 s and left to settle for 30 min, to allow 
complete separation into two phases. The absorbance at 600 nm of 

the aqueous phase was measured (At), and then 
୲


ൈ 100 was plotted 

against the vortexing time (s). The initial slope, giving the initial 
removal rate (R0) from the aqueous suspension, is related to the 
hydrophilic/hydrophobic spore character. A spore was considered 
to be hydrophobic when (R0) fell between −4.0 and −6.0 and to be 
highly hydrophobic for lower values. 

The spore zeta potential was measured using a zetameter 
(ZetaCompact, CAD Instrumentation, France). This was determined 
from the electrophoretic mobility using Helmholtz–Smoluchowski 
equation. For this purpose, spores were suspended in 1 mM KNO3 
to obtain around 50 spores per analysis. The pH was adjusted to 
values ranging from 3 to 9, with HNO3 1 mM or KOH 1 mM. Trials at 
pH 2.86 were performed directly in HNO3 1 mM. Each sample was 
analyzed in duplicate (10). 
 
 
Transmission electron microscopy (TEM) 
 
Spores were adsorbed onto Formvar-coated grids (EMS, 22400) 
and examined after negative staining with 2% w/v uranyl acetate 
(EMS, G100H-Cu) on a Hitachi H7500 electron microscope at an 
accelerated voltage of 80 kV. About 50 TEM pictures were taken for 
each spore. 
 
 
Test of spore adhesion to stainless steel coupons 
 
In order to determine the relationship between the physico-chemical 
properties (hydrophobicity and electrophoretic mobility) and adhesion, 
spores were analyzed for their ability to adhere to stainless steel 
coupons in static conditions. 

The adhesion of spores from four selected B. cereus strains to 
stainless steel was tested  on coupons (15 × 45 mm, AISI 304 L, 
bright annealed), which were filled-up by vertical  immersion for 4 h 
in an aqueous spore suspension (105 spores/mL), and then quickly 
rinsed with sterile water. The fouled coupons were subjected to 
ultrasonication in 10 mL Tween 80 2% (v/v) during 5 min, (Ultrasonic 
bath, Deltasonic, France). The detached spores following sonication 
were enumerated on nutrient agar (Bio-Rad Laboratories, France), 
after 48 h at 30°C (Faille et al., 2013). All experiments were 
repeated three times 
 
 
RESULTS AND DISCUSSION  
 
In the present study, we evaluated the surface physico- 
chemical properties of spores from fourteen B. cereus 
strains and the adhesion abilities of 4 representative 
isolates (2 with hydrophobic and 2 with hydrophilic spores) 
on the stainless steel surface. 
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Table 2. Hydrophobicity and zeta potential of fourteen 
Bacillus cereus spores isolated from an Algerian dairy 
plant. 
 

Strains 
Hydrophobicity 

(s-1) 
Zeta potential 

(mV) 

B. cereus 014 2.34±0,58 -26.630±1,99 
B. cereus 018 3.53±0,08 -26.990±2,47 
B. cereus 044 2.16±0,70 -19.360±3,96 
B. cereus 100 2.10±0,38 -37.055±1,067 
B. cereus 107 1.79±0,95 -32.300±1,51 
B. cereus 109 0.107±0,20 -20.806±0,42 
B. cereus 110 5.32±1,07 -28.085±10,38 
B. cereus 120 1.34±1,28 -31.225±3,32 
B. cereus 123 4.34±0,83 -26.590±4,46 
B. cereus 80 1.17±0,67 -19.315±0,091 
B. cereus 82 2.72±0,59 -20.910±3.74 
B. cereus 89 2.85±1,02 -27.065±4,49 
B. cereus103 2.05±0,1 -12.285±1,18 
B. cereus126 0.250±1,58 -44.510±7,28 

 
 
 

The results on the spores hydrophobic/hydrophilic 

character estimated by MATH assay and their zeta 
potential are given in Table 2, Figures 1 and 2. From the 
values obtained in this work, the isolates were classified 
in three groups:  
 
Group 1: Highly hydrophilic spores (14.29%) including B. 
cereus 109 spores with an initial removal rate of −0.107 
s−1 and B. cereus 126 with initial removal rates around 
−0.25 s−1. 
Group 2: Moderate hydrophilic spores (64.29%) including 
spores from 9 B. cereus strains with initial removal rates 
between 2.05 s−1 (B. cereus 103) and 2.85 s−1 (B. cereus 
89).  
Group 3: moderately hydrophobic (21.43%) including 
spores from 3 B. cereus strains as indicated by the initial 
removal rate ranging from −3.53 s−1 (B. cereus 18) to 
−5.32 s−1 (B. cereus 110).  

The spore electric charge characterized by the zeta 
potential indicated a clear electronegative character of all 
strains at pH 7.0. However wide variations were observed 
between strains (zeta potential ranging from −12.28 to 
−44, 51 mV). The less negative charge was -12.28 (strain 
103). In conclusion, this data set showed no correlation 
between the hydrophilic/hydrophobic character and spore 
electric charge (R2꞊0.0137). 

In this study hydrophobicity and surface electrical 
properties of B. cereus spores were in the range or lower, 
than that observed in previously published data. Indeed, 
Ankolekar and Labbe (2010) found that the values of 
hydrophobicity ranged from 55.6 to 14.1% and those for 
Zeta potential from -8.18 to -26.8. Instead Faille et al. 
(2010 a), found that the values of hydrophobicity ranged 
from 9  (≈45%)  to 0.5  (≈2.5%)  and  Zeta potential from 
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Conclusion 
 
The spores’ surface characterization showed that two-
thirds of our spores were moderate hydrophilic and the 
spore electric charge characterized by the zeta potential 
indicated a clear electronegative character of all strains at 
pH 7.0; however, huge variations were observed between 
strains.  

Our results show also that there is no correlation 
between adhesion and Zeta potential characters. A weak 
correlation was found between bacterial hydrophobicity 
and Zeta potential and a real correlation was found 
between bacterial hydrophobicity and adhesion. 

Also, the ability of spores to adhere to stainless steel 
surface was essentially related to the differences in the 
length of the appendages, the surface of the exosporium 
and spore and electrical charge. 

These data are very important. In fact we can use 
chemical agents that degrade appendages or modify the 
surface properties (enzymes or surfactants). We can also 
try physical treatments as ultrasonic cleaners to improve 
cleaning and disinfection strategies. 
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