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ABSTRACT 
 

Though the digital images are considered as the medium of transmitting visual information and 
crucial technique of modern communication, the obtained images sometimes may be corrupted by 
unexpected noise. However, these noisy images require further processing, which involves the 
manipulation of the image data to produce a visually high-quality image. In this paper, several 
thresholding techniques, namely SureShrink, VisuShrink and BayeShrink have been presented and 
the suitable one is determined. In addition, various noise models, for instance, Gaussian noise, salt 
and pepper noise and speckle noise, along with additive and multiplicative types have been utilized. 
The selection of the denoising algorithm being application dependent, it is crucial to have proper 
knowledge regarding the noise in each image for the purpose of selecting the appropriate algorithm. 
Typically, the wavelet-based approach finds applications in denoising images corrupted with 
Gaussian noise. Here the mean square error of the images has been determined as a quantitative 
measure. 
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1. INTRODUCTION 
 

Discussing the image analysis is related to 
representing a signal which was, at first, 
introduced by Joseph Fourier [1]. Following him, 
another prominent mathematician Alfred Haar 
[2], in 1909, developed the theory of wavelet in 
his PhD thesis. Besides, Edwards [3] described 
DWT. In addition, Paul Levy, 1930s found the 
scale-varying Haar basis function superior to 
Fourier basis functions. The concept of wavelets 
in its present theoretical form was, at first, 
proposed by Jean Morlet and Alex Grossman 
(continuous wavelet transform, 1982). 
 

Furthermore, the methods of wavelet analysis 
have been developed mainly by Meyer [4], 
whereas, Mallat [5] developed a multiresolution 
analysis using wavelets. Afterwards, Daubechies 
[6,7] used the theory of multiresolution wavelet 
analysis to construct her own family of wavelets. 
Her set of wavelet orthonormal basis functions 
has become the cornerstone of wavelet 
applications today. With her work, the theoretical 
treatment of wavelet analysis is as much as 
covered. 
 

Wavelet is, now, being implemented as an 
indispensable tool for a numerous purpose, 
namely data analysis, image processing, signal 
processing [8,9,10] including compression and 
denoising, where, for example, discretely 
sampled time-series data might need to be 
analysed [11]. Typically, there exists noise in the 
signal during its preservation, which is likely to be 
erased with the help of wavelet denoising, 
regardless of its frequency content [12]. Wavelet 
thresholding, first proposed by Donoho [13], is a 
procedure for estimating signal that boosts the 
signal denoising using wavelet transform. It 
alleviates the insignificant noises, turning out it to 
be simple and effective, and relays significantly 
on the choice of the thresholding parameter 
along with the threshold determines [14]. Winkler 
[15], in 1995, introduced Monte Carlo methods to 
analyse the image, where Diego Maldonado 
(2009) for denoising. 
 

Diversified research works have been conducted 
throughout the world, for instance, Xiao and 
Zhang [16], in 2011, explored the properties of 
several representative thresholding techniques, 
such as VisuShrink, SureShrink, BayesShrink 
and Feature Adaptive Wavelet Shrinkage [17]. In 
addition, the optimal threshold can be estimated 
from the image statistics for getting better 

performance of denoising in terms of clarity or 
quality of the images. Besides, Saurabh [18] 
illustrated image denoising from the sonar image 
by using VishuShrink, BayesShrink and 
NeighShrink experimentally and compared the 
result in terms of various image quality 
parameters (PSNR, MSE, SSIM and Entropy). 
On top of that, Gauhathakurta [19] used wavelet 
time to determine the best one for image 
denoising, where MSE and PSNR have been 
measured as a quantitative performance tool. 
Nigam [20] studied four different thresholding 
techniques (Visual Shrink, Normal or Bayesian 
Shrink, Neighbour Shrink and Modified 
Neighbour Shrink) in order to denoise image in 
the wavelet domain [21]. Visual and Normal 
Shrink is independent of window size, whereas 
the other two shrinks are not. The use of 
available biorthogonal wavelets in image 
denoising is typically less common because of 
their poor performance. To eradicate this 
impediment, Pragada [22] presented a method to 
design an image-matched biorthogonal wavelet 
bases and report on their potential for denoising.   
 
Taking everything into consideration a technique 
is proposed in this paper, which is likely to 
eliminate the complexities of denoise image 
successfully compared to the existing 
techniques. 
 

2. SUMMARY OF METHODS FOR 
DENOISING IMAGE ANALYSIS 

 
There are numerous procedures for restoring an 
image from noisy distortions [12]. The denoising 
methods tend to be problem specific, for 
instance, a technique to denoise satellite images 
may not be perfect for denoising medical images. 
A high-quality image is used for the purpose of 
quantifying the performance of diversified 
denoising algorithms, and at the same time, the 
noise adds to it [12]. Consequently, an input is 
provided to the denoising algorithm, which 
produces an image approximately the same as 
an original high-quality image. Afterwards, MSE, 
as well as the visual interpretation, are computed 
for comparing the performance of each 
algorithm. 
 

It requires to be well-known to the characteristics 
of the degrading system along with the noises, at 
first, for a successful image denoising method 
[12]. The “Linear operation” as shown in the 
following Fig. 1, the image  ,s x y  is blurred by a 



linear operation and noise  ,n x y

form the degraded/corrupted image 

which is then convolved with the restoration 
procedure  ,g x y  to produce the restored image 

 ,z x y  [12]. 

 

A threshold is a fixed value such that all the 
coefficients that are larger than this value are 
kept and ones smaller than it is zero out. So, by 
thresholding wavelet coefficients, are simply 
removing coefficients smaller than the threshold 
by setting them equal to zero. There are many 
schemes of thresholding. In this report, we will be 
discussing such schemes, namely soft 
thresholding, hard thresholding, VisuShrink, 
SureShrink, and BayesShrink thresholding. 
 

3. DIFFERENT KINDS OF NOISE 
(GAUSSIAN NOISE) 

 

Gaussian noise is evenly distributed over the 
signal, where each pixel in the noisy image is 
constructed using the sum of the true pixel value 
and a random Gaussian distributed noise value
[12]. Typically, Gaussian distribution has a bell
shaped probability distribution function 
by, 

 

Where, g, m and σ are represented as, 
respectively, grey level, the mean of the function 
and standard deviation of the noise. The 
graphical representation of the Gaussian 
distribution is shown in Fig. 2. 

Fig. 3. Original and Gaussian noise image with mean=0 and variance=0.05
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Fig. 1. Denoising concept 12 
 

,n x y  is added to 

form the degraded/corrupted image  ,w x y , 

which is then convolved with the restoration 
to produce the restored image 

A threshold is a fixed value such that all the 
coefficients that are larger than this value are 

ones smaller than it is zero out. So, by 
thresholding wavelet coefficients, are simply 
removing coefficients smaller than the threshold 
by setting them equal to zero. There are many 
schemes of thresholding. In this report, we will be 

s, namely soft 
thresholding, hard thresholding, VisuShrink, 
SureShrink, and BayesShrink thresholding.  

DIFFERENT KINDS OF NOISE 

Gaussian noise is evenly distributed over the 
signal, where each pixel in the noisy image is 

using the sum of the true pixel value 
and a random Gaussian distributed noise value 

. Typically, Gaussian distribution has a bell-
shaped probability distribution function [12] given 

 
 
 
 

σ are represented as, 
respectively, grey level, the mean of the function 
and standard deviation of the noise. The 
graphical representation of the Gaussian 

 
Fig. 2. Gaussian distribution 

 
On an image, Gaussian noise (with variance 
0.05) looks as shown in Image. 
 

3.1 Salt and Pepper Noise 
 
Salt and pepper noise, also referred to as 
intensity spikes, is generally considered an 
impulse type of noise, which is caused by 
errors in data transmission [12]. It has only two 

possible values, namely a  and 
probabilities are individually less than 0.1. The 
corrupted pixels are alternately set to the 
minimum or maximum value, which 
image a “salt and pepper” like appearance. For 
an 8-bit image, the typical value of pepper noise 
is 0 and for salt noise 255. From various studies, 
it has been explored that maximum noises are 
generally caused by malfunctioning of pixel 
elements in the camera sensors, faulty memory 
locations, or timing errors in the digitization 
process. 

 

 

. Original and Gaussian noise image with mean=0 and variance=0.05
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. Gaussian distribution [12] 

Gaussian noise (with variance 

Salt and pepper noise, also referred to as 
intensity spikes, is generally considered an 
impulse type of noise, which is caused by               

. It has only two 

b , where the 
probabilities are individually less than 0.1. The 
corrupted pixels are alternately set to the 
minimum or maximum value, which gives an 
image a “salt and pepper” like appearance. For 

bit image, the typical value of pepper noise 
is 0 and for salt noise 255. From various studies, 
it has been explored that maximum noises are 
generally caused by malfunctioning of pixel 

n the camera sensors, faulty memory 
locations, or timing errors in the digitization 

 

. Original and Gaussian noise image with mean=0 and variance=0.05 



 
Fig. 4. Salt and Pepper noise 

 

The probability density function for this type of 
noise is shown in Figure. Salt and pepper noise 
with a variance of 0.05 is shown in Image.
 

3.2 Speckle Noise 
 

The source of speckle noise [23
multiplicative, and occurs, in maximum coherent 
 

Fig. 5. Salt and pepper noise with variance 0.05
 

Fig. 7
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. Salt and Pepper noise [12] 

probability density function for this type of 
noise is shown in Figure. Salt and pepper noise 
with a variance of 0.05 is shown in Image. 

23], which is 
multiplicative, and occurs, in maximum coherent 

imaging systems, namely laser, acoustics and 
SAR (Synthetic Aperture Radar) imagery, is 
attributed to random interference between the 
coherent returns [24]. And the most interesting 
point should be mentioned is that Speckle noise 
is basically defiled, in accordance with a gamma 
distribution, as follows 
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, where variance is

2a    and g  is the grey level. 

 
The gamma distribution is given below in Fig. 6.
 
On an image, speckle noise (with 
looks as shown in Image. 

 
. Salt and pepper noise with variance 0.05 

 
 

Fig. 6. Gamma distribution 
 

 
7. Speckle noise with variance 0.05 
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4. VARIOUS TYPES OF IMAGE 
SHRINKING 

 

4.1 VisuShrink 
 
VisuShrink, introduced by Donoho [13], follows 
the hard thresholding rule, which is, in addition, 
referred to as a universal threshold and is 
defined as     
 

        2logt n                                         (1) 

 

Where 
2  and n represent respectively the 

noise variance existing in the signal and signal 
size (number of samples) [25]. An estimate of the 
noise level   depending on the median 
absolute deviation [26] given by 
 

  
6745.0

12,.......,1,0:
ˆ

1
,1 






j
kj kgmidian

     (2) 

Where 1,j kg  corresponds to the detail 

coefficients in the wavelet transform [25]. 
 
VisuShrink, instead of minimizing the MSE, can 
be used as a thresholding technique that shows 
near optimal minimax error properties and 
provides with high probability that the estimates 
are as smooth as the true underlying functions 
[25]. Typically, VisuShrink removes too many 
coefficients. So, it is known as overly smoothed 
yield recovered image. Another drawback is the 
speckle noise, which can’t be effortlessly erased, 
and only additive noise can be dealt with [25]. 
VisuShrink follows the global thresholding 
scheme, where a single value of the threshold is 
globally applied to all the wavelet coefficients. 
 

4.2 SureShrink 
 
The SureShrink, a combined form of universal 
threshold and SURE (Stein’s Unbiased Risk 
Estimator) threshold, was firstly introduced by 
Donoho and Johnstone [27]. This method 

specifies a threshold value jt for each resolution 

level j in the WT, which is referred to as level 
dependent thresholding [28]. The principal aim of 
SureShrink is to minimize the MSE and is 
defined as 
 

MSE=  



n

yx

yxsyxz
n 1,

2

2
),(),(

1
                       (3) 

where  ,z x y represents the signal estimate, 

while  ,s x y  denotes the original signal without 

noise and n  is considered as the signal size. 
SureShrink suppresses noise by thresholding the 
empirical wavelet coefficients. The SureShrink 

threshold t  is defined as  min , 2 logt t n     

where, t denotes the value that minimises SURE, 
 represents the noise variance computed from 
Equation (2), and n  is the image size. 
SureShrink, soft thresholding employed here, is 
adaptive in the sense that a threshold level is 
assigned to each dyadic resolution level by the 
principle of minimising the SURE for threshold 
estimates [28]. Furthermore, it is smoothness 
adaptive, which means that if the unknown 
function contains abrupt changes or boundaries 
in the image, the reconstructed image also does. 
 

4.3 BayesShrink 
 
BayesShrink was proposed by Chang et al. [29] 
for minimizing the Bayesian risk. The 
BayesShrink basically uses the soft thresholding, 
relies on subband, which means that 
thresholding is accomplished at each band of 
resolution in the wavelet decomposition [25]. Like 
the SureShrink, it is smoothness adaptive, which 
is defined as 
 

.
2

B
s

t 
                                       (4) 

 

where 
2  and

2
s  are respectively the noise 

variance and signal variance without noise. The 

value of the noise variance 
2  is determined 

from the subband HH1 by the median estimator 
[25] as shown in the Equation (4). In this task, 
the adaptive noise is defined as 

),(),(),( yxnyxsyxw   
 
In general, the noise and the signal are 
independent of each other [25], it can be stated 
that 
 

 
 

 

2
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The variance of the signal is computed as 
 

222   sw



  2 2max ,0s w      

 

with 
2 and 

2

s the Bayes threshold is 
determined from Equation (3).  
 
 

 

Fig. 8. Image corrupted with Image Gaussian 
Noise, Variance 0.005

 
 

 

Fig. 10. Input corrupted with Image Gaussian 
Noise 

 

 

Fig. 12. Image corrupted with Image Gaussian 
Noise 

 

 

Fig. 14. Image corrupted with Image speckle 
noise 

 

5. RESULTS AND DISCUSSION 
 

In statistics, the MSE of an estimator is a way to quantify the difference between values implied by a 
kernel density estimator and the true values of the quantity being estimated. MSE is a risk function, 
corresponding to the expected value of the squared 
amount by which the value implied by the estimator differs from the quantity to be estimated. 
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max ,0           (5) 

the Bayes threshold is 

BayesShrink has been experimented to remove 
Gaussian noise (mean=0, variance = 0.05) and 
speckle noise (variance = 0.05). The input and 
output images after applying BayesShri
seen in the Figs. 12 to 15. 

 

Fig. 8. Image corrupted with Image Gaussian 
Noise, Variance 0.005 

 

Fig. 9. Image after applying 
VisuShrink 

 

. Input corrupted with Image Gaussian 

 

Fig. 11. Image after SureShrink 
Thresholding 

 

. Image corrupted with Image Gaussian 

 

Fig. 13. Image subjected to 
BayesShrink 

 

. Image corrupted with Image speckle 
 

Fig. 15. Image subjected to 
BayesShrink 

RESULTS AND DISCUSSION  

In statistics, the MSE of an estimator is a way to quantify the difference between values implied by a 
kernel density estimator and the true values of the quantity being estimated. MSE is a risk function, 
corresponding to the expected value of the squared error loss or quadratic loss. The error is the 
amount by which the value implied by the estimator differs from the quantity to be estimated. 
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BayesShrink has been experimented to remove 
Gaussian noise (mean=0, variance = 0.05) and 
speckle noise (variance = 0.05). The input and 
output images after applying BayesShrink can be 

 

Fig. 9. Image after applying 

 

SureShrink 

 

. Image subjected to 

 

. Image subjected to 

In statistics, the MSE of an estimator is a way to quantify the difference between values implied by a 
kernel density estimator and the true values of the quantity being estimated. MSE is a risk function, 

error loss or quadratic loss. The error is the 
amount by which the value implied by the estimator differs from the quantity to be estimated.  



The MSE is the second moment of the error, and 
in this way, it incorporates both the variance of
the estimator and its bias, whereas, for an 
unbiased estimator, the MSE is considered as 
the variance. Because MSE, just like the 
variance, is measured with the same units as the 
square of the quantity being estimated.
 
In statistical modelling, the MSE, 
sometimes indicate minimal variance, is used to 
determine to what extent the model does not fit 
the data, or whether removing certain terms 
could simplify the model in beneficial ways. 
Taking the square root of MSE yields the Root 
Mean Square Deviation, which is a good 
measure of precision, and is also known as the 
Quadratic Mean. Having an MSE of zero (0) is 
ideal, but in most situations never possible. An 
MSE of 0 means the estimator predicts 
observations with perfect precision. The measure 
of this error outlined in this paper is the square 
Euclidean norm 
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5.1 A Thresholding Scheme with Gaussian Noise
 
Visu Shrink 

 

Fig. 16. The original image, a 
(VisuShrink) with Daubechies 4
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The MSE is the second moment of the error, and 
in this way, it incorporates both the variance of 
the estimator and its bias, whereas, for an 
unbiased estimator, the MSE is considered as 
the variance. Because MSE, just like the 
variance, is measured with the same units as the 
square of the quantity being estimated. 

In statistical modelling, the MSE, which 
sometimes indicate minimal variance, is used to 
determine to what extent the model does not fit 
the data, or whether removing certain terms 
could simplify the model in beneficial ways. 
Taking the square root of MSE yields the Root 

on, which is a good 
measure of precision, and is also known as the 
Quadratic Mean. Having an MSE of zero (0) is 
ideal, but in most situations never possible. An 
MSE of 0 means the estimator predicts 
observations with perfect precision. The measure 

error outlined in this paper is the square 

nnF
2
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 which is fairly simple and accurate in most 
cases. 
 
Mean square error (MSE) also gives a measure 
of this error which is defined as 
 

 
The denoising process of the image was 
observed using a number of different wavelets, 
namely, Daubechies 4, Haar, available in 
MATLAB. It is quite evident from the 
that the tables they are almost the same for 
these different wavelets. Since these wavelets 
have different shapes and sizes, they will capture 
the different local features of the image. Since 
these subtle local features vary from image to 
image, the superiority of wavelet over another 
cannot be concluded, which is so much 
convenient beyond the comparison purposes. 
From the summary tables, it can be compared 
the denoising image for different thresholding 
techniques of different wavelets and calculate the 
MSE.

with Gaussian Noise 

 
Fig. 16. The original image, a noisy image with Gaussian noise (0.05), denoising 

(VisuShrink) with Daubechies 4 
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namely, Daubechies 4, Haar, available in 
B. It is quite evident from the summary 

that the tables they are almost the same for 
these wavelets 

different shapes and sizes, they will capture 
the different local features of the image. Since 
these subtle local features vary from image to 
image, the superiority of wavelet over another 
cannot be concluded, which is so much 

son purposes. 
From the summary tables, it can be compared 
the denoising image for different thresholding 
techniques of different wavelets and calculate the 

 

denoising image 



Fig. 17. The original image, a 

Table 1. Summary of denoising result for an image of Man with Daubechies 4 and Haar

Method  

VisuShrink with Daubesies 4 

VisuShrink with Haar 

 

SureShrink 
  

Fig. 18. The original image, a 
(SureShrink) with Daubechies 4
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. The original image, a noisy image with Gaussian noise (0.05), denoising 
(VisuShrink) with Haar 

 

Summary of denoising result for an image of Man with Daubechies 4 and Haar
 

MSE of the output image Noise type and variance, 

8.1719e+007 
8.3084e+007 
8.3142e+007 

Gaussian, 0.05 

8.2546e+007 
8.3948e+007 
8.4693e+007 

 
 

. The original image, a noisy image with Gaussian noise (0.05), denoising 
(SureShrink) with Daubechies 4 
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denoising image 

Summary of denoising result for an image of Man with Daubechies 4 and Haar 

Noise type and variance,    

denoising image 



Fig. 19. The original image, a Noisy image with Gaussian noise (0.05),

Table 2. Summary of denoising result for an image of Man with Daubechies 4 and Haar

Method 

SureShrink with Daubesies 4 

SureShrink with Haar 

 

BayesShrink thresholding scheme
 

Fig. 20. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 
(BayesShrink) with Daubechies 4
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. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 
(SureShrink) with Haar 

 

Summary of denoising result for an image of Man with Daubechies 4 and Haar
 

MSE of the output image Noise type and variance, 

1.1793e+007 
2.2922e+007 
2.2828e+007 

Gaussian, 0.05 

1.2726e+007 
2.5013e+007 
2.4539e+007 

BayesShrink thresholding scheme 

 
 

. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 
(BayesShrink) with Daubechies 4 

 
 
 
 

15, 2018; Article no.CJAST.42217 
 
 

Denoising image 

Summary of denoising result for an image of Man with Daubechies 4 and Haar 

Noise type and variance,   

. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 



Fig. 21. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 

Table 3. Summary of denoising result for an image of Man with Daubechies 4 and Haar

Method  

BayesShrink with Daubesies 4 

BayesShrink with Haar 

 

5.2 Denoising with Gaussian Noise, and Salt and Pepper Noise
 

VisuShrink  
 

Fig. 22. The original image, a Noisy image with Gaussian noise (0.05), De noising image 
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. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 
(BayesShrink) with Haar 

 

Summary of denoising result for an image of Man with Daubechies 4 and Haar
 

MSE of the Output image Noise type and variance, 

1.0144e-016 
1.1045e-016 
1.1325e-016 

Gaussian, 0.05 

1.6922e-022 
1.5122e-022 
1.4750e-022 

Denoising with Gaussian Noise, and Salt and Pepper Noise  

 
 

Fig. 22. The original image, a Noisy image with Gaussian noise (0.05), De noising image 
(VisuShrink) with Haar 
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. The original image, a Noisy image with Gaussian noise (0.05), Denoising image 

Summary of denoising result for an image of Man with Daubechies 4 and Haar 

Noise type and variance,   

Fig. 22. The original image, a Noisy image with Gaussian noise (0.05), De noising image 
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Fig. 23. The original image, a noisy image with salt & pepper noise (0.05), denoising image 
(VisuShrink) with Haar 

 

Table 4. Summary of denoising result for Image with Haar 
 

Method  MSE of Output image  Noise type and variance,   

VisuShrink  9.7016e+10  
1.0278e+11  
9.3558e+10  

Gaussian, 0.05  

VisuShrink   458091552  
5.0843e+08  
5.3128e+08  

Salt & Pepper, 0.05  

  
SureShrink  
 

 
 

Fig. 24. The original image, noisy image with Gaussian noise (0.05), denoising image 
(SureShrink) with Haar 
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Fig. 25. The original image, a noisy image with salt & pepper noise (0.05), denoising image 
(SureShrink) with Haar 

 
Table 5. Summary of denoising result for Image with Haar 

 
Method  MSE of output image  Noise type and variance,   

SureShrink  1.5886e+10  
2.8635e+10  
2.7645e+10  

Gaussian, 0.05  

SureShrink   1.1254e+08  
202482896  
202318048  

Salt & Pepper, 0.05  

  
BayesShrink  
 

 
 

Fig. 26. The original image, a noisy image with Gaussian noise (0.05), denoising image 
(BayesShrink) with Haar 
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Fig. 27. The original image, a noisy image with salt & pepper noise (0.05), denoising image 
(BayesShrink) with Haar 

 
Table 6. Summary of denoising result for Image with Haar 

 
Method  MSE of output image  Noise type and variance,   

BayesShrink  3.8853e-28  
 6.0722e-28  
5.8397e-28  

Gaussian, 0.05  

BayesShrink    3.1255e-28  
5.5843e-28  
5.2411e-28  

Salt & Pepper, 0.05  

 

6. CONCLUSIONS 
 

6.1 Summary of Achievements 
 

Image processing technique that has been 
studied, is image denoising via thresholding on 
the basis of the various wavelet, namely 
Daubechies 4 and Harr wavelet MATLAB.  The 
original images of different persons, corrupted 
with some randomly generated Gaussian noise 
or Salt and Pepper noise, have been used in this 
paper. Three different thresholding schemes, 
namely, VisuShrink, SureShrink, BayesShrink 
thresholding has been selected to detect local 
features for comparison. However, the denoising 
results can be easily compared with Daubechies 
4 and Haar wavelets for different thresholding 
techniques. The result shows that BayesShrink 
thresholding, which is more sophisticated 
compared to others performs consistently the 
best as it has the lowest MSE value. 
  
6.2 Future Works 
 

The selection of the congenial denoising 
technique plays the crucial role, and this is 
because it is significant to explore and 

accomplish a comparison among the methods. It 
is expected that various denoising techniques 
would likely to implement in neural network and 
pattern recognition through feeding the denoised 
signal, which is anticipated to determine the rate 
of successful classification. On top of that, 
impediments can be to the time flops of the CPU 
computing, which may generate a barrier of time 
complexity standard for each algorithm. The 
aforementioned two points would be taken into 
consideration for an extension of the present 
work done. 
 

DISCLAIMER  
 
The images used in this research work were 
captured using a manually operated camera, and 
no editing task was accomplished. Besides, all 
the images were taken completely in the natural 
environment, instead of any artificial mode to 
intensify the resolution/quality of the images. 
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