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Abstract

Let X be a compact torsion abelian group. In this paper, we show that an extension of Fp by
X splits where Fp is the p-adic number group and p a prime number. Also, we show that an
extension of a torsion-free, non-divisible LCA group by X is not split.
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1 Introduction

Throughout, all groups are Hausdorff abelian topological groups and will be written additively. Let
£ denote the category of locally compact abelian (LCA) groups with continuous homomorphisms
as morphisms. A morphism is called proper if it is open onto its image and a short exact sequence

0 → A
ϕ→ B

ψ→ C → 0 in £ is said to be proper exact if ϕ and ψ are proper morphisms. In this case
the sequence is called an extension of A by C ( in £). Following [1], we let Ext(C,A) denote the
(discrete) group of extensions of A by C. The splitting problem in LCA groups is finding conditions
on A and C under which Ext(C,A) = 0. In [2].[3],[4] the splitting problem is studied. We have
studied the splitting problem in the category of divisible, LCA groups [5]. By using the splitting
problem, we determined the LCA groups G such that the maximal torsion subgroup of G is closed
[6]. Let X be a compact torsion group. In Theorem 1 of [3] , it is proved that if G is a divisible
LCA group, then Ext(X,G) = 0. However, the suggested proof in [3] appears to be incomplete
as it uses the incorrect Proposition 8 of [2]. In [5] , we proved that if G is a divisible, σ−compact
group, then Ext(X,G) = 0. Let P be the set of all prime numbers, Jp, the p-adic integer group
and Fp, the p-adic number group which is the minimal divisible extension of Jp for every p ∈ P
[7] . In this paper, we show that Ext(X,Fp) = 0 (see Lemma 2.2). By[7, 25.23] , a divisible,
torsion-free LCA group G has the form G ∼= Rn

⊕
A
⊕
M

⊕
E, where A is a discrete, torsion-free,

divisible group, M a compact, connected, torsion-free group and E, the minimal divisible extension
of

∏
p∈P J

np
p where np is a cardinal number for every p ∈ P . Is Ext(X,G) = 0? We can not

respond to this question in general. since, we do not know the structure of E. But, if I be a finite
subset of P and np is finite for every p ∈ I, then E =

∏
p∈I F

np
p . In this paper, we show that if

G ∼= Rn
⊕
A
⊕
M

⊕∏
p∈I F

np
p , then Ext(X,G) = 0 (see Theorem 2.5).

The additive topological group of real numbers is denoted by R, Q is the group of rationals with
discrete topology and Z is the group of integers. If {Gi}i∈I is a family of groups in £, then we
denote their direct product by

∏
i∈I Gi. If all the Gi are equal, we will write GI instead of

∏
i∈I Gi.

For any group G and H, Hom(G,H) is the group of all continuous homomorphisms from G to H,
endowed with the compact-open topology. The Pontryagin dual group of G is Ĝ = Hom(G,R/Z).
The topological isomorphism will be denote by ” ∼= ”. For more on locally compact abelian groups
see [7].

2 Main Results

Lemma 2.1. Let X ∈ £ and p a prime number. Then nExt(X,Fp) = Ext(X,Fp) for every positive
integer n.

Proof. Let n be a positive integer and f : Fp → Fp, f(x) = nx for all x ∈ Fp. By Lemma 2 of [8],

f is open. So f is a proper morphism. Consider the exact sequence 0 → Kerf → Fp
f−→ Fp → 0.

By Corollary 2.10 of [1] , we have the exact sequence

→ Ext(X,Kerf) → Ext(X,Fp)
f∗−→ Ext(X,Fp) → 0 (2.1)

Since f∗(Ext(X,Fp)) = nExt(X,Fp), it follows from sequence (2.1) that nExt(X,Fp) = Ext(X,Fp).

Lemma 2.2. Let X be a compact torsion group. Then Ext(X,Fp) = 0.
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Proof. Fp is a totally disconnected group. So, by Theorem 24.30 of [7], Fp contains a compact open
subgroup K. Now we have the following exact sequence

...→ Ext(X,K) → Ext(X,Fp) → Ext(X,Fp/K) → 0 (2.2)

Since Fp is divisible, so Ext(X,Fp/K) = 0 (see Theorem 3.4 of [1]). Since X is compact and torsion,
so by Theorem 25.9 of [7], nX = 0 for some positive integer n. Hence, nExt(X,K) = 0 (see Lemma
2.5 of [9] . Since (2.2) is exact, so nExt(X,Fp) = 0. Hence by Lemma 2.1, Ext(X,Fp) = 0.

Remark 2.1. Let X be a group and f : X → X,f(x) = nx for all x ∈ X. If f is a topological
isomorphism for every positive integer n, then X is a divisible, torsion-free group.

Theorem 2.3. Let X be a compact group and p a prime number. Then Ext(X,Fp) is a divisible,
torsion-free group.

Proof. Let n be a positive integer. Then the exact sequence 0 → X
×n→ X → X/nX → 0 induces

the following exact sequence

Ext(X/nX,Fp) → Ext(X,Fp)
×n→ Ext(X,Fp) → 0

By Lemma 2.2, Ext(X/nX,Fp) = 0. So Ext(X,Fp)
×n→ Ext(X,Fp) is a topological isomorphism.

Hence by Remark 2.1, Ext(X,Fp) is a divisible, torsion-free group.

Corollary 2.4. Let X ∈ £. Then Ext(X,Fp) is a divisible, torsion-free group.

Proof. Let X ∈ £. By Theorem 24.30 of [7] , X = Rn
⊕
H where H contains a compact open

subgroup K. Consider the exact sequence

Ext(H/K,Fp) → Ext(H,Fp) → Ext(K,Fp) → 0

Since H/K is a discrete group and Fp a divisible group, so Ext(H/K,Fp) = 0. Hence Ext(H,Fp) ∼=
Ext(K,Fp). By Theorem 2.3, Ext(K,Fp) is a divisible, torsion-free group. So Ext(X,Fp) is a
divisible, torsion-free group.

Theorem 2.5. Let X be a compact torsion group and G ∼= Rn
⊕
A
⊕
M

⊕∏
p∈I F

np
p . Then

Ext(X,G) = 0.

Proof. First recall that by Theorem 2.13 of [1],

Ext(X,G) ∼= Ext(X,A)
⊕

Ext(X,M)
⊕∏

p∈I

Ext(X,Fp)

SinceX is a totally disconnected group, so by Theorem 3.4 of [1] , Ext(X,A) = 0. Also Ext(X,M) ∼=
Ext(M̂, X̂) by Theorem 2.12 of [1] . Since X̂ is a discrete bounded group and M̂ a discrete torsion-
free group, so by Theorem 27.5 of [10],Ext(M̂, X̂) = 0. By Lemma 2.2, Ext(X,Fp) = 0. Hence
Ext(X,G) = 0.

Lemma 2.6. Let X be a compact torsion group. Then Hom(X,Q/Z) ∼= X̂.

Proof. The exact sequence 0 → Z → Q → Q/Z induces the following exact sequence

Hom(X,Q) → Hom(X,Q/Z) → Ext(X,Z) → Ext(X,Q)

SinceX is torsion and Q is torsion-free, soHom(X,Q) = 0. Also by Theorem 3.4 of [1], Ext(X,Q) =
0. Hence Hom(X,Q/Z) ∼= Ext(X,Z). By Theorem 2.12 & Proposition 2.17 of [1] , Ext(X,Z) ∼=
Ext(Ẑ, X̂) ∼= X̂. So Hom(X,Q/Z) ∼= X̂.
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Theorem 2.7. Let X be a compact torsion group and G a torsion-free, non-divisible group. Then
Ext(X,G) ̸= 0.

Proof. Let G∗ be the minimal divisible extension of G. By A.13 of[7], G∗ is a divisible, torsion-free
group. Since X is torsion and G∗ torsion-free, so Hom(X,G∗) = 0. By Corollary 2.10 of [1] , we
have the following exact sequence

0 = Hom(X,G∗) → Hom(X,G∗/G) → Ext(X,G)

SinceG∗/G is a discrete, torsion divisible group, soHom(X,G∗/G) containing a copy ofHom(X,Q/Z).
Hence by Lemma 2.6, Ext(X,G) ̸= 0.

Corollary 2.8. Let X be a compact torsion group and G a torsion-free group. If Ext(X,G) = 0,
then G is a divisible group.

3 Conclusion

Let X be a compact torsion abelian group.In this paper, we show that an extension of a torsion-free,
non-divisible LCA group by X is not split.
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