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Abstract

The concept of Pregroups was introduced by Stallings in 1$ithsequently the concept of Pregrolips
was developed by many other researchers. Stallings origidefined a set with a binary operatipn
satisfying five axioms, namely, P1, P2, P3, P4, andtRtad been proved later that P3 is a consequgnce
of the other axioms. Stallings has also linked this caogan of a Pregroup to Free Product of Groups.
This construction is developed to include a new axiom calledw&h enabled to define a length
function on the universal group of Pregroups. Applicationsreg®ups with length functions led fo
direct proof of many other problems in combinatorial group theory.

Keywords: Archimedean elements; defined product of elemkmgth functions; pregroup; universal
group.

1 Introduction

Stallings [1], in 1971 introduced the concept of a pregroup.esulest work is done by Hoare [2], Nesayef
[3], Chiswell [4], and many others. Five axioms are oadjinintroduced by Stallings [1], namely P1, P2,
P3, P4, and P5. It is proved in [3] that P3 is a consequeittee other axioms. Stallings extended his
construction to link Pregroups to free products of grougs]in
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On the other hand Lyndon [6] defined a length function on the elsnoé a group in 1963. Lyndon defined
a set of axioms to be satisfied in order to assigralvadued length to each element of the given group. As
a result of this development many other well-known theerand properties of groups were proved directly
by applying the length function. These were developed hyyrogéher researchers, such as Chiswell [3],
Hoare [2], Wilkens [7] and many others. Nesayef [3] fs&d on the applications of length functions on the
universal group of pregroups. Further applications were daoué by Hoare [8] in 1988. Pregroups were
also generalised further by Hoare [9] in 1992.

This paper considers imposing a new axiom called P6 angréigeoup satisfying P6 called P* and defining
a length function on the universal group of P*. This tesals also tackled independently by Chiswell [4].
Then combinatorial properties of groups with length fioms are modified in this paper to include
pregroups P*. As a result many new constructions are ediatlliand the nature of their elements are
identified by the means of length functions.

In section one of this paper, we introduce the concept of ldngtiion and list all the axioms of length
function which are needed in the latter sections. We algsodunce the definition and some important
properties of pregroups. In section two, we introduce the agam P6 and prove that some axioms are
equivalent to the other ones.

Finally we show that the universal group of a Pregrou@,*)J(has a length function given by Lyndon [6]
and prove some consequence results as a result of imposing P6.

2 Length Function

Definition 2.1: A length function | | on a group G, is a function giviagteelement x of G, a real number
|x|, such that for alk ,y, z € G, the following axioms are satisfied.

Al |e| = 0, wheree is the identity elements of G.
A2 |x7Y = x|
A4 d(x,y) < d(y,z) = d(x,y) = d(x, z), whered(x,y) = ; (x| + ly] = lxy ™4

Lyndon showed that A4 is equivalent td(x, y) = min { d(y,z),d(x,z)} andto

d(y,z),d(x,z) 2m=d(x,z) =m.
A1, A2 andA4 imply |x| = d(x,y) = d(y,x) = 0

Assuming, A2 and A4 only, it is easy to show that:

i d(x,y) = |e|, where e is the identity element of G.
ii. [x] = |e]
i.  dxy) < |x| —% le

A3 State thatl(x,y) = 0, is deductible fronA1, 42 andA1’is a weaker version of the following axiom:
Al |x| =0, ifand only ifx = 1in G.
The following results are introduced by Lyndon [6].

@) dCey,y) +dCx,y™) =yl _

(2 dx,y ™) +dy,z™") < |y| Implies|x y z| < |x| — |y| + ||
() dlx,y™) +d(y,z™") < |y| Impliesd(xy,z™") = d(y,z™")
(4) dx,y) +dx"hy™) = |x| = |y| Implies|(xy~")?| < |xy~'])
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It follows from (2), that for any,y € G, d (x,y) = |yl —d (x y™ 1, y™1) < |y| by A3.

Sinced(x,y) =d (v,x), we getd (x,y) < min{|x|,|y|}, as stated thatd (x,y) + d (x™*,y™1) >
x| =yl 2x=y

The following definitions are introduced in [7].
Definition 2.2: A non-trivial element g of a group Gaslled non-Archimedean if |g?| < |g|.

Definition 2.3: Let G be a group with length function. An element 1 in g is called Archimedean if
lx] < [x?].

The following Axioms and results were added by Lyndon and sther

A0 x#1 = |x| < |x?

CO0 d(x,y)is always an integer

Cl x#1,|x?| < |x|implies |x|is odd

C2 For mo xis |x?| =|x|+1

C3 if |x| is odd then |x?| > |x|

C1' if |x|is even and |x| # 0, then |x?| > |x|
NO |x?| < |x| impliesx? =1 isx = x7!

N1* G is general by {x € G : |x| < 1}

The following two constructions are also added by Lyndon \Bjere the set of all Non-Archimedean
elements in G is denoted by N:

N={x€eG: |x*| <|x|} 1)
M={xy €G:|xyl+ |yx| <2|x| =2]y|} (2

Lyndon showed tha¥ < N. However, the nature of the elements of M and N is inyegstd in [10].
3 Pregroups

Definition 3.1. A Pregroup is a set P containing an element called thétidetement of P, denoted by 1, a
subset D of PXP and a mapping® P, where ( x, y $ xy, together witha mapi:P P wherei (X) =
x!, satisfying the following axioms:

We say that x y is defined if (x, § D, i.e. x ye P.

P1. For all xe P, 1x and x1 are defined and 1x = x1 = x.

P2. Forall xe P, X' x = x X" = 1.

P3. For all x ,}eP, if x y is defined , then'yx is defined and (x y)=y x.

P4. Suppose that x, y&P. If x y and y z are defined, then x (y z) is definedyhgh case
x(yz)=(xy)z.

P5.Ifw, x,y, zeP, and if w X, X y, y z, are all defined the eithenwy) or (x y) z is defined.

3.1 The axiom P6

In this section we restrict our attention to a spegipketof pregroups, which satisfy a certain condition,
namely P6. To do this we introduce the following theoreminch are given in [3].
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Theorem 3.1: The following two statements are equivalent in P.

P6(1): If(x;,x,) is reduced ang,a ,a"1x, are both defined, thene 4,
P6(2): If(x;,x,) is reduced an@ax,) x, is defined fora € P then ax; € A,.

Proof: Supposéx, ,x,) is reduced and l€tax,) x, is defined for some € P.
x,(axy)™t, (ax;) x, are both defined saix; € 4, , and P6 (1) P6(2).
Conversely, suppode; , x,) is reduced ang,a,a™1x, are both defined for some € P.
Since(x, , x,) is reduced, themx(a ,a1x, ) is reduced.

Sincex;?! (x;a) is defined and equals to a, apg? (x;a)} a1x, is defined and equals 19, then by P6
) x;t (xa) €Ay, i.€.a € A, .

Therefore P6 (13 P6 (2)

We denote the equivalent statements P6(1) and P6(2¢anem 3.1by P6 and the pregroup which satisfies
P6, by P* . The following construction is introduced in [11].

Definition 3.2: Let P* be a pregroup satisfying P6. The Universal groufR*))is the set of all equivalence
classes of reduced words in P*.

We define now a length function éh(P*). Before we achieve this, we introduce the following itesul
which generalizes the condition P6 (2).

Theorem 3.2 Let a,_,,..,a; be any sequence, and,..,x, be reduced, both ow*. If
Ap_q sy Q1% , -, Xy IS defined, them,_, ,...,a;%1, ..., X, € 4y, n = 2.

Proof: The only way in whicha,,_; ,..,a;x{,...,x, is defied is byla,_; ,...,a1%;, ..., x,]x, being
defined.

Then also by theorem 2.1 eithd(a,_1 ,...,@1%1, o, Xp_2)Xn_1 1%, is defied, so by P6(2),
(an_l y oy A1Xq, ...,xn_z)xn_l € Ao, Or[an_1 (an_z Xy xn_l)]xn |S deflned, Whel’ﬁo =1.

Since (ap_3 , ., A1X1, e, Xn_1)X%, is not defined by theorem 2.1, then by P6(2)
A1 @y o A1Xq ... Xp_q) € A

Theorem 3.3: Let U (P*) be the universal group of a pergra@ipand leftg, h € (P*). Let

g=% Xy ,h=Y; «. y,mn =2 be in reduced forms. L&} = x,_js1 . (XnViml) o Yimiisq DE
defined forl <i < sforsomes <m,s <n.

If a; vyl is defined them; € A, for alli <s. Hence by symmetry ¥ < n andx,_.a, is defined, then
a; € AO'

Proof:  a; = Xp_j41 Qi1 Yimiieq » TOr1 <i <s, wherea, = 1. Then by theorer.1 either
x5 201 (@i—q Ymliq) is defined (1)

or (x;2i41ai_1) Yimtisq is defined 2)
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If (1) holds, ther] x; %1 (ai—1 Ymtiz1)] yme; is defined

Then a;_; y,tii, Yml; is reduced. So by P6 (Dx,_;q (@i1 Vi)l =a; € A,

If (2) holds, ther] (X,_;11@i—1 ) Yim-i+1] Ym~; is defined.

Since vt Yl is reduced, then by P6 (D, ;11Gi1) Ymiis: = a; € 4

Corollary 3.1: In theorem 3.3, x,,_; a, (as y1s) is defined if and only if f,,_; a;) a; ynts is defined.

Proof: By theorem 2.3,a, € A, in either case. Then,_, a; and a, y;;1, are defined. by P4. Then the
result follows.

From Theorems 2.2 and 2.3 and Corollary 2.1, with the sentaions, we have shown that:
Corollary 3.2: gh™ = x; ... Xp_sas Yls ... ¥mLs iS reduced, if and only iy & A,.
The proof of this Corollary is similar to the main theorm [12].

3.2 P* pregroups and length function

Theorem 3.4: | |: U(P*) » R given in definition 3.2 is a length function oi{P*)
Proof: A1',A2 are clearly satisfied, so we prove A4 is also satisfie
Let g,h,k € U(P*). The result is trivial if any one ¢§|, |h|, |k| is zero. So ley = x; ....x,,n =1,
h=y;...ypy,m =2landz =2z, ...z,z > 1, be reduced where, ,y, and z; & 4, ,
ie.l gl=n,lhl=mand | k|=¢.
Clearlyd (g ,h) = 0. Supposel (g,h),d(h,k)=s
Case 1: sis an integer
There existst,, such that,gh™ = x; ... x,_s a5 ymls ... yi 1, Where
Ag = Xp—si1 o Xn Ymis oo Ym—s+1, and, as € A,

Similarly hk™ = y; . Vies bs 27 o 27t andbs € Ag by = Vinesi1 o Ym Zi b o Zisin

-1 _ -1 -1 _ -1 -1 -1 -1 -
gh™ = x; .. xp2;" .. 271 LT X1 e XV oo Vimest1 Ymes+1 - Ym 2o e Z1
— - -1
= Xq . Xp_g Qs by z;_5 ... Z]

1

Since a, bs € Ay, thend (g ,k) =s
Case 2: sis not an integer
Letd (g,k),d (h,k) zr—§=s, r>1

-1 _ -1 -1 — -1 -1 -1
Then gh™ = x; ... Xper @y Viis . Y11, Wherea, = y;2 01 o X0 Vm' o Vimera1
hk™1 = b, z;% .. z7', whereb, =

Vi o Ym—r Or Zp—s - 217, T Ym-r+1 = Ym

z;' ... z;Y,, anda,, b, are not necessarily iy, moreovera; is defined for ali < r.
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-1 1 -1 -1 -
gh = X1 - - - X Ym-r+1 Ym-r+1- - Ym Z¢ -2y

1

Xy . .. Xy ZpY azf

=X . . . XpyQp bz ..2Z]
Let (a, , b,) be reduced. Bytheorem23,_, € 4, .
Thereforex, .41 a,_, is defined andx, 11 @1 = ((Cn—r41 G- Vmlrs1)Ymor+1 = G Yim-re1 -
Similarly y;;L, .1 b, is defined, Then bg(1), v,,_+1 € 4,, SO a contradiction.
Hencea, b, is defined, thudgk™!| <n—r+f-7+1,ied(gk) =r—>=s
Therefore A4 is satisfied, and o | is a length function.

3.3 Applications of P* pregroups

LetP=GuU {G t; G} U {G t; G} and suppose that the product xy of two elements x and y of P is
defined if and only if at least one Hf, y,xy} isin G. Thusx y € A, , provided we exclude the case when

G*=<c,tlrelc, tct7* =a (c),t? = ¢ € C >, in which casel, = G*

The axioms P1, P2 and P3 are clearly satisfied.PBotetx,y,z € P , and suppose xy, yz are defined, and
x (yz)is also defined. If (xy) zis not defindiden

xy€G,z ¢ Gand(xy)z ¢ G Q)
Thus

xy is defined= either x ory € G 2)

If yz is defined themither y oryz € G 3

If X(yz) is defined then either x grz or x(yz) € G 4)

Since(xy)z ¢ G and the products x(yz) and (xy)z are equdlinthereforex(yz) ¢ G

Casel If x € G,thenyz & G, soy € G by (3), and hencey € G, so a contradiction.

Case2: If x € G, thenyz € G, soy € G, by (2), andyz € G by (4). Thereforez € G also a contradiction.
Hence (x y) z is defined, i.e P4 is satisfied.

For P5, lew,x,yx € Pand letw x , xy, y z be defined and suppose neitliey)wor (xy)z is defined.
Thenw & G ,xy € G andw (xy) € G since xy is defined. Then eithewry € G.

Case l: If x € G then x (yz) is defined, so by P4 (xy)z is also defiaad x(yz) = (xy)z

Case2: If y € G then (wx)y is defined , so by P4 w(xy) is defined hdPBés satisfied.

For P6 suppose (X, y) is reduced, i.e non of the termg,,xy, is in G, and suppose thet ,a™* y are both
defined. Suppose also that G, sincex ¢ G, thenxa € G, and similarlya™'y € G.

Hence (xa)(a~'y) € G, soxy € G that is xy is defined, so a contradiction.
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Thereforea € G, and P6 is satisfied.
Note: The following cases are given in [10].

If ] =¢ andN # @, then we get an H.N.N extension, in which cise P* =G andM N A, =M NG =
all elements of the associated subgroups.

If ] =@, then we get a qusai- H.N.N. extension, (excludifhg= 1, I = @ ), we have .
NnP=6u{g(tC)lg:9 €G,jejandM n 4y, = {G;, A;, Bi}.

Theorem 3.5: If U (P*) is the universal group of a pergroBpthen N consists of conjugates of elements
of PPNN. iie. geN ©og=xax', xeu(P*) and a € P*n N. Moreover if|g| is even than

aedy andlx| =2 andjx| =422 if |g| is odd.

Proof: Supposeg € N, and letg = x; ... x,, be reduced, thejy| =n org =0ifn=1andx; € 4, .
The result is trivial ik = 0 or 1, soletn > 1.

Casel: Ifniseven, thenputn=2s, > 1, g% = X{ ... Xg Xgpq oo Xy X1 oo XXgpq oo Xy

Since |g?| < |gl, then g% = x; ... Xg Xgyq - Xy WHhETE Qg = Xgiq oo Xy X o X5 € A

By theorem 2.3, and sinde; a, x.,,| < 2, then

G = Xq e Xg Xgyq ooe X X1 oo Xg (X1 w0 X)L = (67 o x5) ag (X7 o x5)71
= a conjugate of an element @f. Moreovera? € 4,, i.e. |a?|=0= |a,|, Soas €N .

Case2: Ifnisodd, thenlet= 2r +1,r>1.

2

G5 =X1. .« . XpXpyq - - XpXie . . XpXpyq Xppz - - -Xp
Since |g?| < |g|,then

2
9 =x1. .« . Xp(Xpy1 Qp Xppq VXpyo - - -Xp, where a, ;45 . . . XpX;. . .x. and
[%r41 @r Xppp | <1

By Theorem 2.2¢q, € A,.

g =X1. . Xy Xpp1 Xppp o o XpXee . L% (X0 . ox. )7t
) (xl' R xr)(xr+1 ar)(xl R 'xn)_l!xr+1 ar = b € P*\ AO'

Since|x,,, a, x4, | <1 and sincen, € 4, , then b? = x,,, a, x,,, a, and|b?| < 1, i.e.|b? < |b|.
Hence be P*NN.

Conversely, suppose, =g(x; . . .xga(x;. . .x;)~',wherea €PN N
If x, a x;~1 is defined, then put, a x,~! = a;, soa € 4,, by theorem 2.3.
If |a;| =o0,then|a?| =0,s0a;, € P*xNN .

Let |a;| = 1. a? =x,a?x;1, wherea? € A,.

Supposex, a? x;1) is reduced, i.gla?| = 2. Apply P6(1) or(x,a? x;1).



Nesayef; JAMCS, 23(5): 1-12, 2017; Article no.JANMBES18

Since(x; a?)(a™*x;1) and(x, a? x;1) are both defined, thery a € 4, , so a contradiction.
Thusx, a? x5! is defined, i.ela?| < |a;|,s0a, € P*xNN .
If x,_;a; x; is also defined, then we apply the same argument and saibwe have
g=0(;. . .x)b(x;. . .x.)"t,wherebeP*nN,andx,bx " is not defined.
If b€ A,,then|g| = 2r,b% € A, and |g?| = |(x; ... x5) b? (x; ... xs)7'| <2r,sog € N.
If b ¢ A,,andx, b andb x;1 are not defined thely| = 2r + 1.
Since |b?| < 1,then|g?| = [(x; .. x5) b? (x; ... x;)7!| < 2r+1 =|g|, sog € N.
Finally, if b & A, and either, b or bx; ! is defined, theng| = 2r.
Sinceb € N then|b?| < |b|, sob? is defined.
Considerg? = (x; ... x;) b? (x; ... x,)~1, and suppose, , b?,x;! is reduced. Then:
Either (i) bx; ! is defined, then apply P6 (2) dib?, x;1).
Since(b™1,b? )x;1 = b x7t is defined, thed™ € A4, , sob € A, and so a contradiction.
Or (ii) x,.b is defined, and this is similar to (i)
Thereforex, ,b?,x;!is notreduced, i.@x, b? x;!| <2,andso,|g?| <2r= |g|, i.e.geN.
Theorem 3.6: The equivalent elements of N if(P*) are the same conjugatesiifi.e.
lgl = |hl|, theng ~h & g = xax™ ,h = xbx ' and ~ b , wherea,b € P*,x € U (P*)
Proof: Supposg ~ hin N, then|gh™1| < |g| = |h|
Letg = x4 .. x,,h = y; ... ¥, be reduced.
Case1: The resultis trivial if|g| = |h| = 0,1
Case2: Ifniseven,thenput=2s, s>1
Then, g = (xg .. x5) ag (x1 ... x,)7 Y, a5 € Ag andh = (¥ ...y5) by (71 ... ¥5)™L, bg € Ay
gh™' = (g o xso1) (X5 a5) (g X)) g ) (D51 ys ) (g e ys1) ™t

Since|gh™!| <n = 2s, then by theorem 2.3(x; ...x,)™* (¥, ...ys) = a5 € 4,, and
Y1--Ys = (%1 ..%5) a

Thus h = (%, ... x5) abga™* (x; ... x;)~%, whereab;a™* = b € A,

Hence g, h are the same conjugates, morepueh 1| = 0, for a,, b~ € 4,
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Case 3: Ifnis odd andi = 2r + 1 wherer > 1,then we have:
g= (qx) (Kry1a) (0w x)7h a0 € Ay Xpy1 0, € PT\ A
Also h= (y;.¥) Wrs1 by) 0y - y,)7" , where b, € Ay ¥ by € P*\ 4
Since|gh™| < 27+ 1 then|(xpyq @) (X1 0. ) 231 oo V) e B)7H < 1
Since(x,41 a,) (x1 ...x,)"t and(y; ...y,) (y,41 b,) ™t are reduced, it follows that:
(x1 .. )7 1(y; ... y,) is defined and by theorem 2.3 we haye, ...x,) 1(y; ..y,) = b € 4,
Thus(y; ...y,) = (x1 ... x,) b.
Soh = (x; ..., ) b (¥y41 by) b71(x; ... x,) " where b(y,,1 b,) b~ € P* \ A,.

Hence g and h are conjugates of element®*af A, determined by the same element(&f). Moreover
Yre1 @ ~ b (Vr41 by) bt since|x, 11 a-b (¥r41 by) b7t | <1and|b| =0

Conversely, supposg = (x;..x,) a (x;..x.)"t,a € PP NN ,h= (x;..6.)b (%1 ...x,)"1,a €
P* NN , wherea ~ b.

Similar arguments show that, a x;! is defined where = ';J if |g| is even, ana = m%

if g is odd.
Sincea ~b , eithera,b € Ayora,b ¢ A, Sowe consider the possible cases.
Casel: Ifa,b€ Aythenab™ € Ay and|g| = |h|=2T.
lgh™| = |(xg ..,) b (X1 ..x,)7| < 2r , s0g ~h.
Case2 Ifa,b ¢ A, and bothx, , b, x7 ! are reduced, thelg| = |h| = 2r + 1 and |a| = |b| =1

Sincelab™!| < |a| =|b| = 1 by assumption, themgh™| = |(x; ...x,)ab™* (x; ..x,)" < 2r+1 ,s0
g~h

Case3: If a,b & A, and eithew,.a is defined D)
Or ax; 't is defined 2
i.e.|gl = 2r and eithew,.b is defined 3)
Or bx; ! is defined (4
ie.|lg|l =2r

Supposerx; ! is defined, andx,, a) is reduced, since N , then|a?| < 1 and then, a~* anda? are both
defined. So applying P6(1) (@, a™*, aa), thena € A, so contradiction.

Hence x, a anda x; ! are both defined. Similarty, b andb x;! are both defined
So|gh™| = |(xq ... xp@) (x1 .. xb)"Y| < 2r . Thereforeg ~h.

Theorem 3.7. If U(P*) is the universal group of a pregroBp # A, then the elements of M are conjugates
of elements of length zero W(P*), i.e.h € M = gh = xax ~1, wherex € U(P*) and a € 4,
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Proof: Letg = x; ...x,,h = y; ...y, be reduced, and suppdgg:| + |hg| < 2 |h|, then|g|,|h| = 1.
Casel: Ifn=1,theng =x; & Agandh=h; & A, since |xyy;|+ |yix1l < 2 |x1] = 2 |y,| = 2,
Then at least one ¢k, y, | or |y, x| is zero
Supposdy,x;| =0, i.ey;x; € 4, ,thengh = x;y,x,x7t = x; (y,x)x7 = conjugate of, x; € A,
Similarly, if |x,y;| = 0, then hg is a conjugate ©fy, .
Case 2: If n = 2, then lets be the maximum such that

gh =1 . Xn_5 Qs Vi1 Yn (1)
s < n . Then either (1) is reduced in which case

lghl =2n—2s+1 2
Ora, € A, andx,_g as Y, is not defined in which case

|gh| = 2n — 2s, whereay = x,_¢1q - Xp¥1 - Vs 3)

Similarly, let r be the maximum such that

gh = Y1 Yn—y by Xpiq o Xy (4)
Then either (4) is reduced, Fog| = 2n — 2r+1 (5)
Or b, € Ay andy,,_, b, x,,, is not defined, sphg| = 2n — 2r (6)

Whereb, = Vpy_ry1 Y X1 - Xy
If (2) and (5) hold, theBn —2s+1+4+2n—2r+1<2n

2n—2s—2r+2<0 =2r+s >n-1
r>n—s+lands >n—r+1

If other cases hold, then it is clear that- n —sands > n—r

Subcase 1. If (2) and (5) hold, then:
hg = (ys yn)_l Vs oo Yn X1 voe Xn—st+1 Xn—s+2 = Xn V1 - Vs-1

Vs e Yn = (ys Yn)_l T (ys Yn)

Sincen—s+1<r, thenb,_¢,, € 4, , and sincea;_, € 4, thenb,,_¢,,a,_, € 4;. SO0 g his a
conjugate of an element of,.

Subcase 2: If (3) and (5) or (6) hold, then

gh = (YS+1 yn)_l Vs+1 - Yn X1 - Xpn—s Xp—gs41 - Xn
Vi VsVso1 o Yn = Dspr o Ya) ™ brcs o g (Vsg1 e Vo)

Sincen — s < r thenb,,_; € A,, and sincer;, € A, thenb,_; a, € A, , then gh = conjugate of an element
of b,_s a, € A,

10
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Subcase 3: If (2) and (6) hold, then

gh = (yn—r+1 yn)_l Vn-r+1 - Yn X1 - Xy Xpgq oo Xn V1 - Yn—r Yn-r+1 - Vn
= nors1 - Yn)_l by an—r (Ynors1 - Yn)-

Since b, a,_, € A, for s >n —r, then g h = conjugate of an elemenbpfa,_, € A,.
Therefore, the elements of M are conjugate of zergtleelements off (P*)

Sincen —s+ 1 < rthenb,_s,; € Ay, and sincex,_, € Ay, thenb,_¢,,a,_; € 4y, SO gh is a conjugate
of an element ofl,.

Subcase 4: If (3) and (5) or (6) hold, then

gh = Ys41 V)7 Vsat o Y X1 o Xnos Xnose1 - Xn Y1 Vs Vsi1 = Yn
= Vss1 - Yn)_l bp_s o @5 (V51 - Yn)

Sincen — s < r thenb,,_; € 4, , and sincex; € A, thenb,,_; a;, € A,
Therefore, g h = conjugate of an elemenbof; a; € A,

Subcase 5: If (2) and (6) hold, then

gh = (yn—r+1 yn)_l Yn—r+1 - Yn X1 oo Xp Xpgq oo X
Vi Yn—rVn—r+1- Yn = (yn—r+1 yn)_1 br An—r (yn—r+1 yn)

Sinceb,,a,_, € A, for s >n —rthen, g h = conjugate of an elemenbpfa,_, € A,.

Therefore, the elements of M are conjugate of zergtteelements off (P*).

4 Conclusion

This paper shows that a special type of pregroups whichysatisédditional condition namely P6 can be
occupied with Length Function defined by Lyndon [6]. Therefdraiill have all the combinatorial group
properties which are open for investigation. This papergiseed the following:

(1) The elements of N consists of conjugates of elemem®s afN.
(2) The equivalent elements of N if(P*) are the same conjugatesRit
(3) The elements of M are conjugate of elements of length in U(P*).
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