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Abstract

The effect of variable axial force on the deflection of thick beam under moving load is investigated
in this research work. In order to obtain solution to the dynamic problem, a technique base
on the method of Galerkin with the series representation of Heaviside function, was first used
to transform the equation and thereafter the transformed equations were solved using Struble’s
asymptotic method and Laplace transformation techniques in conjunction with convolution
theory. The closed form solution of the transverse displacement for moving force and moving
distributed mass models for the dynamical problem obtained were calculated for various time t.
Important features of the analysis were investigated and discussed.
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Nomenclatures

E(N/m2) Modulus of elasticity
I(m4) Moment of inertia
V (x, t)(m) Beam Transverse displacement
W (x, t)(m) Beam Transverse rotation
N0(N) Axial force
K(N/m) Foundation Stiffness
G(N/m) Shear modulus
q(x, t)(Kg) Traversing load
µ(Kg/m) Mass per unit length
g(m/s2) Acceleration due to gravity
M(Kg) Mass of the moving load
H(x− ct) Heaviside function
x(m) Spatial coordinate
c(m/s) Velocity
t(s) Time
L(m) Beam span
ρ(Kg/m3) Density of the beam
K∗ Constant dependent on the shape of the beam
A(m2) Cross sectional area of the beam
Um(m) mode function of the beam due to displacement
Qm(m) mode function of the beam due to rotation
λm Mode frequency
δ(x− ct) Dirac delta function
Γ0 Mass ratio of the structure-load system for the elastic beam
αmf1 Natural frequency of the beam due to displacement
αmf2 Natural frequency of the beam due to rotation
αmm Modified natural frequency of the beam due to moving mass
ωmf Modified frequency of the beam due to moving force
ωmm Modified frequency of the beam due to moving mass

1 Introduction

Vibrations of beams are of considerable interest to the engineers designing mechanical and structural
systems. Many researchers have investigated the free vibration analysis of beams having various
boundary conditions and based on the Bernoulli-Euler beam theory (e.g [1-4] ). The well-known
Bernoulli-Euler beam theory states that plane sections remain plane after deformation, regarding
transverse shear strain to be neglected. Although this theory is very useful for slender beams
and columns, it does not give accurate solutions for thick beams. In the Timoshenko beam
theory, the normality assumption of the Bernoulli-Euler theory is relaxed and a constant state
of transverse shear strain with respect to the thickness coordinate is included. The Timoshenko
beam theory requires shear correction factors to compensate for the error due to this constant
shear stress assumption. It should be noted that the bridges on which vehicles or trains travel and
trolleys of overhead traveling cranes that move on their girders may be modeled as moving loads
on simply supported beams. Comprehensive treatment of the subject of vibrations of structures
due to moving loads which contains a large number of related cases is studied by Fryba [1]. A
dynamic Green function approach is used to determine the response of a finite length of simply
supported EulerBernoulli beam subjected to a moving load in [5] and the authors proposed a
simple matrix expression for the deflection of the beam. In [6], the effect of a moving mass on
the dynamic behavior of a simply supported Euler-Bernoulli beam was studied. The linear finite
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element analysis was used to investigate dynamic behavior of a simply supported Euler-Bernoulli
beam under the act of moving loads by [7-10]. The linear vibration analysis using the Galerkins
technique for a Timoshenko beam traversed by a moving mass was applied in [11] and this work was
verified by [12] using the linear finite element method. Often, Engineers create artificial stresses
in structures before loading, so that the stresses which then exist in the structures under load are
more favorable than would otherwise be the case. Such artificial stresses are forces which may act
axially or otherwise. When they act axially, they are called axial force. The artificial stresses are
also called pre-stress. The aim of pre-stress structure is to limit tensile stresses and hence flexural
cracking or bending in the structure under working conditions. Emphatically speaking the purpose
of pre-stress is to external deformation and hence bending deformation.

If the beam is subjected to a force parallel to its axis in addition to the lateral loading. The local
equilibrium of forces is altered because the axial force interacts with the lateral displacement to
reduce an additional term . If N(x) is the variable axial force and V(x,t) is the axial displacement,

the additional term is ∂
∂x

[
N(x) ∂V (x,t)

∂x

]
if the pre-stress varies with partial coordinates and also

becomes N ∂2V (x,t)

∂x2 if the pre-stress is a constant. Thus, in this paper we consider more realistic
case where the axial force varies along the span of the beam. However, it is remarked at this juncture
that in most of the existing literature in dynamics of structure under moving loads, moving loads
have been idealized as moving concentrated loads which acts at a certain point on the structure and
along the a single line in space . That is, the moving load is modeled as a lumped load. In practice,
it is known that loads are actually distributed over a small segment or over the entire length of
the structural member as they traverse the structure. Such moving loads are termed uniformly
distributed loads. Concentrated forces are mere mathematical idealization, but cannot be found
in the real world, where all forces are body forces acting over an area. Furthermore, in most of
the investigations on the effect of axial force on a dynamic system, method of solution have been
restricted to numerical simulating [13]. The loads moving on this elastic beam also be modeled
realistically as a distributed load as against the unrealistic lump mass model that is common in
literature.

Thus, this study is concerned with the variable axial force effect on the deflection of thick beam
under moving load. The axial force is assumed to vary along this span of the beam. The three
vital aspects of inertia terms are concerned. It is also assumed that the thick beam is of uniform
cross-section and contain negligible dampy.

2 Mathematical Method

We consider the problem of axial force influence on response to distributed moving loads of thick

beam and carrying a mass µ. The transverse displacement V(x,t) of a uniform elastic beam of

length L under the actions of mass M traveling at a uniform velocity c as shown in fig (1a and 1b)

is governed by equation of the form [14].

∂

∂x

[
K∗GA

(
−∂V (x, t)

∂x
+W (x, t)

)]
+µ

∂2V (x, t)

∂t2
+KV (x, t)− ∂

∂x

[
N(x)

∂V (x, t)

∂x

]
= q(x, t)

(2.1)
and

∂

∂x

[
EI

∂W (x, t)

∂x

]
+K∗GA

[
−∂V (x, t)

∂x
−W (x, t)

]
− Iρ

∂2W (x, t)

∂t2
= 0 (2.2)

The boundary conditions of the above problem is simply supported and are assumed to be
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Fig. 1. variable axial force on the deflection of thick beam

V (0, t) = V (l, t) = 0 ,
∂W (0, t)

∂x
=
∂W (l, t)

∂x
= 0 (2.3)

The initial conditions however without any loss of generality is given by

V (x, 0) = V̇ (x, 0) = 0 , W (x, 0) =
∂W (x, 0)

∂t
= 0 (2.4)

Since the inertia effects of the moving load is taken into consideration, therefore the load q(x, t)
takes the form [1]

q(x, t) = qf (x, t)

[
1− 1

g

d2V (x, t)

dt2

]
(2.5)

the continuous moving force qf (x, t) acting on the beam model and the total derivatives in (2.1)
and (2.5) are

qf (x, t) =MgH (x− ct) (2.6)

and
d2V (x, t)

dt2
=
∂2V (x, t)

∂t2
+ 2c

∂2V (x, t)

∂x∂t
+ c2

∂2V (x, t)

∂x2
(2.7)

where c is the velocity of the distributed mass, the time t is assumed to be limited to that interval
of time within which the mass is on the beam, that is

0 ≤ ct ≤ L (2.8)

g is the acceleration due to gravity, and H(x− ct) is the Heaviside function defined as

H(x− ct) =

{
0, x < ct.

1, x ≥ ct.
(2.9)
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This describes the arrival of a continuous load on the beam, with the properties

d

dx
H (x− ct) = δ (x− ct) (2.10)

f(x)H(x− ct) =

{
0, x < ct.

1, x ≥ ct.
(2.11)

Where δ(x− ct) represents the Dirac delta function and H(x− ct) is a typical engineering function,
called Heaviside function made to measure engineering application which often involve function that
are either off or on. As an example in this problem, the pre-stress term is taken as [15]

N(x) = N0

(
1 + sin

πx

l

)
(2.12)

where N0 is the constant axial force.

Now using (2.5),(2.6),(2.7) and (2.8) in (2.1) and (2.2), we obtain

−K∗GA
∂2V (x, t)

∂x2
+K∗GA

∂W (x, t)

∂x
+ µ

∂2V (x, t)

∂t2
− ∂

∂x

[
N0

(
1 + sin

πx

l

) ∂V (x, t)

∂x

]
+KV (x, t) +MH

[
∂2V (x, t)

∂t2
+ 2c

∂2V (x, t)

∂x∂t
+ c2

∂2V (x, t)

∂x2

]
=MgH(x, t) (2.13)

and

EI
∂2W (x, t)

∂x2
−K∗GA

∂V (x, t)

∂x
−K∗GAW (x, t)− Iρ

∂2W (x, t)

∂t2
= 0 (2.14)

In (2.13) and (2.14), V(x,t) is the transverse displacement, t is the time, x is the spatial coordinate,
c is the velocity, q(x,t) is the distributed load acting on the beam, W(x,t) is angular displacement,
E is the Youngs modulus, I is the constant moment of inertia of the beam, µ is the constant mass
per unit length of the beam, No is the constant axial force, K is the constant foundation stiffness, G
is the constant shear modulus, ρ is the density of the beam, M is the mass of the distributed load,
g is the acceleration due to gravity, A is the cross sectional area of the beam, K∗ is the constant
dependent on the shape of the cross-section, L is the length of the beam, t is the time taken, x is
the spatial coordinate and H(x-ct) is the Heaviside function which describes the distributed load.
N(x) Is the variable axial force.

2.1 Operational Simplification

Unlike cases where axial force is constant, finite integral transform is inapplicable and we resort
to a modification of the approximate method best suited for solving diverse problem in dynamics
of structures generally referred to as Galerkin’s Method. Thus we use the Galerkin’s method
described in Oni and Awodola [16] to reduce the simultaneous partial differential equation to a
sequence of second order ordinary simultaneous differential equation. Thus a solution of the form

V (x, t) =

n∑
m=1

Ym(t)Um(x) (2.15)

and

W (x, t) =

n∑
m=1

Zm(t)Qm(x) (2.16)
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where Um(x) and Qm(x) are chosen such that the boundary conditions given are satisfied. For
simply supported boundary conditions, due to displacement Um(x) is given as

Um(x) = sin
mπx

L
(2.17)

and due to rotation Qm(x) is chosen as

Qm(x) = cos
mπx

L
(2.18)

Equation (2.17) and (2.18) are chosen to satisfy the boundary conditions.Therefore by using (2.15),
(2.16),(2.17) and (2.18) in (2.13) and (2.14) respectively,one obtains

∞∑
m=1

[
µUm(x)Ÿm(t)−K∗GAU

′′
m(x)Ym −N0

(
U

′′
m(x) + sin

πx

L
U

′′
m(x) +

π

l
cos

πx

L
U

′
m(x)

)
+

KVmYm(t) +K∗GAQ
′
m(x)Zm(t) +M [H(x− ct)Um(x)Ÿm(t) +

2cH(x− ct)U
′
m(x)Ẏm(t) + c2H(x− ct)U

′′
m] =MgH(x− ct)

]
(2.19)

and

∞∑
m=1

[
ρIQm(x)Z̈m(t) +K∗GAQm(x)Zm(t)− EIQ

′′
m(x)Zm(t)−K∗GAU

′
m(x)Ym(t)

]
= 0 (2.20)

In order to determine an expression for Ym(t) and Zm(t), it is required that the expression on the
left hand side of equations (2.19) and (2.20) are orthogonal to the function

(
Uk(x) = sin kπx

L

)
and(

Qk(x) = cos kπx
L

)
respectively. Thus we write

∫ L

0

[
∞∑

m=1

[
µUm(x)Ÿm(t)−K∗GAU

′′
m(x)Ym −N0

(
U

′′
m(x) + sin

πx

L
U

′′
m(x) +

π

l
cos

πx

L
U

′
m(x)

)
+

KUmYm(t) +M [H(x− ct)Um(x)Ÿm(t) + 2cH(x− ct)U
′
m(x)Ẏm(t) + c2H(x− ct)U

′′
m]

=MgH(x− ct)
]]
Uk(x)dx−

∫ L

0

[
{K∗GAQ

′
m(x)Zm(t)}

]
Qk(x)dx (2.21)

and ∫ L

0

{
∞∑

m=1

[
ρIQm(x)Z̈m(t) +K∗GAQm(x)Zm(t)− EIQ

′′
m(x)Zm(t)

]}
Qk(x)dx

−
∫ L

0

{
∞∑

m=1

[
K∗GAU

′
m(x)Ym(t).Uk(x)dx

]}
= 0 (2.22)

In view of (2.17) to (2.18) and their derivatives, one obtain

∞∑
m=1

{
H0(m, k)Ÿm(t) +H1(m, k)Ym(t) +

M

µ

[
H2(m, k)Ÿm(t) + 2cH3(m, k)Ẏm(t)

+c2H4(m, k)Ym(t)

]
+H6(m, k)Zm(t)

}
=
M

µ
gH5(m, k) (2.23)
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and
∞∑

m=1

{[
H7(m, k)Z̈m(t) +H8(m, k)Zm(t)

]
−H9(m, k)Ym(t)

}
= 0 (2.24)

where;

H1(m, k) = H1A(m, k)−H1B(m, k)−H1C(m, k)−H1D(m, k)−H1E(m, k) (2.25)

H8(m, k) = H8A(m, k)−H8B(m, k) H0(m, k) =

∫ L

0

Um(x)Uk(x) dx (2.26)

H1A(m, k) =
K

µ

∫ L

0

Um(x)Uk(x) dx H1B(m, k) =
K∗GA

µ

∫ L

0

U
′′
m(x)Uk(x) dx (2.27)

H1C(m, k) =
N0

µ

∫ L

0

U
′′
m(x)Uk(x) dx H1D(m, k) =

N0

µ

∫ L

0

sin
πx

L
U

′′
m(x)Uk(x) dx (2.28)

H1E(m, k) =
N0π

µL

∫ L

0

cos
πx

L
U

′
m(x)Uk(x) dx H2(m, k) =

∫ L

0

H(x− ct)Um(x)Uk(x) dx

(2.29)

H3(m, k) =

∫ L

0

H(x− ct)U
′
m(x)Uk(x) dx H4(m, k) =

∫ L

0

H(x− ct)U
′′
m(x)Uk(x) dx (2.30)

H5(m, k) =

∫ L

0

H(x− ct)Uk(x) dx H6(m, k) =
K∗GA

µ

∫ L

0

Q
′′
m(x)Qk(x) dx (2.31)

H7(m, k) =

∫ L

0

Q
′′
m(x)Qk(x) dx H8A(m, k) =

K∗GA

ρI

∫ L

0

Qm(x)Qk(x) dx (2.32)

H8B(m, k) =
E

ρ

∫ L

0

Q
′′
m(x)Qk(x) dx H9(m, k) =

K∗GA

ρI

∫ L

0

U
′
m(x)Uk(x) dx (2.33)

Using the property of Heaviside function, it can be expressed in series form given by [17] i.e

H(x− ct) =
1

4
+

1

π

∞∑
n=0

sin(2n+ 1)π(x− ct)

2n+ 1
(2.34)

It can be shown that

H2(m, k) = ψ1A(m, k) +
1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ1B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ1C(n,m, k) (2.35)

H3(m, k) = ψ2A(m, k) +
1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ2B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ2C(n,m, k) (2.36)
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H4(m, k) = ψ3A(m, k) +
1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ3B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ3C(n,m, k) (2.37)

where;

ψ1A(m, k) =
1

4

∫ L

o

sin
mπx

L
sin

kπx

L
dx , ψ1B(n,m, k) =

∫ L

o

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

(2.38)

ψ1C(n,m, k) =

∫ L

o

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx, ψ2A(m, k) =

mπ

4L

∫ L

o

cos
mπx

L
sin

kπx

L
dx

(2.39)

ψ2B(n,m, k) =
mπ

L

∫ L

o

sin(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx (2.40)

ψ2C(n,m, k) =
mπ

L

∫ L

o

cos(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx (2.41)

ψ3A(m, k) = −m
2π2

4L2

∫ L

o

sin
mπx

L
sin

kπx

L
dx (2.42)

ψ3B(n,m, k) = −m
2π2

L2

∫ L

o

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx (2.43)

ψ3C(n,m, k) = −m
2π2

L2

∫ L

o

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx (2.44)

Further simplification and rearrangement of equations (2.23) and (2.24) using the solutions of the
integrals listed above, it gives

∞∑
m=1

{
H

′
0(m, k)Ÿm(t) +H

′
1(m, k)Ym(t) + Γ0

[[
ψ

′
1A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
1B(n,m, k)

− 1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
1C(n,m, k)

]
Ÿm(t) + 2c

[
ψ

′
2A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
2B(n,m, k)(2.45)

− 1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
2C(n,m, k)

]
Ẏm(t) + c2

[
ψ

′
3A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
3B(n,m, k)

− 1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
3C(n,m, k)

]
Ym(t)

]
+H

′
6(m, k)Zm(t) =

MgL

µπk

[
cosmπ + cos

kπct

L

]}
and

∞∑
m=1

{[
H

′
7(m, k)Z̈(m)(t) +H

′
8Zm(t)

]
−H

′
9(m, k)Ym(t)

}
= 0 (2.46)

where;

Γ0 =
M

µL
(2.47)

Equations (2.45) and (2.46) are now the fundamental equations governing the dynamic problem
of the Axial force on the response to moving distributed load of Timoshenko beam type resting
on Vlasov foundation. Equation (61) coupled non-homogeneous second order ordinary differential

8
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equation hold for the classical boundary condition. It follows that two special cases of the equation
(2.45) arise, namely, the moving force problem (i.e. when all the inertia terms are neglected) and
movingmass problem (i.e. when all the inertia terms are included).

2.2 Solution of the Transformed Equation

2.2.1 Thick beam traversed by moving distributed force

In this section, an approximate model of the differential equation describing the response of a
uniform Timoshenko beam resting on Vlasov foundation and under the action of a moving distributed
load will be obtained by neglecting inertia effect Γ0 = 0, then equations (2.45) and (2.46) reduces
to

∞∑
m=1

{
H

′
0(m, k)Ÿm(t) +H

′
1(m, k)Ym(t) +H

′
6(m, k)Zm(t) =

MgL

µπk

[
cosmπ + cos

kπct

L

]}
(2.48)

and
∞∑

m=1

{[
H

′
7(m, k)Z̈(m)(t) +H

′
8Zm(t)

]
−H

′
9(m, k)Ym(t)

}
= 0 (2.49)

This is the classical case of a moving force problem associated with the system. It is an approximated
model which assume the inertia effect of the moving mass is negligible. In order to solve equations
(2.48) and (2.49), the method of Laplace transform is resorted to rearranging the two equations,
one obtains By rearranging the two equations, one will obtain

Ÿm(t) + α2
mf1Ym(t) + αaZm(t) =

MgL

µπkH
′
0(m, k)

(Rm + cos θk(t)) (2.50)

and

Z̈m(t) + α2
mf2Zm(t)− αbYm(t) = 0 (2.51)

where;

α2
mf1 =

H
′
1(m, k)

H
′
0(m, k)

; α2
mf2 =

H
′
8(m, k)

H
′
7(m, k)

(2.52)

αa =
H

′
6(m, k)

H
′
0(m, k)

; αb =
H

′
9(m, k)

H
′
7(m, k)

(2.53)

Rm = −(−1)m ; θk =
kπc

L
(2.54)

Equations (2.50) and (2.51) are second order ordinary differential equations, therefore, subjecting
the two equations to a Laplace transform defined as

Λ =

∫ ∞

0

(.) e−stdt (2.55)

where s is the Laplace parameter. By applying the initial conditions (2.4), one will obtain an
algebraic equations given by

Ȳm(s)
(
s2 + α2

mf1

)
+ αaZ̄m(s) =

MgL

µπkH
′
0(m, k)

(
Rm

s
+

s

s2 + θ2k

)
(2.56)

and

9
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Z̄m(s)
(
s2 + α2

mf2

)
− αbȲm(s) = 0 (2.57)

Solving equations (2.56) and (2.57) simultaneously by eliminating parameter Ȳm(s), one obtains

Z̄m(s)
(
S2 + ω2

mf

)2
= αm2 qf

(
Rm

S
+

s

S2 + θ2k

)
(2.58)

where;

ω2
mf1 =

1

2

[
−

(
α2
mf1 + α2

mf2

)
+

√(
α2
mf1 − α2

mf2

)2

− 4αaαb

]
(2.59)

ω2
mf2 = −1

2

[ (
α2
mf1 + α2

mf2

)
+

√(
α2
mf1 − α2

mf2

)2

− 4αaαb

]
(2.60)

and

Qf =
MgL

µπkH
′
0(m, k)

(2.61)

Further rearrangement of (2.58), yields

Z̄m(s) =
αbQf

ω2
mf1 − ω2

mf2

[
Q1A +Q1B

]
(2.62)

where;

Q1A =
Rm

S

[
1(

S2 + ω2
mf2

) − 1(
S2 + ω2

mf1

)]; Q1B =
S

S2 + θ2k

[
1(

S2 + ω2
mf2

) − 1(
S2 + ω2

mf1

)]
(2.63)

Thus, the equation reduces to that of finding the Laplace inversion of (2.62). So that the Laplace
inversion of Zm(s) is the convolution of f(s) and g(s) defined as;

f(s) ∗ g(s) =
∫ L

0

f(t− u) g(u) du (2.64)

using (2.64), Zm(s) is easily expressed as;

Zm(t) =
αbQf

ω2
mf1 − ω2

mf2

[
Q1a +Q1b

]
(2.65)

where;

Q1a = Rm

{
1

ωmf2

[
sinωmf2t

∫ t

0

cosωmf2u du− cosωmf2t

∫ t

0

sinωmf2u du

]

− 1

ωmf1

[
sinωmf1t

∫ t

0

cosωmf1u du− cosωmf1t

∫ t

0

sinωmf1u du

]} (2.66)

Q1b =

{
1

ωmf2

[
sinωmf2t

∫ t

0

cosωmf2u cos θk du− cosωmf2t

∫ t

0

sinωmf2u cos θk du

]

− 1

ωmf1

[
sinωmf1t

∫ t

0

cosωmf1u cos θk du− cosωmf1t

∫ t

0

sinωmf1u cos θk du

]} (2.67)

10
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Solving the integrals in Q1a and Q1b, thereafter put the solution back into equation (2.65) and
evaluate with some rearrangements, one obtains

Zm(t) =
αbQf

ω2
mf1ω

2
mf2(ω

2
mf1 − ω2

mf2)ω
2
1θω

2
2θ

{
Rmω

2
1θω

2
2θ

[
ω2
mf2 cosωmf1t− ω2

mf1 cosωmf2t

+(ω2
mf1 − ω2

mf2)
]
+ ω2

mf1ω
2
mf2

[
ω2
1θ(cos θkt− cosωmf2t)− ω2

2θ(cos θkt− cosωmf1t)
]} (2.68)

where;
ω2
1θ = (ω2

mf1 − θ2k); ω2
2θ = (ω2

mf2 − θ2k) (2.69)

Substituting (2.68) into (2.16), one obtains

W (x, t) =

∞∑
m=1

αbQf

ω2
mf1ω

2
mf2(ω

2
mf1 − ω2

mf2)ω
2
1θω

2
2θ

{
Rmω

2
1θω

2
2θ

[
ω2
mf2 cosωmf1t− ω2

mf1 cosωmf2t

+(ω2
mf1 − ω2

mf2)
]
+ ω2

mf1ω
2
mf2

[
ω2
1θ(cos θkt− cosωmf2t)− ω2

2θ(cos θkt− cosωmf1t)
]}

∗ cos mπx
L

(2.70)

Equation (2.70) represent the angular displacement of the thick beam under the action of moving
distributed force for the dynamic system.

In order to get the transverse displacement of the dynamic problem, we eliminate Z̄m(s) in simultaneous
equations (2.56) and (2.57), then after some simplification and rearrangement, one obtains

Ȳm(s) = Qf

[
Q2A +Q2B

]
+ α2

mf Qf

[
Q1A +Q1B

]
(2.71)

where;

Q1A =
Rm

S

[
1(

S2 + ω2
mf2

) − 1(
S2 + ω2

mf1

)], Q1B =
S

S2 + θ2k

[
1(

S2 + ω2
mf2

) − 1(
S2 + ω2

mf1

)]
(2.72)

Q1A =
Rm

S

[
ω2
mf1(

S2 + ω2
mf1

) −
ω2
mf2(

S2 + ω2
mf2

)] Q1B =
S

S2 + θ2k

[
ω2
mf1(

S2 + ω2
mf1

) −
ω2
mf2(

S2 + ω2
mf2

)]
(2.73)

Using (2.64), on (2.73), then Ȳm(s) is easily expressed as

Ȳm(s) = Qf

[
Q2a +Q2b

]
+ α2

mf Qf

[
Q1a +Q1b

]
(2.74)

Since the terms Q1A andQ1b has been solved, then we are left with terms Q2a andQ2b which are
given as

Q2a = Rm

{
ωmf1

[
sinωmf1t

∫ t

0

cosωmf1u du− cosωmf1t

∫ t

0

sinωmf1u du

]

+ωmf2

[
sinωmf2t

∫ t

0

cosωmf2u du+ cosωmf2t

∫ t

0

sinωmf2u du

]} (2.75)

11
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and

Q2b = ωmf1

[
sinωmf1t

∫ t

0

cosωmf1u cos θku du− cosωmf1t

∫ t

0

sinωmf1u cos θku du

]
−ωmf2

[
sinωmf2t

∫ t

0

cosωmf2u cos θku du− cosωmf2t

∫ t

0

sinωmf2u cos θku du

] (2.76)

It is easily shown that

Q1a =
Rm

ω2
mf1ω

2
mf2

[
ω2
mf2 cosωmf1t− ω2

mf1 cosωmf2t+ (ω2
mf1 − ω2

mf2)

]
(2.77)

Q1b =
Rm

(ω2
mf1 − θ2k)(ω

2
mf2 − θ2k)

[
(ω2

mf1 − θ2k)(cos θkt− cosωmf2t)

−(ω2
mf2 − θ2k)(cos θkt− cosωmf1t)

] (2.78)

Q2a = Rm

(
cosωmf2t− cosωmf1t

)
(2.79)

and

Q2b =
1

ω2
1θω

2
2θ

[
ω2
mf1ω

2
2θ(cos θkt− cosωmf1t)− ω2

mf2ω
2
1θ(cos θkt− cosωmf2t)

]
(2.80)

Substituting equations (2.77), (2.78), (2.79) and (2.80) into equation (2.74), after some simplification,
one obtains

Ym(t) =
Qf

ω2
mf1ω

2
mf2ω

2
mfdω

2
1θω

2
2θ

{
Rmω

2
1θω

2
2θ

[
ω2
mf2

(
ω2
mf1 cosωmf2t− α2

mf2 cosωmf1t
)

−ω2
mf1

(
ω2
mf2 cosωmf1t+ α2

mf2 cosωmf2t
)
+ α2

mf2

(
ω2
mf1 − ω2

mf2

)]
+ω2

mf1ω
2
mf2

(
ω2
mf1 − α2

mf2

)[
ω2
2θ(cos θkt− cosωmf1t)− ω2

1θ(cos θkt− cosωmf2t)
]} (2.81)

where
ω2
mfd = (ω2

mf1 − ω2
mf2) (2.82)

Putting equation (2.82) into (2.15), one obtains

V (x, t) =

∞∑
m=1

Qf

ω2
mf1ω

2
mf2ω

2
mfdω

2
1θω

2
2θ

{
Rmω

2
1θω

2
2θ

[
ω2
mf2

(
ω2
mf1 cosωmf2t− α2

mf2 cosωmf1t
)

−ω2
mf1

(
ω2
mf2 cosωmf1t+ α2

mf2 cosωmf2t
)
+ α2

mf2

(
ω2
mf1 − ω2

mf2

)]
+ω2

mf1ω
2
mf2

(
ω2
mf1 − α2

mf2

)[
ω2
2θ(cos θkt− cosωmf1t)− ω2

1θ(cos θkt− cosωmf2t)
]}

∗ sin mπx
L

(2.83)

Equation (2.83) represent the transverse displacement of the thick beam under the action of moving
distributed force for the dynamic system.
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2.2.2 Thick beam traversed by moving distributed mass

In this section, the solution to the entire equation (2.45) is sought when no terms of the coupled
differential equation is neglected. An approximate analytical solution to Eqn. (2.45) is resort to.
Thus, we used a modification of the asymptotic method due to strubble’s technique which is often
used in treating oscillatory system. To this ends, equation (2.45) is rearranged to take the form

Ÿm(t) +
2Γ0cQ2(n,m, k)

H
′
0(m, k) + Γ0Q1(n,m, k)

Ẏm(t) +
H

′
1(m, k) + Γ0c

2Q3(n,m, k)

H
′
0(m, k) + Γ0Q1(n,m, k)

Ym(t)

=
MgL

µπk (H0
′(m, k) + Γ0Q1(n,m, k))

[
Rm + cos θkt

]
(2.84)

where;

Q1(m, k) = ψ
′
1A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
1B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
1C(n,m, k) (2.85)

Q2(m, k) = ψ
′
2A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
2B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
2C(n,m, k) (2.86)

Q3(m, k) = ψ
′
3A(m, k) +

1

π

∞∑
n=0

cos(2n+ 1)πct

2n+ 1
ψ

′
3B(n,m, k)−

1

π

∞∑
n=0

sin(2n+ 1)πct

2n+ 1
ψ

′
3C(n,m, k) (2.87)

With this technique, one seeks the modified frequency corresponding to the frequency of the free
system due to presence of the effect of axial force N(x).

An equivalent free system operator defined by the modified frequency, then replace equation (2.85).
Thus the right hand side of (2.85) is set to zero for homogeneous equation and a parameter ϵ < 1
is considered for any arbitrary mass ratio Γ0 defined as [16];

ϵ =
Γ0

1 + Γ0
(2.88)

it can be shown that
Γ0 = ϵ+ 0(ϵ2) (2.89)

and
1

H
′
0(m, k) + ϵQ1(n,m, k)

=
1

H
′
0(m, k)

[
1− ϵQ1(n,m, k)

H
′
0(m, k)

]
(2.90)

whenever ∣∣∣∣∣1− ϵQ1(n,m, k)

H
′
0(m, k)

∣∣∣∣∣ < 1 (2.91)

Using equations (2.89) and (2.90) in (2.84), we have

Ÿm(t) +
1

H
′
0(m, k)

[
1− ϵQ1(n,m, k)

H
′
0(m, k)

]
(2cϵQ2(n,m, k)) ˙Ym(t)

+
1

H
′
0(m, k)

[
1− ϵQ1(n,m, k)

H
′
0(m, k)

](
H

′
1(m, k) + ϵc2Q3(n,m, k)

)
Ym(t)

=
MgL

µπk

1

H
′
0(m, k)

[
1− ϵQ1(n,m, k)

H
′
0(m, k)

]
(Rm + cos θkt) (2.92)
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Setting ϵ = 0 in equation (2.92) above, the result will be solution corresponding to the case in which
the inertia effect of the mass of the system is regarded as negligible, then the solution of equation
(2.92) becomes

Ymf (m, t) = Amf cos(αmf t− ϕ) (2.93)

where Amf , αmf andϕmf are constants.

Furthermore as ϵ < 1, strubble’s technique required that the asymptotic solution of the homogeneous
part of the equation (2.92) be of the form

Ym(t) = Ω(m, t) cos
[
αmf1t− ϕ(m, t)

]
+ ϵY1(t) + 0(ϵ2) (2.94)

where Ω(m, t) andϕ(m, t) are slowly varying functions of time or equivalently.

The variational equations describing the behavior of Ω(m, t) andϕ(m, t) during the motion of the
force are obtained by substituting (2.94) into the homogeneous part of (2.92). Thus, we have

{
2 ˙ϕ(m, t)αmf1 − α2

mf1 +
H

′
1(m, k)

H
′
0(m, k)

− ϵQ1(n,m, k)H
′
1(m, k)

(H
′
0(m, k))

2
+
ϵc2Q3(n,m, k)

H
′
0(m, k)

}
×[

ϕ(m, t) cos
[
αmf1t− ϕ(m, t)

]]
−

{
2ϕ̇(m, t) +

2ϵcQ2(n,m, k)Ω(m, t)

H
′
0(m, k)

}
αmf1 sin

[
αmf1t− ϕ(m, t)

]
+ϵY1(m, t) +

H
′
1(m, k)

H
′
0(m, k)

ϵY1(m, t) = 0 (2.95)

Extracting those terms which contribute to the variational equation to 0(ϵ), we have

2Ω(m, t)αmf1ϕ̇(m, t)− Ω(m, t)α2
mf1 −

ϵψ
′
1A(m, k)

(H
′
0(m, k))

2
Ω(m, t) +

H
′
1(m, k)

H
′
0(m, k)

Ω(m, t)

+
ϵc2ψ

′
3A(m, k)

H
′
0(m, k)

Ω(m, t) = 0 (2.96)

and

Ω̇(m, t)αmf1 +
ϵcψ

′
2A(m, k)

H
′
0(m, k)

αmf1Ω(m, t) = 0 (2.97)

Setting the coefficients of sin
[
αmf1t−ϕ(m, t)

]
and cos

[
αmf1t−ϕ(m, t)

]
to zero, and integrate the

results, one obtains

ϕ(m, t) =

{
α2
mf1(H

′
0(m, k))

2 + ϵψ
′
1A(m, k) + ϵc2ψ

′
3A(m, k)H

′
0(m, k)−H

′
10(m, k)

}
t

2αmf1(H
′
0(m, k))

2
+ Cm (2.98)

and
ϕ(m, t) = A0e

−ωmt (2.99)

where;

ωm =
ϵcψ

′
A(m, k)

H
′
0(m, k)

; A0 = eC0 ; H
′
10(m, k) = H

′
1(m, k)(H

′
0(m, k)) (2.100)

andA0, ωm, C0 are constants. Therefore when the effect of the moving distributed mass is considered
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,the first approximation to the homogeneous system is given as

(2.101)

equation (2.101) implies
Ym(t) = A0e

−ωmt cos
[
αmmt− Cm

]
(2.102)

where;

αmm = αmf1

[
1

2
− ϵ(ψ

′
1A(m, k) + c2ψ3A(m, k)H

′
0(m, k))−H

′
10(m, k)

2α2
mf1(H

′
0(m, k))

2

]
(2.103)

is called the modified natural frequency, representing the frequency of the system due to the presence
of moving mass. Thus to solve the non-homogeneous equation (2.45), the differential operator which
acts on Ym(t) is replaced by the modified frequency αmm to take the form

Ÿm(t) + α2
mm1Ym(t) + αaZm(t) = qf (Rm + cos θk(t)) (2.104)

and

Z̈m(t) + α2
mm2Zm(t)− αbYm(t) = 0 (2.105)

where;

αmm1 = αmf1

[
1

2
− ϵ(ψ

′
1A(m, k) + c2ψ3A(m, k)H

′
0(m, k))−H

′
10(m, k)

2α2
mf1(H

′
0(m, k))

2

]
(2.106)

α2
mm2 =

H
′
8(m, k)

H
′
7(m, k)

; αa =
H

′
6(m, k)

H
′
0(m, k)

(2.107)

αb =
H

′
9(m, k)

H
′
7(m, k)

; Rm = −(−1)m; θk =
kπc

L
(2.108)

These equations (2.104) and (2.105) are analogous to equations (2.56) and (2.57). Thus, using the
same argument as in the previous section, one obtains

W (x, t) =

∞∑
m=1

αbQf

ω2
mm1ω

2
mm2(ω

2
mm1 − ω2

mm2)ω
2
aθω

2
bθ

{
Rmω

2
aθω

2
bθ

[
ω2
mm2 cosωmm1t− ω2

mm1 cosωmm2t

+(ω2
mm1 − ω2

mm2)
]
+ ω2

mm1ω
2
mm2

[
ω2
aθ(cos θkt− cosωmm2t)− ω2

bθ(cos θkt− cosωmm1t)
]}

cos
mπx

L

(2.109)

and

V (x, t) =

∞∑
m=1

Qf

ω2
mm1ω

2
mm2ω

2
mmdω

2
aθω

2
bθ

{
Rmω

2
aθω

2
bθ

[
ω2
mm2

(
ω2
mm1 cosωmm2t− α2

mm2 cosωmm1t
)

−ω2
mm1

(
ω2
mm2 cosωmm1t+ α2

mf2 cosωmm2t
)
+ α2

mm2

(
ω2
mm1 − ω2

mm2

)]
+ ω2

mm1ω
2
mf2

(
ω2
mm1

−α2
mm2

)[
ω2
bθ(cos θkt− cosωmm1t)− ω2

aθ(cos θkt− cosωmm2t)
]}

sin
mπx

L

(2.110)

Equations (2.109) and (2.110) represent the angular displacement and transverse displacement of
the thick beam under the action of moving distributed mass for the dynamic problem.
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3 Numerical Calculation and Discussion of Result

In order to illustrate the analysis in view, the uniform beam of length L=17.5m is considered. The
load velocity c = 30ms−1 ,Young modulus E = 2.02 ∗ 1011N/m3, moment of inertia I = .0012m4,
π = 22/7, cross sectional area A=7.175 , density of the beam ρ = 2400kgm−3, shear coefficient
K∗ = 5/6, shear modulus G = 7.7E ∗ 1010Nm−2 and the gravitational acceleration g = 9.8ms−2.
The transverse displacement and angular displacement of the beam are calculated and plotted
against time for various values of axial force N with different values of length ”L” of the beam. The
results are as shown on the various graphs below.

The effects of the following to the dynamic response of the present beam were investigated:

1. axial force N when length L = 17.5

2. axial force N when length L = 20.0

3. axial force N when length L = 22.5

Effect of Axial force on the dynamic response when L = 17.5, L = 20 and L = 22.5 for deflection
of the dynamic problem

The effect of axial force on the dynamic response of the uniform simply supported thick beam under
distributed moving load for both moving force and moving mass problems are investigated. It is
observed that as the axial force is increasing, the amplitude of deflection for both moving force and
moving mass problems are decreasing, and vise versa. The results are presented in fig. (2a) to (8b).

Fig. 2. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed force for various values of axial force when L=17.5

Fig. 3. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed force for various values of axial force when L=20
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Fig. 4. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed force for various values of axial force when L=22.5

Fig. 5. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed mass for various values of axial force when L=17.5

Fig. 6. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed mass for various values of axial force when L=20

17



Adekunle et al.; ARJOM, 6(3): 1-19, 2017; Article no.ARJOM.35786

Fig. 7. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed mass for various values of axial force when L=22.5

Fig. 8. The transverse displacement and rotation responses of a thick beam under
the action of moving distributed mass for various values of ϵ

4 Conclusion

The effect of variable axial force on the deflection of thick beam under moving load was investigated
in this paper. The dynamic problem which is a simply supported has been transformed to a sequence
of second order simultaneous ordinary differential equations using Galerkin’s method. Thereafter,
a modification of Struble’s asymptotic method is used to solve the moving mass equation. We have
shown that as the prestress is increasing, there exist gradual decrease in the dynamic responses of
the beam at different length, an increasing in the value of ϵ, decreases the mode frequency of the
thick beam under the action of moving distributed masses for the dynamic system. of the beam for
both moving force and moving mass problems.
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