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ABSTRACT

Heavy metals (HMs) contamination of soil and water is a serious problem in recent time and cause
hazardous effects on humans and animals which ultimately results in destruction of environment.
HMs such as Cd, Cr, Pb, As, Co, Cu, Ni, Zn, Mn, etc. are considered as environmental pollutants
due to their toxic effects. These metals alter the plant growth, physiology, and development, it
involves the production of reactive oxygen species (ROS) which leads to subsequent cell death,
eventually results in the reduction of crop growth and yield. To sustain the agricultural environment,
it is necessary to alleviate the toxicity of HMs from the environment. There are number of
technologies evolved but, phytoremediation is an emerging technology that uses plants to clean up
pollutants from the environment. It is a promising technology for the remediation of contaminated
soil because of its low cost, non-intrusiveness, and sustainable features. Hyperaccumulator plants
absorb, accumulate and decontaminate high concentration of metals in their above-ground tissues
from natural contaminated sites such as mining, smelting, compost, sewage sludge, wastewater,
and flyash producing areas.
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1. INTRODUCTION

It has been predicted that increased abiotic
stress of arable land is expected to have
disturbing global effects resulting in 30% land
loss within the next 25 years, and up to 50% by
2050 [1]. Stressful environment are now being
recognised as a potential agricultural threat for
the sustainable agriculture. Plants often face the
challenges of severe environmental conditions
that may adversely affect many physiological and
metabolic processes, finally diminishing growth,
development and productivity. These external
factors may be abiotic and biotic arising either
from an excess or from the deficit in the physical
and chemical environment. Abiotic stress is the
primary cause of crop loss worldwide, reducing
average yield for most of the major crop plant by
more than 50% [2].

The contamination of soil and water over the
years by toxic HMs has become a major concern
to the soil, air and water. Their contamination by
human activities, such as mining and industrial
activities is a serious threat for all over the world
and has brought hazards to the growing
population as well as the environment [3]. In
recent years, as the development of global
economy increased, both type and content of
HMs in the soil has increased due to
anthropogenic activities, resulting in the
destruction of the environment [4-7].

2. HEAVY METALS AND ITS
ENVIRONMENTAL CONSEQUENCES

Most of the toxic metals are endorsed to
transition metals with atomic masses over 20 and
having a specific gravity of above 5 g cm−3 or
more. Biologically, “heavy” refers to a series of
metals and metalloids that can be toxic to both
plants and animals even at very low
concentration [8]. Though HMs is thought to be
synonymous with toxic metals, on the other
hand, lighter metals such as Al also have toxic
effects. Not all HMs are toxic, some are essential
such as Fe, Cu, Zn, Mo, and Ni for the growth
and metabolism of organisms at low
concentration but at higher concentration these
essential metals also become toxic. Metals
concentration in soil typically range from less
than 1 mg kg-1 to as high as 100,000 mg kg-1.

Because of rising environmental pollution in
industrial areas, toxicity of various HMs has
become a matter of health and productivity
concern. HMs such as As, Cd, Cr, Cu, Pb, Hg,
Ni, Se, and Zn are considered as environmental
pollutants due to their toxic effect in plants,
human and food particularly in highly
anthropogenically disturbed areas [9,10]. The
source of metals in soil and water may arise as a
consequence of a range of activities, such as
mining, metal industries, road traffic, power
stations, burning of fossil fuels, crop production,
animal rearing, use of wastewater as a source of
irrigation, use of agrochemicals, waste disposal
and so on [11]. Contamination of soil with metals
lead to losses in agricultural yield and are threat
to the health of wildlife and human [12,13].

3. ADVERSE EFFECTS OF HEAVY
METALS ON PLANTS

3.1 Responses of Heavy Metals on
Growth, Physiology and Metabolism
of Plants

HMs have adverse effects on physiological and
biochemical function of plants, most obvious
effects are the inhibition of growth rate, chlorosis,
necrosis, leaf rolling, altered stomatal action,
decreased water potential, efflux of cations,
alterations in membrane functions, inhibition of
photosynthesis, respiration, altered metabolism,
(Fig. 1) and activities of several key enzymes
[11,12,14]. Some of the HMs affects growth,
physiology, metabolism and yield attributes on
plants as given in Table 1. Water responses
found to be regulated by an impairment of
aquaporin, which is one of the earliest response
to HMs in plants. [15] observed excess Cr
decreased the water potential and transpiration
rate with increasing diffusive resistance and
relative water content in cauliflower. Similarly
excess Cu, Zn, and Mg inhibits the seed
germination and early growth of barley, rice and
wheat [16] while, the excessive use of Fe, Pb
and Cu causes drastic decline in seed
germination of tomato seedlings [17].

HMs are highly toxic, once the cytosolic
concentration in plant turns out of control,
phytotoxicity occur which inhibits photosynthesis,
cell respiration and also nitrogen metabolism
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while, induce oxidative stress, which collectively
affect the plant growth and development [18-20].
HMs affects the function of PSΙ and PSΙΙ,
changes stomatal function that results in
reduction of photosynthesis [21-23]. Main targets
of the influence of HMs are two key enzymes of
CO2 fixation, ribulose 1, 5-bisphosphate
carboxylase (RuBisCO) and phosphoenol
pyruvate carboxylase (PEPC). Cd2+ ions lowers
the activity of RuBPC and damage its structure
by substituting for Mg2+ ions, which are important
cofactors of carboxylation reactions, and may
also shift RuBisCO activity towards oxygenation
reactions [24-26]. High concentration of Cr can
disturb the chloroplast structure thereby
disturbing the photosynthetic process [27]. A time
and dose-dependent HMs like Cu, Ni, Pb, and Zn
decreases photosynthesis in Zea mays [28].

At toxic concentration of HMs, respiration is
usually inhibited [29], however, at very low
concentration, respiration increases in some
plant species [23]. Respiration is found to
sensitive to Cr in Pisum sativum [30].
Additionally, nitrogen assimilation enzymes,
nitrate reductase, nitrite reductase, and
glutamine synthetase activities decreased in rice
seedlings in response to As and Al [11,31,32].

3.2 Reactive Oxygen Species Production
in Plant Cell by Heavy Metals

HMs disturb redox homeostasis by stimulating
the formation of excessive ROS, such as
superoxide (O2

−), hydroxyl radical (OH·), singlet
oxygen (1O2), and hydrogen peroxide (H2O2)
[11,14,33]. The production of ROS is high when
plants are associated with various environmental
stress such as drought, chilling, nutrient
deficiency and salinity [34-36]. It causes
membrane lipid peroxidation, protein oxidation,
enzyme inhibition, and damage to nucleic acids
and subsequent cell death [33,37,38].
Chloroplasts are the major plant organelles
producing ROS during photosynthesis [36]. HMs
stress enhanced peroxisomal mobility correlated
with an increase in ROS [39-41] like induction of
H2O2 in leaf peroxisomes in response to Cd
stress [42]. Plasma membrane-bound NADPH
oxidases as well as cell wall associated
peroxidases are the main sources of O2

.-and
H2O2 producing apoplastic enzymes [43].
NADPH oxidase dependent ROS induction has

been reported in wheat in response to Ni stress
[44], Pisum sativum in response to Cd stress
[45], Vicia faba in response to Pb stress [46], and
Arabidopsis in response to Cd and Cu [47]. The
undesirable result of ROS overproduction is the
oxidative stress, which can cause extensive
cellular damage [48].

However, plants have evolved specific strategies
to overcome and repair the damages caused by
ROS, it can be scavenged by antioxidant
enzymes. Plants cope with oxidative stress by
using ROS scavenging enzymes  such as,
superoxide dismutase (SOD), ascorbate
peroxidase (APX), mono dehydro ascorbate
reductase (MDHAR), dehydro ascorbate
reductase (DHAR), glutathione reductase (GR),
catalase (CAT), glutathione peroxidase (GPX)
[49,50], as well as by non-enzymatic compounds
viz. cysteine (Cys), reduced glutathione (GSH),
carotenoids, ascorbate (ASC), α-tochopherol,
etc. [51-53].

4. PHYTOREMEDIATION: CONTROL
MEASURE FOR ADVERSE EFFECT OF
HEAVY METALS

Due to the increasing trends of HMs
contamination in the environment and their
negative impact on plants and other organisms, it
is important to mitigate the toxicity of HMs from
the environment which has become a burning
issue. Hence, it is crucial to develop effective and
environmentally safe technologies for soil
remediation. There are many methods to control
HMs contamination of soil by physical, chemical
and biological methods. Other methods include
washing and compounding, heat treatment,
physical solidification, chemical improvers,
chemical curing lamp remediation, etc. Many
traditional technologies are enormously costly
and time consuming; other methods for cleaning
up environment require the use of chemicals that
may always not be benevolent with respect to the
various compartments. An alternative to
conventional technologies, biologically based
remediation strategy including phytoremediation
i.e. the use of plants to remove toxic metals from
contaminated site, is a promising technology for
the remediation of contaminated soil [54]. The
term phytoremediation consist of the Greek prefix
phyto (plant), attached to the Latin root remedian
(to correct or remove an evil) [55].

Phytoremediation has been reported to be a cost
effective, non-intrusive, aesthetically pleasing,

socially accepted technology to remediate
polluted soils [56-58]. Brassicaceae family
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represents a differential range of tolerance to two
important abiotic stresses viz. salinity and
trace metals. Regarding the concept of
hyperaccumulation, plants tolerating and
accumulating high concentration of metals in
their above-ground tissues are called
hyperaccumulators [59-61]. In the context of
metal-hyperaccumulation, four species of
brassicaceae such as Alyssym sp., Thlaspi
caerulescens, Thlaspi rotundifolium and
Arabidopsis halleri have been studied extensively
for their ability to hyperaccumulate several trace
metals, including Zn, Cd and Ni [62-64]. [65]
revealed that all mustard including Indian
mustard (B. juncea), black mustard (B. nigra
Koch), rape (B. napus L.) and kale (B. Oleracea
L.) showed a strong ability to accumulate and
translocate Cu, Cr, Cd, Ni, Pb, and Zn to the
shoots. However, the ability to accumulate HMs
both qualitatively and quantitatively varies
significantly between species and between
cultivars within a species as shown in Tables 2
and Table 3.

Hyperaccumulators have the ability partially or
substantially to remediate contaminants in
contaminated soil, sludge, sediment, ground
water, surface water, waste water, smelt area,
tannery sludge, and fly ash producing area,
caused by natural as well as some of the

anthropogenic activities. A number of plants have
been selected for the remediation from natural
contaminants as described in Table 4.

5. MECHANISM OF PHYTOREMEDIATION
TECHNOLOGY

Plants have a range of mechanisms at cellular
level to mitigate the toxicity of HMs by avoiding
the build-up of toxic concentration within the cell,
preventing the damaging effects [164]. One way
of avoiding metal accumulation can be the
restriction of its movement to roots with the help
of mycorrhizal fungi [165], while other can be the
stimulation of efflux of metals into the apoplast
[166]. Phytoremediation technologies are
emerging innovative technologies that use plants
for effective treatment of a wide variety of
contaminants. Phytotechnologies may potentially
clean up moderate to low levels of selected
elemental and organic contaminants over large
areas, and offer a more active form of monitored
natural diminution [113,167]. The mechanism
of phytotechnology include phytovoatilization,
phytodegradation, phytoextraction, phyto-
stabilization, rhizodegradation and
phytosequestration by which plant can affect
contaminant mass in soil, sediments and water
[168].

Fig. 1. Adverse effects of heavy metals on plants
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Table 1. Effects of heavy metals on growth, physiology, metabolism and yield attributes of plants

Metals Doses Plants Physiological effects, metabolism and yield References
Cd 10 and 15 µM CdCl2 Nicotiana tabacum DNA damage, increase in lipid peroxidation [66]
Cd 15 and 30 mg CdCl2 kg-1 soil Triticum aestivum Reduction in plant biomass ,  nitrogen and phosphorus

content
[67]

Cd 200 mg CdCl2 kg -1soil Brassica juncea Decrease in net photosynthetic rate,  RuBisCO activity,
enhancement in lipid peroxidation and H2O2 content

[68]

Cd 25,50,and 100 mg CdCl2 kg-1 soil Vigna radiata Decrease in dry weight,  leaf area, net photosynthetic rate
and chlorophyll content

[69]

Cd 25, 50, 100 and 150 mg CdCl2 kg-1

soil
Brassica juncea Decrease in dry weight, leaf area, net photosynthetic rate,

chlorophyll content and seed yield
[37]

Cd 100 and 200 mg CdCl2 kg -1 soil Raphanus sativus Decrease in length , fresh and dry weight, leaf
number,chlorophyll,  soluble proteins, and total amino acid
content

[70]

Cd 25 and 50 µM L-1 CdCl2 Brassica juncea Reduction in photosynthesis, growth, chlorophyll
fluorescence, leaf area, and dry mass and increase in
antioxidant enzyme activity

[71]

Cd 25, 50 and 100 mg CdCl2 kg-1 soil Vigna mungo Reduction in chlorophyll content, net photosynthetic rate,
stomatal conductance and water use efficiency

[72]

Cd 50 μM CdCl2 Pisum sativum Inhibition of growth, reduction in the transpiration,
photosynthetic rate, and
chlorophyll content

[73]

Pb Pb (CH3COO)2100 and 300 mg kg-1

soil
Helianthus annuus Inhibition in seed germination, fresh and dry biomass, leaf

area, chlorophyll and growth
[74]

Pb 0.05-1.0 g L-1 Pb(NO3)2 Triticum aestivum Reduction in seed germination and biomass [75]
Pb 150-1500 µM of Pb (C2H3O2)2 Brassica juncea Decline in growth, chlorophyll, carotenoids and proline

content
[76]

Pb 0.5 mM Pb (NO3)2 Raphanus sativus Increased proline content [77]
Pb 0.025-2.5 µM of Pb Vigna unguiculata Decrease in plant growth, root hair [78]
As 5-50 μM Na2AsO4 Brassica juncea Decrease in seed germination and inhibition in plant growth [79]
As 5–100 mg L–1

Na2HAsO4.7H2O
Vigna radiata Inhibition of germination, root growth, and cell division [80]

As 25 μM Na3AsO4 Brassica juncea Reduction in root and shoot growth [81]
Cu 5-50 μM CuSO4·5H2O Brassica juncea Decrease in seed germination,  repressive impression in

plant growth and reduction in root and shoot length
[82]
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Metals Doses Plants Physiological effects, metabolism and yield References
Cu 0.5–2.0 mM

CuSO4.7H2O
Arabidopsis thaliana Inhibition of germination and prolonged time required for

germination
[83]

Zn 400 and 600 μM ZnSO4 Zea mays Increase in lipid peroxidation [84]
Zn 2 mM Zn Oryza sativa Decrease in root and shoot growth and biomass reduction [85]
Zn 35-700 μM ZnSO4 Pisum sativum Chlorosis, reduction in root, stem and leaf growth [86]
Zn 0.1-2.5 ppm ZnSO4 Lycopersicon esculentum Leaf chlorosis [87]
Ni 200 mg NiSO4 kg-1 soil Brassica  juncea Reduction in net photosynthesis, chlorophyll content,

stomatal conductance, nitrogen content and enzymy
activities such as RuBisCO and nitrate reductase

[88]

Ni 1 and 10 ppm NiSO4 Pistia stratiotes Decrease in leaf chlorophyll content [89]
Ni 125-1000 μM NiCl2 Brassica napus Chlorosis, suppression in root hypocotyl, chlorophyll

content and enhancement in lipid  peroxidation
[90]

Ni 0.5 mM NiCl2·6H2O Brassica napus Chlorosis and necrosis, decreased biomass and chlorophyll
content

[91]

Ni 40 and 80 mg  NiCl2 kg−1 soil Brassica juncea Decrease in plant yield [92]
Ni 50-200 μM NiCl2 Glycine max Decrease in fresh and dry mass of root and shoot [93]
Cr 0.5- 4.0 mg  K2Cr2O7kg-1 soil Cyamopsis tetragonobola Decrease in enzyme activity such as nitrate reductase,

nitrogenase etc.
[94]

Cr 0.5-100 mg  K2Cr2O7 kg1 soil Hibiscus esculentus Reduction in germination, plant height, fresh and dry weight
and chlorophyll content

[95]

Cr 20-100 ppm K2Cr2O7 Prosopis juliflora Reduction in growth, germination and dry biomass [96]
Mn 0.5 and 100 µM Mn Cucumis sativus Chlorosis, necrosis, inhibition of growth [97]
Mn 40-160 mM MnSO4 Vicia faba Decrease in chlorophyll content and  increase proline

content
[98]

Mn 5-100 mg L-1 MnSO4.H2O Vigna radiata Reduction in germination, growth and chromosome length [80]
Al 100–2000 μM Al2(SO4)3 Cucumis sativus Decrease in electrolyte leakage and chlorophyll content [99]
Al 10–60 μM Al3+ Zea mays Decrease in relative root growth, fresh and dry weight [100]
Al 50-1500 μM Al Gleditsia triacanthos decrease in growth, leaf number [101]
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Table 2. List of some plants and their accumulating metals

Plants Metals Accumulation quality References
Arundo donax Cd - [102]
Noccaea caerulescens Cd and Zn Hyperaccumulator [8,103,104]
Chrysopogon nemoralis Cd, Zn and Pb - [105]
Rorippa globosa Cd - [106]
Vetiveria zizanioides Cd and Pb - [107]
Brassica napus Cd Accumulator [108,109]
Thalspi caerulescens Cd Hyperaccumulator [110,111]
Solanum nigrum Cd Hyperaccumulator [112]
Bacopa monnieri Cd, Cu, Cr, Hg and Pb Hyperaccumulator and Accumulator [113]
Brassica juncea Cd, Cr, Cu, Ni, Pb, Zn and U Hyperaccumulator and Accumulator [114]
Medicago sativa Cd - [115]
Arabidopsis halleri Zn Hyperaccumulator [116]
Silene vulgaris Cd Accumulator [117]
Brassica juncea Cd Accumulator [118]
Thalspi caerulescens Cd, Cu, Cr, Al, As, Co, Pb, Ni, and Zn Hyperaccumulator [119,120]
Pistia stratiotes Cr and Co Hyperaccumulator [121]
Salvinia natans Cr and Cu Accumulator [122]
Dicoma niccolifera Cr - [113]
Brassica juncea Cr - [123]
Medicago sativa Cr - [124]
Ceratophyllum demersum Ni - [125]
Brassica juncea Ni - [126]
Azolla filiculoides Ni, Pb, Mn, and Cu Hyperaccumulator and Accumulator [113]
Sebertia acuminata Ni Accumulator [127]
Alyssum bertolonii Ni Hyperaccumulator [128]
Berkheya coddii Ni Hyperaccumulator [129]
Thalspi goesingense Ni Hyperaccumulator [130]
Vetiveria zizanioides Pb and Cr - [131]
Glycine max Pb - [132]
Vetiveria zizanioides Pb, and Cd - [107]
Brassica juncea Pb Accumulator [133]
Fagopyrum esculentum Pb Hyperaccumulator [134]
Cynadon dactylon Pb, and Zn - [135]
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Plants Metals Accumulation quality References
Brassica juncea Pb Accumulator [136]
Pisum sativum Pb - [137]
Brassica juncea Cu - [138]
Sorghum sudanense Cu - [139]
Littorella uniflora Cu, and Pb - [113]
Ipomea alpina Cu - [119]
Ocimum centraliafricanum Cu, and Ni Tolerant [140]
Sedum alfredii Zn Hyperaccumulator [62]
Thalspi caerulescens Zn Hyperaccumulator [141]
Arabidopsis halleri Zn Hyperaccumulator [142]
Lupinus albus As Accumulator [143]
Agrostis capillaris As, Al, Mn, Pb, and Zn Accumulator [113]
Pteris vittata As Accumulator [144]
Sarcosphaera corornaria As Hyperaccumulator [145]
Macademia neurophylla Mn - [119]
Maytenus pancheriana Mn - [120]
Brassica juncea Al Hyperaccumulator [146]
Hordeum vulgare Al - [113]
Vicia faba Al - [113]
Liquidamar styraciflua Cs, U, and Pt Hyperaccumulator and Accumulator [147]
Brassica juncea Se Tolerant [148]
Astragalus racemosus Se - [149]
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Table 3. List of some plants with their bioaccumulation quantity

Plants Metals Accumulation quantity References
Oryza sativa Mn 14.4-21.9 µg g-1 [150]
Sagittaria japonica Cd 1.62 µg g-1DW [131]
Lycopersicon esculentum Fe 4342-8819 mg kg-1 [151]
Arundo donax Cd 262.8 µg g-1 [102]
Lycopersicon esculentum Ni 109 mg  kg -1 [151]
Lycopersicon esculentum Cr 206 mg kg -1 [151]
Brassica juncea Hg 1 mg g-1DW [152]
Imperata cylinderica Zn 731.92 mg kg-1 [153]
Cenchrus pennisetiformis Cu 416.9 mg kg-1 [154]
Brassica juncea Zn 14429 mg  kg-1 [155]
Amaranthus viridis Pb 43 mg kg-1 [154]
Elusime indica Zn 117.9 mg kg-1 [154]
Rorippa globosa Cd 218.9 µg g-1DW [106]
Thalspi praecox Cd > 1,000 µg g-1DW [156]
Chenopodium botrys Mn 1288 µg g-1 [157]
Scariola orientalis Zn 1208.3 µg g-1 [157]
Atriplex halimus Cd 606.51 µg g-1DW [158]
Brassica juncea Ni 3916 mg kg-1DW [126]
Phytolacca americana Mn 32,000 µg g-1 [159]
Arabis paniculata Cd 1127 mg kg-1 [160]
Thalspi caerulescens Zn 19410 mg kg -1 [110]
Thalspi caerulescens Cd 80 mg kg -1 [110]
Sorghum sudanense Cu 5330 mg kg-1 [139]
Brassica juncea Cd 4725 ± 583µg g -1DW [161]
Brassica napus Cd 4626 ± 690µg g-1DW [161]
Vetiveria zizanioides Cr 10,000 mg kg-1 [123]
Phyla nodiflora Pb 1183 mg kg-1 [162]
Pteris vittata As 23,000 µg g-1 [163]
Brassica juncea Ni 34.02 mg kg-1DW [92]
Berkheya coddii Ni 5500 mg kg-1 [129]
Ipomea alpine Cu 12,300 mg kg-1 [119]

Phytoextraction is the uptake or absorption and
translocation of contaminants by plant roots into
the above ground portions of the plants (Fig. 2).
Discovery of metal hyperaccumulator species
demonstrates that plants have the potential to
remove metals from contaminated soil [169].
Phytovolatilization, a process in which plants
have ability to absorb and subsequently volatilize
the contaminant into the atmosphere (Fig. 2).
Phytovolatilization may also entail the diffusion of
contaminants from the stems or other plant parts
that the contaminant travels through before
reaching the leaves [169]. Phytodegradation
process is the breakdown of contaminants taken
up by plants through metabolic processes within
the plant (Fig. 2) or the breakdown of
contaminants externally to the plant through the
effect of compounds produced by the plants
[55,170]. Phytostabilization is the use of certain

plant species to immobilize contaminants into the
soil, sediments, and groundwater through the
absorption and accumulation in the roots,
adsorption onto the roots, or precipitation within
the root zone (Fig. 2) [55]. Rhizodegradation is
the breakdown of contaminants in soil through
microbial activity (Fig. 2) and is a much
slower process than the phytodegradation.
Microorganisms (yeast, fungi, or bacteria)
consume and digest organic substance for
nutrition and energy [185]. Phytosequestration is
one of the environmental friendly technologies
that use plants to clean up soil from trace
element contamination in which certain
contaminants sequestrates into the plant through
transport protein and cellular process (Fig. 2).
The uptake and accumulation of pollutants vary
from plant to plant and also from species to
species within a genus [168].
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Fig. 2. Mechanism of phytoremediation technology

Table 4. Phytoremediation from natural contaminants

Plants Contaminants Metals uptake References
Viteveria zizanioides Synthetic waste water Pb and Cr [131]
Deschampsia cespitosa Smelt area Cu, Fe, Mg, Ni, Zn [171]
Brachiaria decumbens Mining waste Cu [172]
Euphorbia prostrata Waste water Cd, Cr, Pb [173]
Typha domingensis Municipal waste water Fe, Mn, Zn, Ni, Cd [174]
Brassica oleracea Mining waste water Cu, Pb, Fe Mn, Zn, Cd [175]
Scirpus littoralis Fly ash Mn, Ni, Cu, Zn, Pb [176]
Sorghum bicolor Vermicompost Cr [177]
Allium cepa Fly ash Mn, Ni, Co, Zn, Cu, Pb,

Cr, Cd
[178]

Brassica campestris Tanney sludge Cu, Pb, Cr, Cd, Ni [179]
Datura stramonium Fly ash Cr, Mn, Pb, Cu, Fe, Ni,

Zn, Cd
[180]

Triticum aestivum Municipal solid waste Pb, Cu, Zn, Cd, Cr, Ni [181]
Brassica campestris Fly ash Cr, Mn, Pb, Cu, Fe, Ni,

Zn, Cd
[180]

Zea mays Fly ash Se, As, Pb [182]
Arachis hypogea Fly ash Se, As, Pb [182]
Phaseolus vulgaris Fly ash Fe, Mn, Zn, Cu, Ni, Co,

Pb, Cd
[183]

Brassica juncea Fly ash Ni [184]
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6. CONCLUSION AND FUTURE
PERSPECTIVES

Nowadays, HMs contamination in soil have been
recognised as a potential threat to plants due to
industrial activities and other anthropogenic
factors which ultimately result in losses in
agricultural yield, leading us to unsecure
sustainable environment for future including food
insecurity, biodiversity loss and soil infertility. In
recent times, phytoremediation is a promising
technology for the remediation of contaminated
soil because of its low cost and unique features.
A number of hyperaccumulators have been
identified which accumulates large number of
toxic HMs from soil, indicated that plants have
some genetic potential to remove contaminants
from soil and water. Exploitation of a number of
transgenic plants with extensively augmented
remediation potentials must be necessary to
improve the potentiality of phytoremediation
technologies. Future research work would also
involve genetic engineering to further improve
phytoremediating characteristics by identifying
and manipulating the responsible genes for metal
accumulation.
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