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Abstract

Exoplanetary systems host giant planets on substantially noncircular, close-in orbits. We propose that these
eccentricities arise in a phase of giant impacts, analogous to the final stage of solar system assembly that formed
Earth’s Moon. In this scenario, the planets scatter each other and collide, with corresponding mass growth as they
merge. We numerically integrate an ensemble of systems with varying total planet mass, allowing for collisional
growth, to show that (1) the high-eccentricity giants observed today may have formed preferentially in systems of
higher initial total planet mass, and (2) the upper bound on the observed giant planet eccentricity distribution is
consistent with planet–planet scattering. We predict that mergers will produce a population of high-mass giant
planets between 1 and 8 au from their stars.

Unified Astronomy Thesaurus concepts: Planetary system formation (1257); Exoplanet dynamics (490); Exoplanet
formation (492)

1. Introduction

Observations of exoplanetary systems have found many gas
giants with orbital distances less than 5 au from their host stars.
The orbits of these planets are often eccentric, deviating from
the roughly circular orbits in our solar system. Several
mechanisms have been proposed to account for these
eccentricities, including secular chaos (Wu & Lithwick 2011),
the Kozai–Lidov mechanism (e.g., Kozai 1962; Lidov 1962;
Takeda & Rasio 2005; Naoz et al. 2011; Dawson & Chiang
2014), secular oscillations due to an outer planetary companion
(Petrovich & Tremaine 2016), resonant interactions with a gas
disk (Chiang & Murray 2002), and planet–planet scattering
(e.g., Rasio & Ford 1996; Ford et al. 2001; Chatterjee et al.
2008; Ford & Rasio 2008; Juric & Tremaine 2008; Petrovich
et al. 2014). However, these studies have not yet explained an
important clue to these systems’ dynamical histories: most
observed planets with eccentricities e>0.5 are more massive
than Jupiter, while lower-mass planets are confined to lower
eccentricities (Winn & Fabrycky 2015). This observation is
potentially surprising, since lower-mass planets are excited to
higher eccentricities in typical dynamical simulations (e.g.,
Chatterjee et al. 2008, Figures 14 and 20).

We explore the possibility that some stars initially host
multiple hydrogen-rich planets in their inner systems, which go
through a giant-impacts phase, analogous to the final stage of
inner solar system assembly that resulted in Earth’s moon-
forming impact. Collisions cause these planets to grow in mass.
Though in a given system, the lower-mass planets are more
likely to have higher eccentricities, when viewed as a
population, the trend reverses. Stars hosting more total mass
in planets produce more high-mass giants, which in turn are
able to excite each other to high orbital eccentricities. We use
the observed mass distribution for planets at semimajor axes
a<5 au to construct a distribution of initial total planet masses
in that region. We demonstrate, using stellar metallicity as an
observational proxy for initial mass in planets, that our
ensemble produces giant-impacts phase outcomes consistent
with observations.

2. Observational Sample

We compare our simulations to a sample of observed
exoplanets obtained from the Exoplanet Orbit Database on 2019
April 3, hosted on exoplanets.org (Wright et al. 2011). We
include 311 planets from 243 stellar systems, discovered via the
radial-velocity method, orbiting FGK stars (0.5–1.4 M☉).
Following Dawson & Murray-Clay (2013), we remove 70
evolved stars with log g < 4. We exclude 11 planets for which
no data for log g is reported. We further exclude 27 planets with
no reported eccentricity. We note that all of the masses in the
observational data set are reported as Msini, which henceforth
we refer to as the mass. The planets in this sample are subject to
several biases, including radial-velocity selection biases toward
higher-mass, close-in planets (Gaudi 2005; Gaudi et al. 2005). It
is not appropriate to make a statistical comparison between the
simulated and the observed data sets, as there is a risk that the
observational sample used is nonuniform. We therefore focus
on the qualitative features of the distribution.

3. The Highest-eccentricity Planets Are Found around
Metal-rich Stars

Figure 1(A) displays the distribution of eccentricity as a
function of planetary mass for the observational sample. The
highest-eccentricity planets tend to be more massive, contradicting
our intuition that the lower masses are more readily excited.
Figure 1(B) provides a hint to the solution. After dividing the data
into planets orbiting metal-rich stars ([Fe/H]>0, blue) and
metal-poor stars ([Fe/H]<0, red), we find that planets with the
highest observed eccentricities orbit stars that are preferentially
metal-rich.3 Therefore, if metal-rich stars tend to produce
a greater quantity of high-mass planets, these giants would
scatter their planetary companions to higher eccentricities. This
is a key point of our Letter.
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3 The Solar [Fe/H]=0 cutoff is employed because the occurrence rate of
giant planets rises steeply for stellar metallicities above [Fe/H]=0 (Santos
et al. 2004; Fischer & Valenti 2005). 76 planets are observed in systems with
[Fe/H]<0, and 235—in systems with [Fe/H]>0. The median metallicity in
our observational sample is [Fe/H]=0.14.
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Shifting our focus to the orbital-separation distribution,
several further observational features become apparent. In
Figure 2(A), there is an upper limit to the eccentricities in the
inner ∼1 au, which we call the eccentricity envelope (black
solid line). A mass segregation in semimajor axis is seen when
we separate the planets into higher-mass (Mp >1.17 MJ,
orange) and lower-mass (Mp <1.17 MJ, purple), when com-
pared to the median planet mass of 1.17 MJ found in the
observational sample. Higher-mass planets are preferentially
found with a>0.5 au. Furthermore, dividing the planets by
metallicity in Figure 2(B) reveals that the planets approaching
the eccentricity envelope (blue band) are more likely to come
from higher-metallicity systems, following the trend from
Figure 1. In summary, the shape of the eccentricity distribution,
together with its mass- and metallicity-dependent features, are
important clues to the formation of these systems.

4. Eccentricities As a Result of a Giant-impacts Phase

The observational features that we attempt to match with our
model are (1) the eccentricity envelope, (2) the mass-eccentricity
relation, and (3) the correlation between eccentricity and stellar

metallicity. We do this by making a nonstandard assumption
that the planets are the result of collisional growth in systems
initially consisting of multiple giant planets that underwent a
giant-impacts phase, at least in systems where eccentricity
excitation occurs. If one is willing to make that leap, all three
features can be recovered. We plot our simulation results in
Figures 1(C), (D), and 2(C), (D).
Our proposed giant-impacts phase is analogous to a

dynamical instability that occurred in solar system formation,
where collisions assembled the inner, rocky planets. In general,
a gravitational encounter between two protoplanets leads to
either a physical collision or a scattering that results in a
velocity deflection. Which is statistically more likely to occur
depends on the relative velocities of the bodies. Recall that
the collision cross section goes as ( )s p~ +R v v1coll

2
esc,p
2 2 ,

while the strong scattering cross section goes as s ~scat
( )pR v v2

esc,p
4. Here, R is the physical radius, vesc,p is the

planet’s escape velocity, and v is the protoplanets’ relative
velocity. Thus, for small velocities v<vesc,p, σcoll<σscat, and
scattering dominates. As v increases and approaches vesc,p, the
cross section for strong scattering approaches the physical cross

Figure 1. Distribution of eccentricities as a function of planet mass for (A) and (B) observations, and (C) and (D) simulations. The eccentricity of observed exoplanets
is correlated with planet mass (A), which is recovered in our simulations (C). In (B), planets orbiting metal-rich ([Fe/H]>0, blue, 235 points) stars exhibit a range of
eccentricities. Planets orbiting metal-poor stars ([Fe/H]<0, red, 76 points) are confined to e<0.6. The highest-eccentricity planets (e > 0.6) are giant planets with
Mp>0.5 Jupiter masses (MJ). This is matched in (D), in which we use total initial mass in planets as a proxy for metallicity (see Section 6). On all panels, the upper
contour denotes an enclosed probability of 90%, and each successive contour below is a 10% decrement to the one above.
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section, πR2, which is always less than or approximately equal
to σcoll. Therefore, for sufficiently large v, σcoll>σscat, and the
planets are more likely to collide than be deflected further (e.g.,
Petrovich et al. 2014). This limits the v that can arise from
scattering to, at most, ∼vesc,p. The solar system’s inner planets
have vesc,p (∼11 km s−1 for Earth) less than the orbital escape
velocity, vesc,star (∼42 km s−1 at 1 au). In general, they cannot
readily eject each other through gravitational encounters,
allowing for the existence of a giant-impacts phase. Conversely,
the solar system’s giant planets have vesc,p (∼24 km s−1 for
Neptune,∼60 km s−1 for Jupiter) larger than vesc,star (∼8 km s−1

at Neptune, ∼19 km s−1 at Jupiter), making a giant-impacts
phase unlikely. However, exoplanetary systems hosting close-in
giants are in the regime where vesc,star>vesc,p, allowing giant
impacts to leave a detectable imprint on the giant exoplanet
mass distribution (Figure 3).

5. Methods

To generate our numerical results, we perform N-body
simulations using Mercury6 (Chambers 1999), including
growth by planet–planet collisions with mass and momentum
conservation. Our planet radii follow nominal mass–radius
relations constructed from the literature (Fortney et al. 2007).
After each collision, we calculate the planet’s mass and
reassign its radius using these expressions. The reason we do
this is because the escape velocity is critical for the dynamical
evolution. The radii for planets below 10 Earth masses (M⊕)
were calculated using the mass–radius relation for a rocky core
in the absence of a gas envelope, Fortney et al. (2007, Equation
(7)). Planets with masses between 10 and 200 ÅM were
assigned radii based on the theoretical models of Fortney et al.
(2007, Table 2) for a 10 ÅM core surrounded by a H/He

Figure 2. Eccentricity vs. semimajor axis. (A) Observational eccentricity distribution. The high-mass giant planets (m >1.17 MJ, orange) exhibit eccentricities 0<e
 1, and semimajor axes generally beyond 0.3 au, while low-mass giants (purple) span 0.03–6 au in a. This is matched by the simulations in (C), though the mass
segregation in a is weaker. The eccentricity envelope (black solid line) denotes the planet–planet scattering limit to the eccentricity (Equation (3)). In (B) and (D), we
divide the planets into those belonging to systems orbiting metal-rich ([Fe/H]>0, blue) and metal-poor ([Fe/H]<0, red) stars. Note that observed planets in (B)
with eccentricities approaching the eccentricity envelope (blue band on plot) preferentially come from systems with super-solar metallicity ([Fe/H]>0), which is
matched by our simulations (D). The contours are defined as in Figure 1.
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envelope at 300Myr. Planets above 200 ÅM were assigned 1.1
Jupiter radii (RJ), which is consistent with the models, which
show that the radius of Jupiter-sized planets stays roughly fixed
above a Jupiter mass. The computed radii R, for planets of mass
Mp, in ÅM , are as follows:

The planet densities ρ in the simulations were then set to be
ρ=3M/(4πR3). We note that our mass–radius relation is only
an approximation. Collisions cause inflation and they may not
result in a perfect merger. For example, Hwang et al. (2018)
have shown that collisions between sub-Neptune-sized bodies
may result in significant atmospheric mass loss. Given these
results, collision outcomes between gas giant planets merit
future study.

For all of the simulations presented in this Letter, the initial
eccentricities were set to 0, the mean anomalies and longitudes
of the ascending node were drawn randomly from a uniform
distribution between 0° and 360°. We define the limits of the
simulation to be at 1000 au from the host star, beyond which
planets are removed from the simulation. The initial timestep
was set to be the minimum of 3 days or 1/15 of the orbital
period of the closest-in planet, and the accuracy parameter was
set to 10−12. We set the radius of the central body to 0.005 au,
the mass to 1 Solar mass, and the Hybrid integrator changeover
distance to 3 Hill radii. All simulations were run for 2×107

yr, a reasonable time beyond which instabilities become much
less frequent (Chatterjee et al. 2008; Juric & Tremaine 2008).
The eccentricities reach a statistical equilibrium after this
timescale (Juric & Tremaine 2008). We found that our features

of interest were already imprinted at 1 Myr, and persisted at 5,
10, and 15Myr snapshots. We expect that integration for the
several-gigayear ages, typical of observed systems, would
reduce the final number of planets, but only by a modest
amount.

The main results of this work are presented for a set of 694
numerical integrations, the initial inclinations i for which were
drawn randomly from a uniform distribution between 0°
and 1°.
We call the initial total mass in planets in each system the

“disk mass.” In constructing our simulations, we first
considered a single disk mass. Each disk mass has a
corresponding eccentricity envelope, which is higher for
greater disk masses because they typically form higher-mass
planets. Thus, the disk mass is what determines how high the
eccentricities can get. As a result, higher-mass planets have
higher eccentricities across systems, contrary to our expectation
for a single system. The correlation of eccentricity and
metallicity in the observational data suggests that the observed
distribution reflects a collection of varied disk masses.
Therefore, to reproduce the observational data, we need to
construct a set of simulations with initial disk masses drawn
from a distribution. We do not know a priori what this
distribution is. However, if we choose a distribution that is a
few times the observed planet mass distribution, our (Figure 3)
set of systems evolves to match the observed distribution of
planet masses, after ejections and mergers. We choose to draw

Figure 3. Distribution of planet masses corresponding to Figures 1 and 2 for (A) observations and (B) and (C) simulations. (C) displays the distribution of Msini in our
simulations that would be measured by the radial-velocity method, as seen from a random “observer” (see Section 5).
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the disk masses Mdisk from the exponential distribution,

( ) ( )( )b b= b-f M M , 1 1 e , 2M M
disk J disk J

with the scale parameter β=20 set to produce the planet mass
distribution. We redraw any disks with masses < 0.1 MJ, as our
disks need to be able to produce giant planets. An upper disk
mass cutoff of 50 MJ is employed. Our simulations are not
otherwise tuned. Each disk mass is allocated into planets in the
following way: 10 planet masses are first drawn from a uniform
distribution from 0 to 1, then each planet mass is scaled, such
that the sum of the planet masses in each system is equal to the
disk mass. The planets are uniformly distributed in log(a)
between 0.03 and 10 au. To justify the logarithmic spacing in
semimajor axis, we recall that the number of planetary Hill radii,
RH, that can dynamically fit into a given semimajor axis range is
a/RH=(Mp/(3Mstar))

−1/3. Here, the Hill radius, RH=a(Mp

/(3Mstar))
1/3, sets the distance scale from the planet at which

gravitational interactions with other planets become strong.
Since this ratio is independent of a, each successive bin in log(a)
from the star can fit the same number of planetary RH as the one
prior, and our uniform spacing in log(a) is appropriate.

As long as the planets were dynamically spaced close
enough to interact, the final outcome was not significantly
dependent on the way we distributed the disk mass into planets.
For example, a 20 MJ disk, allocated into seven planets, each
with mass 2.9 MJ, produced similar results to a 20 MJ disk
allocated into 50 planets with mass 0.4 MJ. Both typically
produce planets with masses up to ∼10 MJ after collisions. We
chose 10 planets to allow the planets to have multiple close
encounters within the first ∼10,000 years of the simulation,
after which the number of planets decreased. We have found, in
agreement with previous work (e.g., Juric & Tremaine 2008,
Figures 1 and 11), that although the planet multiplicity
generally dropped further as we extended the time to 108 yr,
and the individual planet orbital properties varied with time,
our overall features of interest in the distributions of
eccentricity with mass and semimajor axis persisted. The final
planet mass distribution from the simulations (Figure 3(B)) was
consistent with the mass distribution in the observational
sample (Figure 3(A)), suggesting that our starting guess for the
disk masses was reasonable. We note that planet migration
before the gas disk dissipates may mean that fewer planets per
system may be required, if it causes planets to migrate in and
experience dynamical instability.

For our simulation results, plotted in Figures 1(C), (D), 2(C),
(D), 3(B), and (C), we consider planets observable if they have
a<6 au and radial velocities >2m s−1, which roughly matches
the typical precision of radial-velocity surveys contributing to
our observational sample (Butler et al. 2006). Radial velocities,
K, are estimated by ( )( )M M T28.4 yrp J

1 3 m s−1, with Mp—the
planet mass and T—the orbital period (Lovis & Fischer 2010).
We comment that including the eccentricity dependence
(1−e2)−1/2 in the expression for K does not significantly
change our results. To determine the likelihood of observing
systems with multiple planets, we “observe” each resulting
system of our set of simulations from 1000 random directions.
We evaluate the observability of each planet by computing the
radial-velocity component along the line of sight to our random
“observer,” i.e., we multiply the mass of each planet by sini in
the radial-velocity formula. We find that ∼70% of systems have
an observable multiplicity of 1 or 2, ∼20% have no observable

planets per system, and ∼10% have 3 or more. On average,
∼1.6 planets can be observed per system. Our simulated
distribution of Msini, generated by observing each system from
random angles as described above, is shown in Figure 3(C).
Trends with stellar metallicity that arose in the observed

populations were of particular interest (Figures 1 and 2). Stellar
metallicity is not a parameter in our simulations. However, we
can make a simple assumption that a higher total planet mass is
correlated with stellar metallicity, which is reasonable given
that high-metallicity stars are more likely to host close-in
planets (Fischer & Valenti 2005), and eccentric warm Jupiters
are preferentially found in high-metallicity systems (Dawson &
Murray-Clay 2013). To map the synthetic distribution of disk
masses containing observable planets to the observed distribu-
tion of stellar metallicities, we first assume a linear relationship
between log10(Mdisk/ M ) and [Fe/H] of the form [ ] =Fe H

( ) +a M M blog10 disk , where M is the solar mass. We then
find that a=0.4 and b=0.9 in the formula give us the best fit,
such that the range of observed metallicities matches the range
of assigned metallicities from our simulations. Therefore, we
convert the disk mass from our simulations to metallicity using
the following relation: [Fe/H]=0.4 log10(Mdisk/ M )+0.9.
We note that we do not expect there to exist a perfect one-to-
one correspondence between stellar metallicity and disk mass,
and our nominal relation is only suggestive.

6. Discussion

Figure 1(C) displays the distribution of eccentricities as a
function of planet mass in our simulations. Contours
correspond to enclosed probabilities. The upper contour
encloses 90% of the points, and each successive contour
below is a 10% decrement in enclosed probability from the one
above. The contours are defined the same throughout all of the
figures in this Letter, to allow one-to-one comparison of the
simulations and the observations. We remind the reader that the
only tuning required was the choice of an initial disk mass
distribution to match the observed planet mass distribution, and
a sufficient number of planets to ensure dynamical interaction.
Our simulations in Figure 1(D) reproduce the observational
feature seen in Figure 1(B): e>0.6 planets have Mp>0.5 MJ
and [Fe/H]>0. Higher-metallicity systems have more mass
available for planet formation, which leads to more and larger
planets that can excite each other to higher eccentricities.
In Figure 2, both the observations (A) and the simulations (C)

are bounded by the eccentricity envelope. This is the upper limit
to the eccentricities produced by planet–planet scattering, which
deflects the planetary velocities in random directions. The orbit
deviation from circular is often called the random velocity, and
can be approximated as vr=evK, where vK=(G Mstar/ a)1/2 is
the orbital Keplerian velocity, G—the gravitational constant, and
Mstar—the stellar mass (Goldreich et al. 2004). Since scattering
can only excite vr up to vesc,p (Section 4), the eccentricity
is limited to vr=evK≈e vesc,p. This yields a maximum
eccentricity of = »e v v v vesc,p K esc,p esc,star. Here, vesc,star=
(2G Mstar/a)

1/2 is the escape velocity from the star at the planet’s
a, which is comparable to vK . The eccentricity envelope curves
in Figure 2 are

( ( )) ( )= =e v v M a RM , 3esc,p esc,star p star
1 2

shown for Mp = 1.17 MJ, the median observed planet mass.
Planets in higher-metallicity systems are scattered to a greater
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range of eccentricities than those with lower metallicity (blue
band in Figures 2(B) and (D)).

Because we are interested in the implications of planet–
planet scattering for planets at all semimajor axes, not just
those that are currently observable, we perform two additional
sets of simulations with 20 planets uniformly distributed in
log(a) between 0.03 and 100 au. The outcome for a single disk
mass of 5 MJ is presented in Figures 4(A) and (B) for a set of
192 simulations. For each realization of the 20-planet systems,
we redrew the semimajor axes uniformly in log(a), the
inclinations uniformly from 0° to 1°, and the mean anomalies
and longitudes of the ascending node uniformly from 0° to
360°. In Figure 4(A), the higher-mass products of planet–
planet collisions are seen to the left of the teal solid line,
which marks vesc,p=vesc,star. Lower-mass planets are seen to
the right, where scattering is a more likely outcome of planet–
planet interactions. The detailed mass distribution is shown in
(B). Green, red, and blue dots show the maximum, median,
and mean masses, respectively. The vertical blue lines display
one standard deviation about the mean. The highest-mass
planets typically form interior to the distance where vesc,p=
vesc,star.

The result for a distribution of disk masses is presented in
Figures 4(C) and (D) for a set of 175 simulations. We draw the
disk masses from the exponential distribution (Equation (2)),
scaled by a factor of 1.4 to account for the additional bin in log
(a). We employed an upper disk mass cutoff of 70 MJ. The
1–8 au region hosts planets of higher mass. Interestingly,
adding mass to the outer disk reduces the number of planets in
the inner regions of higher-mass disks. The mass needed
beyond 10 au to match the mass segregation feature from
Figure 2(A), while reproducing the metallicity feature from
Figure 2(B), merits future study.
We find it illustrative to repeat our main simulations in two

dimensions, to avoid potential complications from Kozai
oscillations. We start out with 10 planets using the same set of
initial disk masses as described in Section 5, except we initialize
the inclinations to 0. The starting semimajor axes of the planets
are randomly distributed in log(a) from 0.03 to 1 au, and from 1
to 10 au, with the density reduced by a factor of 5 in the inner
region. This selection is appropriate to match the observed mass
segregation feature in Figure 2(A). We plot the results for this set
of 180 simulations in Figure 5, for direct comparison to Figures 1
and 2. The features of interest are recovered in these two-
dimensional simulations, suggesting that they are a result of

Figure 4. Eccentricities and masses vs. semimajor axis for simulations starting with 20 planets in the semimajor axis range 0.03–100 au. (A) Initial planet masses are
all 0.25 MJ. The inner, higher-mass planets (orange triangles) grew via planet–planet collisions. The lower-mass (purple pluses), outermost planets never collided. The
vertical teal line at 1.6 au marks where the escape velocity of a 0.25 MJ Saturn-radius planet is equal to the orbital escape velocity of the planet from the star. (B) shows
the corresponding distribution of planet masses, including the median (red dot), mean (blue dot), and maximum (green dot) masses. The vertical blue bars mark one
standard deviation about the mean. Most high-mass planets form interior to the distance where vesc,p=vesc,star. (C) and (D) provide corresponding plots to (A) and (B),
respectively, for a set of initial disk masses designed to match the distribution used in Figures 1–3 (see the text), but adjusted to incorporate the additional bin in
log10(a) compared to the results shown in Section 5. In (D), the values for the maximum planet masses that extend beyond the axis range are printed in green by the
error bars corresponding to each bin in semimajor axis. The highest-mass products of collisional growth have 1<a<8 au.
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planet–planet scattering. In the absence of mutually inclined
orbits, the planets experience more collisional growth, especially
in higher-mass disks, where the planets are dynamically spaced
close enough to be more likely to interact. The smaller planets in
the higher-mass disks get absorbed by collisions more frequently
(Figure 5(A)) than the mutually inclined planets in Figure 1(C).
The eccentricity versus semimajor axis distribution in Figure 5(D)
reproduces the observational feature seen in Figure 2(B): the
planets from higher-metallicity systems extend above the lower-
metallicity region in a blue band on the plot. We plot the same
distribution, instead dividing the planets by mass, in Figure 5(C).
The initial reduction in planet number density in the inner region
allowed us to reproduce the mass segregation feature seen in
the observations (Figure 2(A)). This mass reduction may be
appropriate if giant planets do not form as easily in the inner 1 au
of protoplanetary disks. On average, ∼1.8 observable planets are
left per system in our 2D simulations.

7. Conclusion

We have suggested a giant-impacts phase in the evolution
of giant exoplanetary systems, which creates a population of
higher-mass planets in the collisional growth region (peaking
at ∼3 au for a solar-mass star; see Figure 4(D)). Beyond, we
predict a population of lower-mass planets that avoided
mergers, some of which were scattered out on high-
eccentricity orbits. This is consistent with the results of the
Gemini Planet Imager Exoplanet Survey (GPIES; Nielsen
et al. 2019), who found that planets more massive than ∼3 MJ
around solar-type stars are mostly found in the radial-velocity
regime (a < 5 au), rather than in the direct-imaging regime
(a> 10 au). Future microlensing and direct-imaging surveys,
sensitive to finding planets outside of the distance limits of
radial-velocity surveys, will enable further observational tests
of this predicted mass separation in the outer giant exoplanet
population.

Figure 5. (A) Our 2D simulations reproduce the correlation between mass and eccentricity in the distribution. (B) Planets orbiting high-metallicity ([Fe/H]>0, blue)
stars are able to be excited to higher eccentricities than planets orbiting low-metallicity stars ([Fe/H]<0, red). Metallicities are used as a proxy for the initial disk
masses (Section 6). (C) and (D) Distribution of eccentricities as a function of semimajor axis in our 2D simulations. In (C), the planets of higher mass (orange) occur
more frequently beyond ∼0.5 au, and can reach higher eccentricities than the lower-mass (purple) planets, which are confined to e<0.4. In (D), planets orbiting high-
metallicity stars are excited to higher eccentricities than planets orbiting low-metallicity stars throughout the entire semimajor axis range where they occur. The
contours are defined as in Figure 1.
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As evidence of mergers could correlate with orbital
eccentricities, we speculate that inflated Jupiters would exist
on preferentially eccentric orbits. Though collisions can happen
on any timescale, most occur early, so this correlation would be
most likely observable for stars with ages less than the
∼100Myr cooling time for giants (Fortney et al. 2007). In
addition, because some warm Jupiters have substantial cores
(Thorngren et al. 2016), it is reasonable to suggest that early-on
in their evolution planetary systems could have consisted of
multiple planets, which experienced collisional growth.

We thank Jonathan Fortney, Yanqin Wu, and Kassandra
Anderson for helpful discussions. We thank Bruce Macintosh
for pointing us to the GPIES results of Nielsen et al. (2019).
This work made use of the Exoplanet Orbit Database at
exoplanets.org. R.M.C. and R.F. are supported by NSF
CAREER grant AST-1555385.
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