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Abstract

Solution of the nonlinear singular oscillator has beeniobthbased on an iteration procedure. Here
have used a simple technique and taking a truncated Fouies sedetermine the approximate analytic

solution of the oscillator. The percentage of error betwexact frequency and the third approximate
frequency obtained by the adopted technique is as low as 0.G9%%s the third approximate frequency

of the nonlinear singular oscillator shows a good agreemehtitwiexact value. The convergent rate is
high compared to other existing results. The modified techniqrealintes hopeful contrivance for many
nonlinear oscillators.
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1 Introduction

In nature, most systems are inherently nonlinear. Fer#gison nonlinear equations are generally utilized in
the Applied Mathematics, Physics and Engineering alongiwitither disciplines. That is why Engineers,
Physicists, Mathematicians and most other Scientists fariaterest to nonlinear problem. There are
numerous methods to solve nonlinear problem like Perturbatiethod [1-6], Harmonic Balance (HB)
method [7-11], Homotopy method [12-13], Iteration method [14-24] €he perturbation method is the
most widely utilized method in which the nonlinear term isnkiB method is another latest method which
is originated by Mickens [7] and farther work has been donkim [8], Gottlieb [9], Mickens [10] and so
on for solving the strong nonlinear problems. Recently,esanthors utilize an iteration procedure [14-21]
which is valid for small together with large amplitudeoscillation, to attain the approximate frequency and
the harmonious periodic solution of such nonlinear problemswAnfember of scientist Hu and Tang [16];
Mickens [17]; Haque et al. [18-21] used modified versionhis process to develop the results; luckily the
direct iteration method sometimes improves the results whefuticions are not differentiable that is for
the singular oscillators. Beside this method, there areesomathods [22-25] which are used to find
approximate solution in the case of large amplitude oflagicihs.

The simplicity and the excellent accuracy of the approxireaketion of ‘Nonlinear Singular Oscillator’ by
iteration procedure is the main object of the proposed procedlgre.it can help us to investigate the nature
(amplitude, frequencet) in the nonlinear dynamical systems in a spacious raBggide this technique,
there are some articles [22-25] which show the excellmracy and stability of the oscillation method.

2 The Method

Let us suppose that a nonlinear oscillator modeled by

X+ f(%x)=0, x(0)=A, x(0)=0 (1)
where over dots denote differentiation with respect to time, t.
We choose the natural frequen€d of this system. Then addir@zx on both sides of Eq. (1), we obtain

X+ Q% = Q% - f (% X) =G(x,X). )
Now, formulate the iteration scheme as

Ko ¥ Q2X0y =G(X,, %, );k=0,1, 2, ... 3)
Together with initial guess

X,(t) = AcosQ,t) @
Hence X, ; satisfies the conditions

X1 0 =A,  %.,,(0)=0. ®)

At each stage of the iteraticﬂ,k is determined by the requirement that secular terms shotildcour in

the full solution of)(k+1(t) . The above procedure gives the sequence of solutions atécimentioned by
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%o (t), X (t), - The method can be proceed to any order of approximatiomjueuto growing algebraic
complexity the solution is confined to a lower order usually dvesd [14].

3 Solution Procedure
Let us consider the oscillator

X+x1t=0. (6)
Adding Q2x on both sides of Eqg. (6), we get

X+Q*x =Q3x-x"* @)
According to Eqg. (3), the iteration scheme of Eq. (7) is

Ko + QX =QEX — % (8)

The first approximationx, (t) and the frequencﬁO will be obtained by putting k=0 in Eqg. (8) and using
Eqg. (4) we get

%, +Qox, = Qg Acosd - (Acos) ™ o)
Now expanding(COH) ! in a Fourier cosine series in the interva@, then Eq. (9) reduces to

. 2 2 2 2

X1+Qox1:(QOA_Z)COSH+Zcos39—... 10)

Now secular terms can be eliminated if the coefficién€0SE is set to zero.

i.e. Qg :% :ﬁl (11)

This is the first approximate frequency of the oscillator.

After simplification the Eq. (10) reduces to
. 2 2
X, + Qg% =—cos36 —--- 12)
A
The complete solution is

X (t) = Ccose—gcos?ﬂ—m (13)

Using X, (0) = A, we haveC = g A
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Thereforex, (t) = A(g cosf - % cos36 +---) (14)
This is the first approximate solution of the oscillator.
Proceeding to the second level of iteratiog(t) satisfies the equation

X, + Q2x, = Q2x, — (%) (15)
Now expanding second term on right hand side in a truncatedeFaosine series in interval 5622;] the
Eq. (15) reduces to

9Q’A 2\/_ QA 13030
\/_A

Secular terms can be eliminated if the coefficien€oisd is set to zero.

%, +Qix, = (—2— (3 036 + - (16)

e.Q = —1'2248 a7

This is the second approximate frequency of the oscillator.

After simplification the Eq. (16) reduces to

2
QéA _ 130308 ap .. (18)

o 2 - _
X; +le2 -

The complete solution of Eq. (16) is

A 13030
X,(t) =Ccos@+ (— — cos34 - -- 1o
& (64 8A§226) (19)
Using X, (0) = A , we haveC = (§A+ﬂ
64 8AQ?
Therefore,
X, (t) = 1.09659A cosd — 0.0965883Ac0s36 + - 20)

Proceeding to the third level of iteratioq;(t) satisfies the equation

%5+ Q5% = Q5% — (%)™ 21j
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71
Now expanding the term on right hand side in a Fourier cosiiesse interval [OE] , the Eq.(19) reduces

to

)cos36 —--- (22)

Secular terms can be eliminated if the coefficien€oisd is set to zero.

_1.24459

Q, A

(23)

4 Results and Discussion

An iterative approach is presented to obtain approximatéi@olof the ‘Nonlinear Singular Oscillator’. The
present technique is very simple for solving algebeagjoations analytically and the approach is different
from the existing other approach for taking truncatedrieo series. Here we have calculated the first,

second and third approximate frequen&*@ Q, and Q, respectively. All the results are given in the

following Table. To compare the approximate frequencies we ko given the existing results determined
by Mickens iteration method [17], Mickens HB method [10] &fatjue’s iteration method [19]. To show
the accuracy, we have calculated the percentage errorsotéde by Er(%)) by the definitions

|100(§2e -Q, )/Qe| ,whereQ, ;i = 0,1, 2,--- represents the approximate frequencies obtained by the

present method anf, represents the corresponding exact frequency of the tscilla

Table. Comparison of the approximate frequencies with exact frequency Qe[17] of X+Xx™1 =0

Exact frequency Q. 1.253
A
Amplitude First approximate  Second approximate Third approximate
A frequency frequency frequency
QO Ql QZ
Er(%) Er(%) Er(%)
Mickens iteration method [17] 1.155 1.018
A A -
7.9 18.1
Mickens Harmonic balance 1.414 1273 1.2731
method [10] A A A
12.84 1.6 1.58
Haque’s iteration method [19] 1.414 1.208 1.265
A A A
12.84 3.63 0.92
Adoptedmethoc 1.414 1.205 1245
A A A
12.84 3.87 0.696
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In this article the result has been improved by rearrantiaggoverning equation choosing comparatively
perfect truncated Fourier series. In most of theclagj the results have been improved by modifying the
method. But we see that not only modification of modelripdrtant but also rearranging of a nonlinear
oscillator along with the Fourier series of initial solutioneaich iterative step is important in the case of
iteration procedure.

5 Conclusion

Rearranging and applying truncated Fourier series is cotiygyabetter. And the equation by an iteration
technique from the first to the third approximate frequenisiéetter than corresponding frequencies which
have been shown by other techniques. It can be olukéraé the Mickens’ iteration technique is diverging
here. Though the solution of Mickens’ harmonic balance metimdi Haque’s iteration method are
convergent but the solution obtained by the adopted methbdttsr than those mentioned solution. The
third approximate frequency obtained by the adopted techniqeel@av as 0.696%. Thus we can say third
approximation provides excellent result. Furthermore, thulsrigue is precious because it does not require
numerical integration for expanding the function in Fausiries in any step of iterations. Thus we conclude
that this technique does not only presents explicitly a bisiter order analytical solutions but also deduces
a simply way of starting fourth, fifth etc order solutimissarious nonlinear systems.
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