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Abstract 
 

Solution of the nonlinear singular oscillator has been obtained based on an iteration procedure. Here we 
have used a simple technique and taking a truncated Fourier series to determine the approximate analytic 
solution of the oscillator. The percentage of error between exact frequency and the third approximate 
frequency obtained by the adopted technique is as low as 0.696%. That is the third approximate frequency 
of the nonlinear singular oscillator shows a good agreement with its exact value. The convergent rate is 
high compared to other existing results. The modified technique introduces hopeful contrivance for many 
nonlinear oscillators. 
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1 Introduction  
 
In nature, most systems are inherently nonlinear. For this reason nonlinear equations are generally utilized in 
the Applied Mathematics, Physics and Engineering along with in other disciplines.  That is why Engineers, 
Physicists, Mathematicians and most other Scientists are of interest to nonlinear problem. There are 
numerous methods to solve nonlinear problem like Perturbation method [1-6], Harmonic Balance (HB) 
method [7-11], Homotopy method [12-13], Iteration method [14-21] etc. The perturbation method is the 
most widely utilized method in which the nonlinear term is small. HB method is another latest method which 
is originated by Mickens [7] and farther work has been done by Lim [8], Gottlieb [9], Mickens [10] and so 
on for solving the strong nonlinear problems. Recently, some authors utilize an iteration procedure [14-21] 
which is valid for small together with large amplitude of oscillation, to attain the approximate frequency and 
the harmonious periodic solution of such nonlinear problems. A few number of scientist Hu and Tang [16]; 
Mickens [17]; Haque et al. [18-21] used modified version of this process to develop the results; luckily the 
direct iteration method sometimes improves the results when the functions are not differentiable that is for 
the singular oscillators. Beside this method, there are some methods [22-25] which are used to find 
approximate solution in the case of large amplitude of oscillations.   
 
The simplicity and the excellent accuracy of the approximate solution of ‘Nonlinear Singular Oscillator’ by 
iteration procedure is the main object of the proposed procedure. Also, it can help us to investigate the nature 
(amplitude, frequency etc) in the nonlinear dynamical systems in a spacious range. Beside this technique, 
there are some articles [22-25] which show the excellent accuracy and stability of the oscillation method. 
 

2 The Method 
 
Let us suppose that a nonlinear oscillator modeled by 
 

0),( =+ xxfx &&&& , Ax =)0( , 0)0( =x&                                                                                        (1) 
 
where over dots denote differentiation with respect to time, t.  
 

We choose the natural frequency Ω  of this system. Then adding x2Ω  on both sides of Eq. (1), we obtain  
 

),(),( -xx 22 xxGxxfx &&&&&& ≡Ω=Ω+ .                                                                             (2) 
 
Now, formulate the iteration scheme as 
 

);,(1
2

1 kkkkk xxGxx &&&& =Ω+ ++ k = 0, 1,  2, ...                                                                      (3) 

 
Together with initial guess  
 

)cos()( 00 tAtx Ω=                                                                            (4) 

 

Hence 1+kx  satisfies the conditions  

 

.0)0(,)0( 11 == ++ kk xAx &                                                                                                             (5) 

 

At each stage of the iteration,kΩ  is determined by the requirement that secular terms should not occur in 

the full solution of )(1 txk+ . The above procedure gives the sequence of solutions which are mentioned by 
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L),(),( 10 txtx  The method can be proceed to any order of approximation; but due to growing algebraic 

complexity the solution is confined to a lower order usually the second [14]. 
 

3 Solution Procedure 
 
Let us consider the oscillator 
 

.01 =+ −xx&&                                                                                                                                     (6)  

 

Adding x2Ω  on both sides of Eq. (6), we get 
 

122  -xx −Ω=Ω+ xx&&                                                                                                                     (7) 
 

According to Eq. (3), the iteration scheme of Eq. (7) is  
 

12
1

2
1

−
++ −Ω=Ω+ kkkkkk xxxx&&                                                                                                         (8) 

 

The first approximation )(1 tx  and the frequency 0Ω  will be obtained by putting k=0 in Eq. (8) and using 

Eq. (4) we get 
 

12
01

2
01 )cos(cos −−Ω=Ω+ θθ AAxx&&                                                                                       (9) 

 

Now expanding 
1)(cos −θ  in a Fourier cosine series in the interval [0,]

2

π
 then Eq. (9) reduces to  

L&& −+−Ω=Ω+ θθ 3cos
2

cos)
2

( 2
01

2
01 AA

Axx                                                                    (10) 

 

Now secular terms can be eliminated if the coefficient of θcos  is set to zero. 
 

i.e. 
AA

41421.12
0 ==Ω                                                                                                            (11) 

 
This is the first approximate frequency of the oscillator. 
 
After simplification the Eq. (10) reduces to 
 

L&& −=Ω+ θ3cos
2

1
2
01 A
xx                                                                                                        (12) 

 
 The complete solution is 
 

L−−= θθ 3cos
8

cos)(1

A
Ctx                                                                                               (13) 

 

Using Ax =)0(1 , we have AC
8

9=  



 
 
 

Haque et al.; BJMCS, 14(3): 1-7, 2016; Article no.BJMCS.23263 
 
 
 

4 
 

Therefore, )3cos
8

1
cos

8

9
()(1 L+−= θθAtx                                                                         (14) 

 
This is the first approximate solution of the oscillator. 
 

Proceeding to the second level of iteration, )(2 tx satisfies the equation 
 

1
11

2
12

2
12 )( −−Ω=Ω+ xxxx&&                                                                                                       (15) 

 

Now expanding second term on right hand side in a truncated Fourier cosine series in interval [0,]
2

π
 the     

Eq. (15) reduces to 
 

L&& +−
Ω

−−
Ω

=Ω+ θθ 3cos)
30306.1

8
(cos)

3

22

8

9
(

2
1

2
1

2
2
12 A

A

A

A
xx                               (16) 

 

Secular terms can be eliminated if the coefficient of θcos  is set to zero. 
 

i.e. 
A

2048.1
1 =Ω                                                                                                                           (17) 

 
This is the second approximate frequency of the oscillator. 
 
After simplification the Eq. (16) reduces to 
 

L&& +−
Ω

−=Ω+ θ3cos)
30306.1

8
(

2
1

2
2
12 A

A
xx                                                                       (18) 

 
The complete solution of Eq. (16) is 
 

L−
Ω

−+= θθ 3cos)
8

30306.1

64
(cos)(

2
1

2
A

A
Ctx                                                                     (19) 

 

Using  Ax =)0(2  , we have )
8

30306.1

64

63
(

2
1Ω

+=
A

AC  

 
Therefore, 
 

L+−= θθ 3cos0965883.0cos09659.1)(2 AAtx                                                           (20) 
 

Proceeding to the third level of iteration )(3 tx satisfies the equation 

 
1

22
2
23

2
23 )( −−Ω=Ω+ xxxx&&                                                                                                      (21) 
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Now expanding the term on right hand side in a Fourier cosine series in interval [0, ]
2

π
, the Eq.(19) reduces 

to 
 

L&& −+Ω−+−Ω=Ω+ θθ 3cos)
42177.1

0965883.0(cos)
69861.1

09659.1( 2
2

2
23

2
23 A

A
A

Axx              (22) 

 

Secular terms can be eliminated if the coefficient of θcos  is set to zero. 
 

 
A

24459.1
2 =Ω                                                                                                                            (23) 

 

4 Results and Discussion 
 
An iterative approach is presented to obtain approximate solution of the ‘Nonlinear Singular Oscillator’. The 
present technique is very simple for solving algebraic equations analytically and the approach is different 
from the existing other approach for taking truncated Fourier series. Here we have calculated the first, 

second and third approximate frequencies0Ω , 1Ω  and 2Ω  respectively. All the results are given in the 

following Table. To compare the approximate frequencies we have also given the existing results determined 
by Mickens iteration method [17], Mickens HB method [10] and Haque’s iteration method [19]. To show   
the accuracy, we have calculated the percentage errors (denoted by Er(%)) by the definitions 

eie ΩΩ−Ω /)(100 , where L,2,1,0; =Ω ii  represents the approximate frequencies obtained by the 

present method and eΩ  represents the corresponding exact frequency of the oscillator.      

 

Table. Comparison of the approximate frequencies with exact frequency eΩ [17] of 01 =+ −xx&&  

 
Exact frequency eΩ  

A

253.1
 

Amplitude 
A  

First approximate 
frequency 

0Ω  

Er(%) 

Second approximate 
frequency 

1Ω  

Er(%) 

Third approximate 
frequency 

2Ω  

Er(%) 
Mickens iteration method [17] 

A

155.1  

7.9 
A

018.1  

18.1 

 
_ 

Mickens Harmonic balance 
method [10] 

A

414.1
 

12.84 

A

273.1  

1.6 
A

2731.1  

1.58 

Haque’s iteration method [19] 

A

414.1
 

12.84 

A

208.1  

3.63 
A

265.1
 

0.92 
Adopted method 

A

414.1  

12.84 
A

205.1  

3.87 
A

245.1  

0.696 
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In this article the result has been improved by rearranging the governing equation choosing comparatively 
perfect truncated Fourier series. In most of the articles, the results have been improved by modifying the 
method. But we see that not only modification of model is important but also rearranging of a nonlinear 
oscillator along with the Fourier series of initial solution of each iterative step is important in the case of 
iteration procedure. 
 

5 Conclusion 
 
Rearranging and applying truncated Fourier series is comparatively better. And the equation by an iteration 
technique from the first to the third approximate frequencies is better than corresponding frequencies which 
have been shown by other techniques. It can be observed that the Mickens’ iteration technique is diverging 
here. Though the solution of Mickens’ harmonic balance method and Haque’s iteration method are 
convergent but the solution obtained by the adopted method is better than those mentioned solution. The 
third approximate frequency obtained by the adopted technique is as low as 0.696%. Thus we can say third 
approximation provides excellent result. Furthermore, this technique is precious because it does not require 
numerical integration for expanding the function in Fourier series in any step of iterations. Thus we conclude 
that this technique does not only presents explicitly a better third order analytical solutions but also deduces 
a simply way of starting fourth, fifth etc order solutions of various nonlinear systems.  
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