
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: arshad.akre@yahoo.com; 
 
 
 

Asian Journal of Research in Computer Science 
 
11(4): 19-34, 2021; Article no.AJRCOS.73754 
ISSN: 2581-8260 

 
 

 

 

State of Art Survey for Fault Tolerance Feasibility in 
Distributed Systems 

 
Arshad A. Hussein1*, Adel AL-zebari1, Naaman Omar1,  

Karwan Jameel Merceedi1, Abdulraheem Jamil Ahmed1, Nareen O. M. Salim1, 
Sheren Sadiq Hasan1, Shakir Fattah Kak1, Ibrahim Mahmood Ibrahim1,  

Hajar Maseeh Yasin1 and Azar Abid Salih1 
 

1Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq. 
 

Authors’ contributions  
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 
Article Information 

 
DOI: 10.9734/AJRCOS/2021/v11i430268 

Editor(s): 
(1) Francisco Welington de Sousa Lima, Universidade Federal do Piauí, Brazil. 

Reviewers: 
(1) Sanjeev Kumar Dwivedi, Dr. SPM International Institute of Information Technology, India. 

(2) Ahmed Adeeb Jalal, Al-Iraqia University, Iraq. 
Complete Peer review History: https://www.sdiarticle4.com/review-history/73754 

 
 
 

Received 27 June 2021  
Accepted 07 September 2021 
Published 08 September 2021 

 
 

ABSTRACT 
 

The use of technology has grown dramatically, and computer systems are now interconnected via 
various communication mediums. The use of distributed systems (DS) in our daily activities has 
only gotten better with data distributions. This is due to the fact that distributed systems allow 
nodes to arrange and share their resources across linked systems or devices, allowing humans to 
be integrated with geographically spread computer capacity. Due to multiple system failures at 
multiple failure points, distributed systems may result in a lack of service availability. to avoid 
multiple system failures at multiple failure points by using fault tolerance (FT) techniques in 
distributed systems to ensure replication, high redundancy, and high availability of distributed 
services. In this paper shows ease fault tolerance systems, its requirements, and explain about 
distributed system. Also, discuss distributed system architecture; furthermore, explain used 
techniques of fault tolerance, in additional that review some recent literature on fault tolerance in 
distributed systems and finally, discuss and compare the fault tolerance literature. 
 

 

Review Article 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
20 

 

Keywords: Cluster; grid; P2P; distributed system; cloud; fault tolerance. 
 

1. INTRODUCTION  
 
A distributed system (DS) is a collection of 
independent computers that seem to users as a 
single, unified entity [1]. DSs are also collections 
of interconnected nodes that all work toward the 
same goal. The assignment has been split down 
into smaller tasks that have been handed to 
various nodes in order to respond to a specific 
challenge [2]. Each node finishes its portion of 
the job and sends the results back to the 
submission node [3]. Furthermore, since DSs 
may be homogeneous (cluster) or 
heterogeneous (Grid, Cloud, and P2P), they are 
vulnerable to difficulties like Quality of Service 
(QoS), Resource Selection, Load Balancing, and 
Fault Tolerance, among others [4]. 
 
Unlike uniprocessors, fault tolerance determines 
how a system reacts to abrupt hardware or 
software failure; breakdowns in a DS are harder 
to detect [5]. Fault tolerance is made up of two 
key components: failure detection and recovery 
[6]. Maintaining the system's functionality in the 
event of a breakdown or if any of its components 
get disconnected or malfunction is a major 
difficulty in DSs [7]. Retry, replication, check 
pointing, and message logging are just a few of 
the FT techniques available in the distributed 
paradigm [8]. 
 
A malfunctioning system causes 
human/economic harm, affects air traffic control, 
and interrupts telecommunications, among other 
things [9]. The necessity for reliable fault 
tolerance solutions reduces these threats to a 
minimum [10]. Faults are limited or partial in DSs 
[11]. Because the whole system isn't knocked 
down or unavailable, a section of a DS failure 
isn't as severe [12]. For example, if a system 
contains more than one processing core (CPU), 
if one core fails, the system will continue to 
operate as if it only had one physical core [13]. 
As a consequence, the remaining cores would 
regularly execute and analyze data. However, in 
a non-DS, if one of its components fails, the 
whole system or program fails and all related 
actions stop [14]. 
 
A system fault is a fault that results to an error 
when enabled. Fault tolerance includes many 
techniques in a distributed system architecture 
[15]. The failure tolerance is a dynamic technique 
to combine connected systems and to ensure 
that dispersed systems are reliable and 

accessible [16]. Hardware and redundancy 
solutions in distributed systems are famed as 
tolerance solutions (DS) [17]. Fault tolerance 
solutions for hardware include CPU's, 
communication links, memory, and I/O devices, 
whereas solutions for faulty software demand 
certain programs to deal with difficulties [18]. 
Solutions for failure tolerance that assist discover 
and recover problems, if practicable [19]. The 
failure tolerance of the software includes 
checkpoints and rollback retrieval [20]. 
Checkpoints are like a secure state or a 
functional snapshot of the whole system [21]. 
The fault tolerance validation approach is used to 
increase dependability and decrease 
construction mistakes [22]. There are several 
ways of doing this, one is to improve a formal 
language system model and utilize a validation 
programmer [23]. In contrast, error correction is 
the approach used to improve the dependability 
[24]. Failure to identify errors is reduced by 
redundancy tolerance. Before latent error 
processing is successful, latent errors are 
detected and repaired [25]. In fault tolerance 
systems, which involve hardware redundance, 
software redundancy, redundancy of information 
and time redundancy, are also employed in many 
forms of redundancy. Hardware fault tolerance is 
the optimum in most applications [26].  
 
In this paper we show ease fault tolerance 
systems, its requirements, and explained what a 
distributed system is. Furthermore, discuss 
distributed system architecture, and then explain 
used techniques of fault tolerance. Also, review 
some recent literature on fault tolerance in 
distributed systems and finally, we discuss and 
compare the fault tolerance literature. 
 

2. BACKGROUND THEORY 
 

2.1 Ease Fault Tolerance Systems 
 
The fault tolerance system is an essential topic in 
distributed computing since it keeps the system 
functioning in a failure. Most importantly, keeping 
the system operating even if one or more of its 
components fails or malfunctions [27]. 
 
To be fault resistant, a system is related to 
"Dependable Systems." As demonstrated in Fig. 
1, reliability meets many essential criteria in the 
fault tolerance system. The following criteria are 
required: availability, dependability, safety, 
maintenance [28]. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
21 

 

 Availability: The point at which a system is 
ready to start delivering its functionality to 
its consumers. At any given moment, 
highly available systems are operational 
[29]. 

 Reliability: This refers to a computer 
system's capacity to function constantly 
without interruption [30]. In contrast to 
availability, dependability is defined as a 
time period rather than a moment in time. 
For a lengthy length of time, a highly 
dependable system functions constantly 
and without interruption [31]. 

 Safety: happens when a system fails to 
properly perform its related operations and 
its actions are erroneous, but no 
catastrophic failure occurs [32]. 

 Maintainability: Also, a highly sustainable 
system may suggest a high degree of 
accessibility, particularly if the 
accompanying problems can be 
mechanically diagnosed and repaired [33]. 
 

2.2 Distributed System 
 
Distributed systems (DS) are ones that don't 
share memory and a common clock. Distributed 
nodes exchange data through a communication 
channel to connect and transmit information [34]. 
Each computer in a DS has its own memory and 
operating system, and the node using it retains 
local resources [35]. Remote resources, on the 
other hand, are those accessible via a network or 
communication channel [36]. Divided systems, 
especially for highly demanding and complicated 
control systems, have developed considerably in 
the past many years in terms of capability, 
scalability and openness [37]. This presents 
significant problems for the design of a 
functioning and dependable system, mainly 
because the hardware architecture has been 
loosely interconnected without a common 
physical memory [38]. For instance, control 
spreader synchronization process usually utilizes 
common variables on a single computer but must 
be related to message transmission on a 
distributed system [39]. The additional time lag 
associated with the transmission of messages 
across a network increases process asynchrony 
and requires the usage of specific protocols to 
coordinate its activities [40]. Like the distributed 
tolerance unit, the distributed system software 
and hardware monitors the problem and 
diagnoses it before any defects arise [41]. 
 
DS has developed throughout time, but the most 
prevalent implementations now are designed to 

work mainly on the Internet and in particular on 
the cloud [42]. A distributed system begins with a 
task to render a video to generate a ready-to-
release completed product [43]. This tasking, 
such as a video editor on a client computer, is 
being handled through the web application or 
distributed apps. Scalability, competitors, 
available fault tolerances, transparency, 
heterogeneity and replication are the key 
properties of DS [44]. The scalability that it may 
expand as the workload size increases is an 
essential property of distributed systems by 
adding extra processing units or network nodes, 
if necessary. The competition feature is one 
component running in DS at the same time [45]. 
The absence of a "ground clock" is also 
characterized by when tasks take place at 
various rates and out of sequence [46]. Fault 
tolerance is the heart of the system work, since if 
a node fails, the other nodes may function 
without creating the whole calculation problem 
[47]. Transparency is an external programmer or 
end-user, rather than the underlying pieces, 
obtains a distributed system as a single 
computing unit [48]. The range of systems 
components called heterogeneity is typically 
asynchronous in most distributed systems, with 
various hardware, middleware, software and 
operating systems. The distributed systems may 
therefore be expanded by adding additional 
components [49]. The fourth characteristic of DS 
is replication that enables the exchange of 
information and messages, guaranteeing 
consistency amongst redundant resources, such 
as software, hardware and other components 
[50]. The function of distributed systems suits 
business demands, which do not have the 
complexity of a complete network of 
telecommunications [51]. Scalability and 
increased performance can be achieved in ways 
that monolithic systems cannot and since 
distributions can rely on the capabilities of other 
computer devices and processes, they can offer 
features that would be hard or impossible to build 
on a single machine [52]. 

 
In a DS, a set of rules is used to synchronize the 
operations of several or distinct processes 
through a communication network, resulting in a 
distinct collection of related activities [53]. Fig. 2 
shows the communication network connecting 
systems in dispersed environments. 

 
The autonomous system or computers in a DS 
communication environment access resources 
remotely or locally [54]. These elements are 
merged to form a single, comprehensible system 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
22 

 

[55]. The user is unaware of the many 
interconnected procedures that ensure the work 
is completed effectively in a distributed 
environment [56]. In a DS no one system is 
required to fulfill a task or to shoulder the whole 
system's load [57].  

 

2.3 Distributed System Architecture 
 
The DS's design is based on current operating 
systems and network software [58]. A DS is 
made up of a group of self-contained computers 
connected via a computer network and 
distribution middleware [59]. In a DS, the 
distribution middleware allows the corresponding 
computers to manage and share the resources of 

the corresponding system, giving the computer 
users the impression that the system is a single 
unified computing infrastructure [60]. Middleware 
is the glue that holds dispersed applications 
together, regardless of their location, computer 
hardware, network protocols, operating systems, 
or programming languages [61]. Standard 
services like as naming, concurrency 
management, event dissemination, security, and 
permission are provided by the middleware [62]. 
Fig. 3 depicts the DS architecture, with the 
middleware providing services to the distributed 
environment's linked systems [63]. The structure 
of a DS might be completely linked or partly 
linked networks [64]. 

 

 
 

Fig. 1. Trustworthy DS 
 

 
 

Fig. 2. Distributed system 

Distributed System

Availability Maintainability

SafetyReliability



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
23 

 

A full-connected network, as shown in Fig. 3, is 
one in which each node is connected to the rest 
of the network. The disadvantage of this network 
is that when a new computer is installed, the 
number of nodes linked to nodes increases 
physically because the network connects nodes 
[65]. As the number of nodes has increased, so 
has the number of file descriptors and the 
complexity of each node's interaction. File 
descriptors are conceptual indicators for 
accessing a file or other input/output resource, 
such as a pipe or network connection [66]. Thus, 
the capability of the connected node to open file 
descriptors and manage new connections 
constrained the ability of networked systems to 
function correctly [67]. Because messages 
transmitted from one node to the next are routed 
over a single connection, fully linked network 
systems can continue interact with others, even if 
the node and the link fail [68]. Components and 
connections are linked together with distributed 
system designs. The components might be 
single nodes or significant architectural 
components, whereas the connections link each 
of them [69]. Distributed systems connect to a 
network that shares all computers, software and 
hardware components together to transmit 
messages for communication. It may be 
connected to that network with an IP [70]. The 
messages exchanged between machines contain 
data formats, which systems like databases, 
objects and files wish to share [71]. 
 

Client server architecture offers data and 
services integration and allows customers 
inherent complexity such as communication 
protocols to be removed from them [72]. Clients 
can request to the right server because of the 
simplicity of their client-server design. These 
applications are made as transactions [73]. SQL 
or PL/SQL transactions and features which 
access single databases and services are 
frequently customer transactions [74]. A common 
resource server such as a data basket, printer 
and Web server consists of the distributed 
system architecture [75]. It had several clients 
and users deciding when to use, how to utilize 
and display the shared resource, changing data 
and returning it to the server [76]. Examples for 
the distributed real-time systems, parallel 
processing and distributed database systems are 
networking, the telecommunications network 
[77]. 
 

2.4 Fault Tolerance Techniques 
 

As seen in Fig. 4, several fault tolerance 
strategies are available in classic distributed 

paradigms and may be applied at the task or 
process level [78]. 
 
2.4.1 Reactive FT 
 
When a system fails, reactive FT methods are 
employed to mitigate the effect of the failure on 
the system. Retry, replication, check-pointing, 
and message logging [79]. 
 

1) Retry: the most common failure recovery 
method, with the assumption that the 
cause of the failures would not be revisited 
in future retries [80]. 

2) Replication: method is to create several 
task clones for each running job and send 
them to different hosts so that none of the 
duplicated jobs hang (due to a host crash, 
the host disconnected from the network). 
Client, etc.), the job would be completed 
successfully [81]. 

3) Check-pointing: The most basic FT 
approach employed in DS is check-
pointing; the basic idea is that the system 
saves its state on a regular basis on 
trustworthy and stable storage [82]. The 
system was restarted from the most recent 
checkpoint rather than from the beginning 
after a crash. In your pick, underline all 
author and affiliation lines [83]. 

4) Message Logging: Because check-
pointing is an expensive technique, several 
methods have been devised to reduce the 
number of checkpoints while still enabling 
recovery [84]. This concept is based on the 
idea that if messages can be replayed in a 
predetermined order, the system can 
always achieve a consistent state without 
having to restore it from stable storage 
[85]. Instead, a check-pointed state is 
utilized as a starting point, and all 
messages sent since then are simply 
retransmitted and processed the same way 
they were before [83]. 

 
2.4.2 Proactive FT 
 
To avoid recovery from faults and errors, 
proactive FT predicts breakdowns and replaces 
healthy (functional) components for problematic 
components [86]. Preemptive migration, software 
rejuvenation, load balancing, and other 
techniques follow this paradigm [87]. 
 

1) Software Rejuvenation: A programmed 
change in the status is made with each 
system reboot [88]. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
24 

 

2) Self-healing: The core concept is to 
automate the failure of a virtual                       
machine-based application instance                 
[89]. 

3) Preemptive Migration: method for 
continuously examining and evaluating an 
application. Fault tolerance classification 
[90]. 

 

 
 

Fig. 3. A distributed system's basic architecture 
  

 
 

Fig. 4. Fault tolerance taxonomy [59] 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
25 

 

3. LITERATURE REVIEW 
 
Fochi, Caimi et al. [91] offered a technique for 
recovering when an MPE fails and offered a 
technique for properly migrating management 
software to a new PE The protocol uses task 
migration to free a processor if there is no 
processor available to accept the kernel that was 
previously running in a problematic processor. 
The idea is transparent to the many-core 
applications, with just a little execution cost 
detected during administration and job transfer. 
 
Vladimirova and Fayyaz [66] Proposed FT 
distributed satellite architecture. Following system 
functionality and application actions, quantifiable 
performance measurements are developed. 
Then, as an FT distributed computing system, a 
revolutionary multi-processor chip (MPSoC) 
AOCS computer is built. XILINX Zynq FPGAs 
then prototype distributed MPSoC AOCS. Using a 
MATLAB AOCS model and a fault injection 
approach, the prototype was thoroughly tested as 
loop hardware. The testing findings reveal that in 
terms of processor fault resilience and 
computational performance, the FT distributed 
computing architecture outperforms standard on-
board solutions. 
 
Arafa, Barai et al. [83], examined at two distinct 
distributed file systems' FT approaches, HDFS 
and Ceph. Erasure coding is provided in the 
current HDFS and Ceph versions, in addition to 
standard replication. Using common benchmarks 
and fault injection, both systems analyze the 
performance and storage cost of replication and 
erasure coding implementations statistically. 
Results highlight the trade-offs of replication and 
erasure coding algorithms and serve as a basis 
for constructing high-availability, high-
performance storage systems. 
 
Bravo, Rodrigues et al. [80] Explored a unique 
way including describing not just system 
configuration, but also fault handling behavior and 
how the system responds to changes in workload 
in a policy language handled outside the 
controlled system. This methodology shows how 
to employ a single streamlined, controlled system 
codebase to easily fulfill a broad variety of 
reliability criteria. 
 
Hussain, Cui et al. [57] Color is a message-based 
recovery method that prevents failures. He 
recommended implementing MPI utilizing rescuer 
processes that share resources with original 
processes. He established that Color surpasses 

standard checkpoint/restart (C/R) and pure 
replication throughout a range of core counts at 
accurate accuracy using model-based analysis 
and real-system trials. 
 
Yusuf and Junaidu [92] Proposed an FT strategy 
paradigm that would enable self-detection and 
tolerate temporary node-dependent failures. The 
model is compared to preceding techniques in 
terms of detection capability, internode 
interdependence, and execution cost. 
 
Zhao, Shen et al. [27] Using RDP codes instead 
of Cocytus RS codes. To make DS more 
efficient, Shortens RDP code recovery time 
utilizing two techniques: RDOR and CRR 
architectural decoding, dramatically boosting 
user experience and system stability. Finally, this 
study assesses both optimization approaches' 
performance as well as the different application 
situations they may be applied in. 
 
Boem, Gallo et al. [78] Using Active Fault 
Isolation, a scalable distributed FTC technique 
was presented to monitor coupled subsystems. 
Following identification of faults, the 
recommended methodology ensures that the 
issue may be precisely isolated in a minimum 
number of steps and local controllers securely 
reconfigured, or that disconnection of the faulty 
subsystem is preferred to reduce the spread of 
the effects of the issue. 
 
Deng, Che et al. [93] A novel distributed control 
strategy was given to solve the fault-tolerant 
problem of output regulation for linear MASs with 
actuator faults. New distributed estimation 
methodology including online learning 
Techniques for detecting and calculating the 
system matrix of the ecosystem were developed 
for each subsystem. To offset actuator 
difficulties, a novel distributed FT controller 
based on the developed estimator was 
suggested. 
 
Ghosh, Eisele et al. [94] discussed the fault 
management component of the RIAPS 
architecture, demonstrating its implementation in 
a transactive energy application. The fault 
management subsystem was created utilizing a 
methodological approach wherein the different 
frame failure scenarios were uncovered by 
assessing interaction patterns across RIAPS 
architectural tiers. The value of various services 
and their communication protocols in improving 
the resilience characteristics of the system was 
accurately analyzed and implemented. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
26 

 

Khalili, Zhang et al. [53] FT distributed leader 
following tracking approach for high order 
nonlinear unpredictable multi agent systems 
even with multiple simultaneous processes and 
actuator failures in distributed agents, adaptive 
learning techniques based on neural networks 
are meant to learn unknown defect functions, 
ensuring system stability and cooperative 
tracking. Over direct connections, the time-
varying command of the leader is sent to just a 
subset of follower agents, and each follower 
agent shares local measurement information with 
its neighbors through a bidirectional but 
asymmetric topology. 
 
Knasmüller, Hochreiner et al. [60] Proposed 
pathfinder architecture that tackles this constraint 
by allowing functional redundancy at stream 
processing paths. Pathfinder reacts to operator 
faults during system execution, relocating to a 
fault-free path with similar functionality. 
Pathfinder employ circuit breaker pattern to 
restore the main route while recovering a failed 
operator. 
 

Li, Hua et al. [63] A distributed FT consensus 
control problem was investigated for a sort of 
uncertain, nonlinear multi agent systems with 
actuator and process flaws. Most present studies 
on tolerant control of multi-agent systems 
concentrate mostly on actuator failures. Unlike 
works, it is prone to both actuator and process 
failures. We present a less conservative criteria 
for the unknown nonlinear term. The 
recommended controllers, according to 
Lyapunov's stability theory, induce followers to 
agree with the leader. 
 

Loutskii, Volokyta et al. [95] provides a strategy 
for improving the hyper de Bruijn topology's FT. It 
is suggested that extra de Bruijn be used. 
Routing techniques are investigated, and fast 
and FT routing strategies are provided. These 
approaches are based on quasi quantum 
relationships and are the outcome of the 
utilization of surplus code. The topology that 
resulted was synthesized. Its qualities are 
subjected to scaling computations. A comparison 
with various topologies was carried out. 
 

Mahjoubi, Zeynalpour et al. [96] in distributed 
controllers, he demonstrated a load balancing 
and fault tolerant (LBFT) technique. The 
technique, which facilitates group switch 
migration, has been developed as a module on 
top of each controller. He examined the effects of 
load balancing and FT on RTT, packet loss, and 
throughput. 

 
Pareek, Sharma et al. [97] Using RAID-5 
architectural principles, he could safely recover 
data in the case of a single site crash. An revised 
model, mathematically justified, was presented to 
allow FT for a simultaneous double disk failure. 
To verify the model theory, Python programming 
language simulations were undertaken. Based 
on these simulations, the recommended 
improvements were tolerant to a double disk 
failure. 
 
Shi [98] the cooperative FT formation control 
problem is investigated for a type of nonlinear 
leader follower multi-agent systems with actuator 
flaws (MASs). For each subsequent agent, a kind 
of decentralized observer is built using the local 
output information. A unique adaptive fault 
estimator is then used to estimate the real time 
fault signal. Using the obtained status and fault 
information, a novel fault-tolerant control method 
for stabilizing the closed loop system is devised. 
 
Han, Jang et al. [36] suggested switch-centric 
byzantine FT (SC-BFT) Techniques for rapid 
consensus in distributed SDN enabled by 
programmable switches. In terms of 
communication overhead and reaction time, the 
evaluation findings show that SC-BFT 
outperforms traditional BFT Techniques (e.g., 
PBFT). SC-BFT is also shown to be less 
sensitive to the location of the consensus 
processing node. 
 
Zhang, Xue et al. [99] He suggested a distributed 
adaptive (FT) control method, which is supported 
by the Lyapunov stability theory, and simulation 
studies validate the technique's convergence and 
resilience. Under the "leader-follower" concept, 
the multi-agent formation system can not only 
swiftly restore the system's normal operation but 
also guarantee that the agents move in 
accordance with the pre-set formation. In order to 
build the pre-set configuration, however, only the 
fault-tolerant control from various beginning 
locations at varied speeds was explored. 
 
Perez, Goodloe et al. [100] He has proposed 
methodically evaluating the failure model in a 
distributed satellite swarm, introducing FT 
techniques, and verifying their appropriateness. 
He demonstrated how seeing defects through the 
eyes of the receiver simplifies the fault model 
and aids in the analysis of the FT measures 
necessary. Their computational abstraction 
represents satellites that communicate sensor 
data. Using linear temporal logic, he modeled 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
27 

 

and validated the features of consensus and 
interactive agreement. He utilized this simulation 
to inject faults and random testing to alter the 
likelihood of various types of defects in the 
system and to ensure that the FT approaches 
could rectify these problems. 
 

4. DISCUSSION AND COMPARISON 
 
Problem tolerance is an important component of 
a distributed system because it maintains the 
system's continuation and operation in the event 
of a fault or failure. Using the comparison details 

illustrated in Table 1, noted the number of 
techniques used in twenty of the fault tolerance 
literature, and discusses the problems that face 
distributed systems, as well as the results of 
solving these problems using fault tolerance 
techniques. Active fault Isolation, LBFT, RIAPS, 
AOCS, hierarchically organized MPEs, and 
RAID-5 are the most commonly used techniques. 
FT is a dynamic strategy for keeping 
interconnected systems together, ensuring 
dependability and availability in distributed 
systems. Efficient FT approaches aid in the 
detection of flaws and, if feasible, their recovery. 

 
Table 1. Comparison fault detection and tolerance techniques used in distributed systems 

 

Ref. year methods 
topologies/techniques 

problems 
Detected/fault 

Significant result 

[98] 2019 Cooperative Formation 
Control 

multi-agent systems (MASs) The numerical 
demonstration validated 
the theoretical findings 
provided 

[92] 2018 Parity Checking Transient defect in parallel 
query processing  

Detection capability, inter-
node interdependence, 
and execution cost 

[93] 2019 A novel distributed 
estimation 

the FT cooperative output 
regulation challenge for 
linear MASs with actuator 
failures 

The suggested strategy 
can address the 
cooperative FT output 
control issue 

[57] 2018 Co-Located Rescuers a message logging-based 
technique that allows for fail-
safe recovery 

an MPI implementation 
that employs rescuer 
processes that share 
resources with the 
original processes 

 [53] 2019 Adaptive learning a DFTC for a family of high 
order nonlinear 
uncertain(MASs) 

full-state assessment and 
just a limited amount of 
output measurement 

[97] 2019 RAID-5 reduces the cases of 
complete system failure 

Improving reliability with 
RAID 

 
[100] 

2019 swarm of satellites assesses FT Techniques in 
a satellite swarm 

the suggested fault 
model's applicability 

[27] 2018 RDP codes - RS codes RDP code recovery time is 
greatly reduced 

distributed system more 
efficient 

 [95] 2019 Hyper de Bruijn improve the HDB by using 
excess de Bruijn 

enhance the HDB 
topology's FT 

[36] 2020 (SC-BFT) Techniques  Consensus latency and 
traffic load are increased 
since all messages must be 
validated and multicast 
among controllers 

SC-BFT gives an 80 
percent decrease in 
reaction time as well as a 
considerable decrease in 
communication overhead 

[83] 2018 HDFS and Ceph Two typical distributed file 
systems' FT techniques 

show the trade-offs of 
replication and erasure 
coding 

[78] 2018 Active Fault Isolation. Large-Scale Systems It has been described a 
scalable distributed FTC 
technique for monitoring 
coupled subsystems 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
28 

 

Ref. year methods 
topologies/techniques 

problems 
Detected/fault 

Significant result 

 [96] 2019 (LBFT) LBFT on RTT a single point of failure 
are all important 
considerations 

 [94] 2019 (RIAPS) real time, embedded 
systems, fault detection. 

cyber-physical system. 

[63] 2019 less conservative 
Lipschitz condition 

Uncertain nonlinear multi 
agent systems(MAS) with 
actuator failures and process 
faults 

verify the effectiveness of 
the theoretical 

 [60] 2019 Pathfinder framework the length of the failure by a 
large period of time 

The circuit breaker 
pattern is used by 
Pathfinder 

 [66] 2018 (AOCS) a fault-tolerant distributed 
design that is novel 

show that the FT 
distributed computing 
system outperforms  

[99] 2020 DAFTC Multi-agent with Actuator 
Fault 

The adaptive control 
strategy provides a high 
level of resilience 

 [80] 2018 PBA Byzantine FT Distributed 
Graph Database 

A single simplified 
managed system 
codebase may be utilized  

[91] 2018 MPEs hierarchically 
organized 

When an MPE fails, there is 
a recovery technique 

safely migrate the 
management software to 
a new processing 
element 

 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
29 

 

5. CONCLUSION  
 
Fault tolerance is a key element in DS design 
and is one of the main subjects in distributed 
systems. FT is defined as the ability of a system 
to operate in the event of failure. Problem 
tolerance is an important component of a 
distributed system because it maintains the 
system's continuation and operation in the event 
of a fault or failure. The most methods for fault 
tolerance detection in distributed system adopted 
by the researchers which are  Active fault 
Isolation, LBFT, RIAPS, AOCS, hierarchically 
organized MPEs, and RAID-5. In this paper 
shows ease fault tolerance systems, its 
requirements, and explained what a distributed 
system is. Then discusses distributed system 
architecture, and then we explain used 
techniques of fault tolerance then, we review 
some recent literature on fault tolerance in 
distributed systems, and finally, we discuss and 
compare the fault tolerance literature. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Abdullah RM, Ameen SY, Ahmed DM, Kak 

SF, Yasin HM, Ibrahim IM, et al. 
Paralinguistic speech processing: An 
overview, Asian Journal of Research in 
Computer Science. 2021;34-46. 

2. Ibrahim IM, Ameen SY, Yasin HM, Omar 
N, Kak SF, Rashid ZN, et al. Web server 
performance improvement using dynamic 
load balancing techniques: A Review, 
Asian Journal of Research in Computer 
Science. 2021;47-62. 

3. Zeebaree S, Ameen S, Sadeeq M. Social 
media networks security threats, risks and 
recommendation: A case study in the 
kurdistan region, International Journal of 
Innovation, Creativity and Change. 
2020;13:349-36,. 

4. Ahmed DM, Ameen SY, Omar N, Kak SF, 
Rashid ZN, Yasin HM, et al. A state of art 
for survey of combined iris and fingerprint 
recognition systems, Asian Journal of 
Research in Computer Science. 2021;18-
33. 

5. Maulud DH, Ameen SY, Omar N, Kak SF, 
Rashid ZN, Yasin HM, et al. Review on 
natural language processing based on 
different techniques, Asian Journal of 

Research in Computer Science. 2021;1-
17. 

6. Salih AA, Ameen SY, Zeebaree SR, 
Sadeeq MA, Kak SF, Omar N, et al. Deep 
learning approaches for intrusion 
detection, Asian Journal of Research in 
Computer Science. 2021;50-64. 

7. Hassan RJ, Zeebaree SR, Ameen SY, Kak 
SF, Sadeeq MA, Ageed ZS, et al. State of 
art survey for iot effects on smart city 
technology: Challenges, opportunities, and 
solutions, Asian Journal of Research in 
Computer Science. 2021;32-48.  

8. Yahia HS, Zeebaree SR, Sadeeq MA, 
Salim NO, Kak SF, Adel AZ, et al. 
Comprehensive survey for cloud 
computing based nature-inspired 
algorithms optimization scheduling, Asian 
Journal of Research in Computer Science. 
2021;1-16. 

9. Ageed ZS, Zeebaree SR, Sadeeq MM, 
Kak SF, Rashid ZN, Salih AA, et al. A 
survey of data mining implementation in 
smart city applications, Qubahan 
Academic Journal. 2021;1:91-99. 

10. Sulaiman MA, Sadeeq M, Abdulraheem 
AS, Abdulla AI. Analyzation study for 
gamification examination fields, Technol. 
Rep. Kansai Univ. 2020;62:2319-2328. 

11. Ageed ZS, Zeebaree SR, Sadeeq MA, 
Abdulrazzaq MB, Salim BW, Salih AA, et 
al. A state of art survey for intelligent 
energy monitoring systems, Asian Journal 
of Research in Computer Science. 
2021;46-61. 

12. Sadeeq M, Abdulla AI, Abdulraheem AS, 
Ageed ZS. Impact of electronic commerce 
on enterprise business, Technol. Rep. 
Kansai Univ. 2020;62:2365-2378. 

13. Alzakholi O, Shukur H, Zebari R, Abas S, 
Sadeeq M. Comparison among cloud 
technologies and cloud performance, 
Journal of Applied Science and 
Technology Trends. 2020;1:40-47. 

14. Salih A, Zeebaree ST, Ameen S, Alkhyyat 
A, Shukur HM. A Survey on the Role of 
Artificial Intelligence, Machine Learning 
and Deep Learning for Cybersecurity 
Attack Detection, in 2021 7th International 
Engineering Conference Research & 
Innovation amid Global Pandemic (IEC). 
2021;61-66. 

15. Abdullah DM, Ameen SY, Omar N, Salih 
AA, Ahmed DM, Kak SF, et al. Secure data 
transfer over internet using image 
steganography, Asian Journal of Research 
in Computer Science. 2021;33-52. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
30 

 

16. Kareem FQ, Ameen SY, Salih AA, Ahmed 
DM, Kak SF, Yasin HM, et al. SQL 
injection attacks prevention system 
technology, Asian Journal of Research in 
Computer Science. 2021;13-32. 

17. Ageed Z, Mahmood MR, Sadeeq M, 
Abdulrazzaq MB, Dino H. Cloud computing 
resources impacts on heavy-load parallel 
processing approaches, IOSR Journal of 
Computer Engineering (IOSR-JCE). 
2020;22:30-41. 

18. Ismael HR, Ameen SY, Kak SF, Yasin HM, 
Ibrahim IM, Ahmed AM, et al. Reliable 
communications for vehicular networks, 
Asian Journal of Research in Computer 
Science. 2021;33-49. 

19. Sallow A, Zeebaree S, Zebari R, Mahmood 
M, Abdulrazzaq M, Sadeeq M. Vaccine 
tracker, SMS reminder system: Design and 
Implementation; 2020.  

20. Abdulla AI, Abdulraheem AS, Salih AA, 
Sadeeq M, Ahmed AJ, Ferzor BM, et al. 
Internet of things and smart home security, 
Technol. Rep. Kansai Univ. 2020;62:2465-
2476. 

21. Sadeeq MA, Zeebaree SR, Qashi R, 
Ahmed SH, Jacksi K. Internet of Things 
security: A survey, in 2018 International 
Conference on Advanced Science and 
Engineering (ICOASE). 2018;162-166. 

22. Abdulraheem AS, Salih AA, Abdulla AI, 
Sadeeq M, Salim N, Abdullah H, et al. 
Home automation system based on IoT; 
2020. 

23. Salih AA, Zeebaree S, Abdulraheem AS, 
Zebari RR, Sadeeq M, Ahmed OM. 
Evolution of mobile wireless 
communication to 5G revolution, 
Technology Reports of Kansai University. 
2020;62:2139-2151. 

24. Abdulazeez AM, Zeebaree SR, Sadeeq 
MA. Design and implementation of 
electronic student affairs system, 
Academic Journal of Nawroz University. 
2018;7:66-73. 

25. Dino HI, Zeebaree S, Salih AA, Zebari RR, 
Ageed ZS, Shukur HM, et al. Impact of 
process execution and physical memory-
spaces on OS performance, Technology 
Reports of Kansai University. 
2020;62:2391-2401. 

26. Hamdi SJ, Ibrahim IM, Omar N, Ahmed 
OM, Rashid ZN, Ahmed AM, et al. A 
Comprehensive Study of Malware 
Detection in Android Operating Systems. 

27. Zhao S, Shen L, Li Y, Stones RJ, Wang G, 
Liu X. An efficient fault tolerance 

framework for distributed in-memory 
caching systems, in 2018 IEEE 24th 
International Conference on Parallel and 
Distributed Systems (ICPADS). 2018;553-
560. 

28. Ageed ZS, Ahmed AM, Omar N, Kak SF, 
Ibrahim IM, Yasin HM, et al. A State of Art 
Survey of Nano Technology: 
Implementation, Challenges, and Future 
Trends. 

29. Abdulqadir MM, Salih AA, Ahmed OM, 
Hasan DA, Haji LM, Ahmed SH, et al. A 
Comprehensive Study of Caching Effects 
on Fog Computing Performance. 

30. Yazdeen AA, Zeebaree SR, Sadeeq MM, 
Kak SF, Ahmed OM, Zebari RR. FPGA 
implementations for data encryption and 
decryption via concurrent and parallel 
computation: A review, Qubahan 
Academic Journal. 2021;1:8-16.  

31. Ageed ZS, Zeebaree SR, Sadeeq MM, 
Kak SF, Yahia HS, Mahmood MR, et al. 
Comprehensive survey of big data mining 
approaches in cloud systems, Qubahan 
Academic Journal. 2021;1:29-38. 

32. Abdulrahman LM, Zeebaree SR, Kak SF, 
Sadeeq MA, Adel AZ, Salim BW, et al. A 
state of art for smart gateways issues and 
modification, Asian Journal of Research in 
Computer Science. 2021;1-13. 

33. Abdulqadir HR, Zeebaree SR, Shukur HM, 
Sadeeq MM, Salim BW, Salih AA, et al. A 
study of moving from cloud computing to 
fog computing, Qubahan Academic 
Journal. 2021;1:60-70. 

34. AL-Zebari A, Zeebaree S, Jacksi K, 
Selamat A. ELMS–DPU ontology 
visualization with Protégé VOWL and Web 
VOWL, Journal of Advanced Research in 
Dynamic and Control Systems. 
2019;11:478-85. 

35. Zeebaree A, Adel A, Jacksi K, Selamat A. 
Designing an ontology of E-learning 
system for duhok polytechnic university 
using protégé OWL tool, J Adv Res Dyn 
Control Syst. 2019;11:24-37. 

36. Han S, Jang S, Lee H, Pack S. Switch-
centric byzantine fault tolerance 
mechanism in distributed software defined 
networks, IEEE Communications Letters. 
2020;24:2236-2239. 

37. Adel AZ, Zebari S, Jacksi K. Football 
ontology construction using oriented 
programming, Journal of Applied Science 
and Technology Trends. 2020;1:24-30. 

38. Selamat SAAZA. Electronic learning 
management system based on                   



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
31 

 

semantic web technology: A Review,                  
Int. J. Adv. Electron. Comput. Sci. 2017; 
4:1-6.  

39. Abdullah RM, Abdulazeez AM, Al-Zebari A. 
Machine learning algorithm of intrusion 
detection system, Asian Journal of 
Research in Computer Science. 2021;1-
12. 

40. Shukur H, Zeebaree SR, Ahmed AJ, 
Zebari RR, Ahmed O, Tahir BSA, et al. A 
state of art survey for concurrent 
computation and clustering of parallel 
computing for distributed systems, Journal 
of Applied Science and Technology 
Trends. 2020;1:148-154. 

41. Tahir B, Ali Saktioto J, Fadhali M, Rahman 
R, Ahmed A. A study of FBG sensor and 
electrical strain gauge for strain 
measurements, Journal of Optoelectronics 
and Advanced Materials. 2008;10:2564-
2568. 

42. Harki N, Ahmed A, Haji L. CPU scheduling 
techniques: A review on novel approaches 
strategy and performance assessment, 
Journal of Applied Science and 
Technology Trends. 2020;1:48-55. 

43. Ahmed A, Ahmed O. Correlation pattern 
among morphological and biochemical 
traits in relation to tillering capacity in 
sugarcane (Saccharum Spp), Acad J Plant 
Sci. 2012;5:119-122.  

44. Ahmed AJ, Mohammed FH, Majedkan NA. 
An evaluation study of an e-learning 
course at the Duhok Polytechnic 
University: A Case Study, Journal of Cases 
on Information Technology (JCIT). 
2022;24:1-11. 

45. Ahmed O, Geraldes R, Ahmed A, DeLuca 
G, Palace J. Multiple sclerosis and the risk 
of venous thrombosis: A systematic 
review, in Multiple Sclerosis Journal. 
2017;757-758. 

46. Salim NO, Abdulazeez AM. Human 
diseases detection based on machine 
learning algorithms: A review, International 
Journal of Science and Business. 2021; 
5:102-113.  

47. Sallow AB, Sadeeq M, Zebari RR, 
Abdulrazzaq MB, Mahmood MR, Shukur 
HM, et al. An investigation for mobile 
malware behavioral and detection 
techniques based on android platform, 
IOSR Journal of Computer Engineering 
(IOSR-JCE). 2020;22:14-20. 

48. Salim NO, Zeebaree SR, Sadeeq MA, 
Radie A, Shukur HM, Rashid ZN. Study for 
food recognition system using deep 

learning, in Journal of Physics: Conference 
Series. 2021;012014. 

49. Dino H, Abdulrazzaq MB, Zeebaree S, 
Sallow AB, Zebari RR, Shukur HM, et al. 
Facial expression recognition based on 
hybrid feature extraction techniques with 
different classifiers, TEST Engineering & 
Management. 2020;83:22319-22329. 

50. Salim NO, Abdulazeez AM. Science and 
Business, International Journal. 5:102-113. 

51. Zeebaree S, Zebari RR, Jacksi K. 
Performance analysis of IIS10. 0 and 
Apache2 Cluster-based Web Servers 
under SYN DDoS Attack, TEST 
Engineering & Management. 
2020;83:5854-5863. 

52. Eesa AS, Sadiq S, HASSAN M, Orman Z. 
Rule generation based on modified 
cuttlefish algorithm for intrusion                  
detection system, Uludağ University 
Journal of The Faculty of Engineering. 
2021;26:253-268. 

53. Khalili M, Zhang X, Cao Y, Polycarpou 
MM, Parisini T. Distributed fault-tolerant 
control of multiagent systems: An adaptive 
learning approach, IEEE Transactions on 
Neural Networks and Learning Systems. 
2019;31:420-432. 

54. Jader OH, Zeebaree S, Zebari RR. A state 
of art survey for web server performance 
measurement and load balancing 
mechanisms, International Journal of 
Scientific & Technology Research. 
2019;8:535-543. 

55. Eesa AS. Optimization algorithms for 
intrusion detection system: A review, 
International Journal of Research-
Granthaalayah. 2020;8:217-225. 

56. Zeebaree S, Zebari RR, Jacksi K, Hasan 
DA. Security approaches for integrated 
enterprise systems performance: A 
Review, Int. J. Sci. Technol. Res. 2019;8. 

57. Hussain Z, Cui X, Znati T, Melhem R. 
Color: Co-located rescuers for fault 
tolerance in hpc systems, in 2018 IEEE 
24th International Conference on Parallel 
and Distributed Systems (ICPADS). 
2018;569-576. 

58. Sari A, Akkaya M. Fault tolerance 
mechanisms in distributed systems, 
International Journal of Communications, 
Network and System Sciences. 
2015;8:471. 

59. Haji SH, Zeebaree SR, Saeed RH, Ameen 
SY, Shukur HM, Omar N, et al. 
Comparison of software defined 
networking with traditional networking, 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
32 

 

Asian Journal of Research in Computer 
Science. 2021;1-18. 

60. Knasmüller B, Hochreiner C, Schulte S. 
Pathfinder: Fault tolerance for stream 
processing systems, in 2019 IEEE Fifth 
International Conference on Big Data 
Computing Service and Applications 
(BigDataService). 2019;29-39. 

61. Ibrahim BR, Zeebaree SR, Hussan BK. 
Performance measurement for distributed 
systems using 2TA and 3TA based on 
OPNET Principles, Science Journal of 
University of Zakho. 2019;7:65-69. 

62. Zebari S, Yaseen NO. Effects of parallel 
processing implementation on balanced 
load-division depending on distributed 
memory systems, J. Univ. Anbar Pure Sci. 
2011;5:50-56. 

63. Li Y, Tan C. A survey of the consensus for 
multi-agent systems, Systems Science & 
Control Engineering. 2019;7:468-482. 

64. Zeebaree SR, Sallow AB, Hussan BK, Ali 
SM. Design and simulation of high-speed 
parallel/sequential simplified DES code 
breaking based on FPGA, in 2019 
International Conference on Advanced 
Science and Engineering (ICOASE). 
2019;76-81. 

65. Malallah H, Zeebaree SR, Zebari RR, 
Sadeeq MA, Ageed ZS, Ibrahim IM, et al. 
A comprehensive study of kernel (issues 
and concepts) in different operating 
systems, Asian Journal of Research in 
Computer Science. 2021;16-31. 

66. Vladimirova T, Fayyaz M. Fault-tolerant 
distributed attitude and orbit control system 
for space applications, in 2018 NASA/ESA 
Conference on Adaptive Hardware and 
Systems (AHS). 2018;43-50. 

67. Zebari DA, Haron H, Zeebaree SR, 
Zeebaree DQ. Multi-Level of DNA 
encryption technique based on DNA 
arithmetic and biological operations, in 
2018 International Conference on 
Advanced Science and Engineering 
(ICOASE). 2018;312-317. 

68. Yasin HM, Zeebaree SR, Sadeeq MA, 
Ameen SY, Ibrahim IM, Zebari RR, et al. 
IoT and ICT based smart water 
management, monitoring and controlling 
system: A review, Asian Journal of 
Research in Computer Science. 2021;42-
56. 

69. Ibrahim IM. Task scheduling algorithms in 
cloud computing: A review, Turkish Journal 
of Computer and Mathematics Education 
(TURCOMAT). 2021;12:1041-1053. 

70. Zebari IM, Zeebaree SR, Yasin HM. Real 
time video streaming from multi-source 
using client-server for video distribution, in 
2019 4th Scientific International 
Conference Najaf (SICN). 2019;109-114. 

71. Yasin HM, Zeebaree SR, Zebari IM. 
Arduino based automatic irrigation system: 
Monitoring and SMS controlling, in 2019 
4th Scientific International Conference 
Najaf (SICN). 2019;109-114. 

72. Ibrahim BR, Khalifa FM, Zeebaree SR, 
Othman NA, Alkhayyat A, Zebari RR, et al. 
Embedded system for eye blink detection 
using machine learning technique, in 2021 
1st Babylon International Conference on 
Information Technology and Science 
(BICITS). 2021;58-62. 

73. Hasan DA, Zeebaree SR, Sadeeq MA, 
Shukur HM, Zebari RR, Alkhayyat AH. 
Machine learning-based diabetic 
retinopathy early detection and 
classification systems-a survey, in 2021 
1st Babylon International Conference on 
Information Technology and Science 
(BICITS). 2021;16-21. 

74. Zeebaree S, Yasin HM. Arduino based 
remote controlling for home: Power saving, 
security and protection, International 
Journal of Scientific & Engineering 
Research. 2014;5:266-272. 

75. Jijo BT, Zeebaree SR, Zebari RR, Sadeeq 
MA, Sallow AB, Mohsin S, et al. A 
comprehensive survey of 5G mm-wave 
technology design challenges, Asian 
Journal of Research in Computer Science. 
2021;1-20. 

76. Kareem FQ, Zeebaree SR, Dino HI, 
Sadeeq MA, Rashid ZN, Hasan DA, et al. 
A survey of optical fiber communications: 
Challenges and processing time 
influences, Asian Journal of Research in 
Computer Science. 2021;48-58. 

77. Zeebaree S, Zebari I. Multilevel 
client/server peer-to-peer video 
broadcasting system, International Journal 
of Scientific & Engineering Research. 
2014;5:260-265. 

78. Boem F, Gallo AJ, Raimondo DM, Parisini 
T. Distributed fault-tolerant control of large-
scale systems: An active fault diagnosis 
approach, IEEE Transactions on Control of 
Network Systems. 2019;7:288-301. 

79. Ledmi A, Bendjenna H, Hemam SM. Fault 
tolerance in distributed systems: A survey, 
in 2018 3rd International Conference on 
Pattern Analysis and Intelligent Systems 
(PAIS). 2018;1-5. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
33 

 

80. Bravo M, Rodrigues L, Neiheiser R, Rech 
L. Policy-based adaptation of a byzantine 
fault tolerant distributed graph database, in 
2018 IEEE 37th Symposium on                   
Reliable Distributed Systems (SRDS). 
2018;61-71. 

81. Abdullah SMSA, Ameen SYA, Sadeeq MA, 
Zeebaree S. Multimodal emotion 
recognition using deep learning, Journal of 
Applied Science and Technology Trends. 
2021;2:52-58. 

82. Sadeeq MA, Zeebaree S. Energy 
management for internet of things via 
distributed systems, Journal of Applied 
Science and Technology Trends. 
2021;2:59-71. 

83. Arafa Y, Barai A, Zheng M, Badawy AHA. 
Fault tolerance performance evaluation of 
large-scale distributed storage systems 
HDFS and Ceph case study, in 2018 IEEE 
High Performance extreme Computing 
Conference (HPEC). 2018;1-7. 

84. Omer MA, Zeebaree SR, Sadeeq MA, 
Salim BW, Mohsin SX, Rashid ZN, et al. 
Efficiency of malware detection in android 
system: A survey, Asian Journal of 
Research in Computer Science. 2021;59-
69. 

85. Maulud DH, Zeebaree SR, Jacksi K, 
Sadeeq MAM, Sharif KH. State of art for 
semantic analysis of natural language 
processing, Qubahan Academic Journal. 
2021;1:21-28. 

86. Sadeeq MM, Abdulkareem NM, Zeebaree 
SR, Ahmed DM, Sami AS, Zebari RR. IoT 
and Cloud computing issues, challenges 
and opportunities: A review, Qubahan 
Academic Journal. 2021;1:1-7. 

87. Hasan DA, Hussan BK, Zeebaree SR, 
Ahmed DM, Kareem OS, Sadeeq MA. The 
impact of test case generation methods on 
the software performance: A review, 
International Journal of Science and 
Business. 2021;5:33-44. 

88. Jacksi K, Ibrahim RK, Zeebaree SR, 
Zebari RR, Sadeeq MA. Clustering 
documents based on semantic similarity 
using HAC and K-mean algorithms, in 
2020 International Conference on 
Advanced Science and Engineering 
(ICOASE). 2020;205-210. 

89. Sadeeq MA, Abdulazeez AM. Neural 
networks architectures design, and 
applications: A review, in 2020 
International Conference on Advanced 
Science and Engineering (ICOASE). 
2020;199-204. 

90. Ageed ZS, Ibrahim RK, Sadeeq M. Unified 
ontology implementation of cloud 
computing for distributed systems, Current 
Journal of Applied Science and 
Technology. 2020;82-97. 

91. Fochi V, Caimi LL, da Silva MH,                    
Moraes FG. Fault-tolerance at the 
management level in many-core systems, 
in 2018 31st Symposium on Integrated 
Circuits and Systems Design (SBCCI). 
2018;1-6. 

92. Yusuf SI, Junaidu SB. Parallel and 
distributed intra query transient fault 
tolerance model via parity checking, in 
2018 14th International Conference on 
Electronics Computer and Computation 
(ICECCO). 2018;206-212. 

93. Deng C, Che WW, Shi P. Cooperative 
fault-tolerant output regulation for 
multiagent systems by distributed                    
learning control approach, IEEE 
Transactions on Neural Networks                      
and Learning Systems. 2019;31:4831-
4841. 

94. Ghosh P, Eisele S, Dubey A,                       
Metelko M, Madari I, Volgyesi P, et al. On 
the Design of fault-tolerance in a 
decentralized software platform for                   
power systems, in 2019 IEEE 22nd 
International Symposium on Real-Time 
Distributed Computing (ISORC). 2019;52-
60. 

95. Loutskii H, Volokyta A, Rehida P, 
Honcharenko O, Ivanishchev B, Kaplunov 
A. Increasing the fault tolerance of 
distributed systems for the Hyper de Bruijn 
topology with excess code, in 2019 IEEE 
International Conference on Advanced 
Trends in Information Theory (ATIT). 
2019;1-6. 

96. Mahjoubi A, Zeynalpour O, Eslami B, 
Yazdani N. LBFT: Load Balancing and 
Fault Tolerance in distributed controllers, in 
2019 International Symposium on 
Networks, Computers and 
Communications (ISNCC). 2019;1-6. 

97. Pareek S, Sharma N. Fault tolerance in 
distributed database management 
systems-improving reliability with RAID, in 
2019 Innovations in Power and Advanced 
Computing Technologies (i-PACT). 2019; 
1-5. 

98. Shi J. Cooperative Fault-tolerant formation 
control for nonlinear multi-agent systems 
with actuator faults, in 2019 Chinese 
Control Conference (CCC). 2019;4890-
4895. 



 
 
 
 

Hussein et al.; AJRCOS, 11(4): 19-34, 2021; Article no.AJRCOS.73754 
 

 

 
34 

 

99. Zhang P, Xue, H Gao S. Fault-                    
tolerant control for multi-agent with 
actuator fault, in 2020 39th Chinese 
Control Conference (CCC). 2020;4255-
4260. 

100. Perez I, Goodloe A, Edmonson W. Fault-
tolerant swarms, in 2019 IEEE 
International Conference on Space Mission 
Challenges for Information Technology 
(SMC-IT). 2019;47-54. 

_________________________________________________________________________________ 
© 2021 Hussein et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle4.com/review-history/73754 

http://creativecommons.org/licenses/by/4.0

