
*Corresponding author: E-mail: gulistan.ismael@dpu.edu.krd;

Asian Journal of Research in Computer Science

11(4): 35-51, 2021; Article no.AJRCOS.73758
ISSN: 2581-8260

Scheduling Algorithms Implementation for Real
Time Operating Systems: A Review

Gulistan Ahmead Ismael1*, Azar Abid Salih1, Adel AL-Zebari1, Naaman Omar1,
Karwan Jameel Merceedi1, Abdulraheem Jamil Ahmed1, Nareen O. M. Salim1,

Sheren Sadiq Hasan1, Shakir Fattah Kak1, Ibrahim Mahmood Ibrahim1
and Hajar Maseeh Yasin1

1Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v11i430269
Editor(s):

(1) Prof. M. A. Jayaram, Siddaganga Institute of Technology, India.
Reviewers:

(1) Neelesh Jain, Sagar Institute of Research & Technology, India.
(2) R. Jemima Priyadarsini, Bishop Heber College, India.

Complete Peer review History: https://www.sdiarticle4.com/review-history/73758

Received 01 June 2021
Accepted 11 September 2021
Published 11 September 2021

ABSTRACT

The term "Real-Time Operating System (RTOS)" refers to systems wherein the time component is
critical. For example, one or more of a computer's peripheral devices send a signal, and the
computer must respond appropriately within a specified period of time. Examples include: the
monitoring system in a hospital care unit, the autopilot in the aircraft, and the safety control system
in the nuclear reactor. Scheduling is a method that ensures that jobs are performed at certain
times. In the real-time systems, accuracy does not only rely on the outcomes of calculation, and
also on the time it takes to provide the results. It must be completed within the specified time frame.
The scheduling strategy is crucial in any real-time system, which is required to prevent overlapping
execution in the system. The paper review classifies several previews works on many
characteristics. Also, strategies utilized for scheduling in real time are examined and their features
compared.

Keywords: Operating system OS; RTOS; real time; scheduling algorism.

Review Article

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

36

1. INTRODUCTION

Real-Time Operating System (RTOS) is crucial
for mechanical and electrical systems that need
real-time operation, since these systems would
be unable to run properly without it [1]. A missed
deadline may have severe repercussions in
many real-time systems [2]. A number of
industrial systems use the RTOS, including
process control, avionics, and nuclear power
plants [3]. Embedded software is used in the
majority of actual operating systems, which are
composed of hardware components that act as
controllers for specific operations inside
mechanical or electrical systems [4, 5]. The
integrity of the results in Real - time data
Systems is dependent on both the analytical
conclusion of the computations and the time
instant at which the conclusion is created [6, 7]. If
at least one job in the system has defined timing
restrictions, i.e., action must be done within a
specified time period, a real time system is the
name given to the system [8]. Meeting a deadline
is the primary requirement of any real-time
system, and term "deadline" refers to the point in
time at which an action must be done. otherwise,
the RTS is said to have failed [9]. Three distinct
forms of Real Time-Systems exist: There are
three types of real-time systems: hard, firm, and
soft [10]. Hard Real Time System: If a deadline is
missed, the whole company would collapse;
some of the deadlines are vital for safety, a good
example of this is an anti-missile system [11].
System in Soft Real Time The software does not
fail if a deadline is missed; but the usefulness of
the output decreases with time. Performance of
the system will deteriorate. Every interactive
application is an illustration of a soft real time
system [12]. Firm Real Time System (RTS): this
is a system that is almost identical to soft RTS.
RTOS has been used in a broad variety of
embedded devices for years in automation and
computer science [13]. Such systems have been
created to help regulate embedded algorithms on
military equipment, systems and software for
large switching systems [14]. The use of RTOS is
generally performed on hard real-time systems
[15, 16]. The RTOS has expanded dramatically
in recent decades [17]. Applications of these
systems are considered robust and always a
designer challenge. These systems have to
ensure that time constraints are met while
executing complex activities [18]. A ROS is the
sort of operating system intended to operate in
real time. To manage programs capable of
managing data collected without buffering,

resulting in delays [19]. The technique for
processing the time is measured in time
increments that allow information to be shared
[20, 21]. Time for processes the priority and
coordination duties of event-based systems are
changed. Interrupts when schedule systems
switch jobs [22]. A number of commercial and
non-commercial solutions are available [23].
Embedded systems operating systems for the
globe today. Each one has its unique set of
features, abilities and advantages. However, they
all offer virtually the same service, in addition to
downsides in general. The user should have the
same ability in basic operations [24, 25].

The remainder of the essay is organized as
follows: In the Section2, the background theory,
in the Section 3 the related work of this survey is
analyzed. In section 4 discussion, and finally
the conclusion of this work presented in Section
5.

2. BACKGROUND AND THEORY

2.1 Concepts of Scheduling Algorithms

A RTO (Real Time Operating System) is an OS
meant to serve in real time applications, often
without buffer delays, which process data as it
enters [26]. Time requirements for processing
(including OS delays) are measured in 10
seconds or shorter increments [27]. A time-
based, clearly defined, set timescales system are
a reliable system [28]. Processing within the
stated restrictions must be carried out or the
system fails. Either you have an event or you
share time [29]. Systems driven by events switch
between activities on the basis of priority,
whereas systems based on clock interruptions
switches time-sharing systems. Most RTOSs
utilize a preventive approach for scheduling [30,
31].

Software applications running on real-time
operating systems offer important time
requirements for real-time systems [32, 33].
These software tasks must be organized in
accordance with software and hardware events.
In real-time operating systems certain services
for control of software tasks (priority-based pre-
emption etc.) exist [34]. However, there is a need
to plan algorithms in real-time systems in specific
scenarios [35]. This is particularly necessary
when time-critical software tasks need to be
carried out throughout multiple working times and
a certain schedule [36]. To fulfil the system

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

37

requirements, different scheduling methods can
be used [37]. For time critical jobs, the flight
software running on the operating system in real
time, particularly on satellite systems [38].

Embedded real-time systems are expanding
progressively in order to run high-performance,
multi-core architectural applications [39]. Efficient
task plan models in these systems are extremely
important to ensure that most of the jobs may be
planned within their deadline to deliver the
desired performance [40].

In the next Internet era, it is greatly wanted to
reduce energy consumption of integrated
computers [41]. One of the most efficient ways
for both dynamic and static processor energy
usage is Minimum Energy Point Tracking [42]. In
the past several years, earlier studies suggested
a number of MEPT techniques. Although edge
computing applications generally demand low
energy tasks with real-time guarantees. The
problem is the time complexity in which to
recognize MEPs and change voltages, which
frequently prohibits the planning of tasks in real
time [43].

Robot Operating System (ROS) supports
insulating defects, quicker development and
modularity, and the core reusability, thereby
providing a broad and de facto standard for
independent driving systems [44]. The GPUs
also allow high-performance computation and
are thus utilized for autonomous driving [45]. As
real time processing requirements rise,
techniques are being developed for meeting the
real-time limit for ROS and GPUs [46, 47].
Regrettably, algorithms are not under
investigation, which describe the ROS transport
(publish/subscribe) model that may be restricted
in execution, resulting to time waiting and a
reduction of the reaction of the system as a
whole [48]. In addition, ROS GPU workloads are
also influenced by the ROS transport model
since the time is taken to set up the central
processing unit (CPU) [49].

Effective time operating systems (RTOS) should
encourage the protocols of resource access to
limit the maximum delay of priority inversions.
Such protocols must be implemented lightly
since their performance impacts planning [50,
51].

An essential challenge in soft re-timing system
designs is the handling of algorithms that handle
a large number of comparable data in a dynamic

yet definite fashion utilizing a large number of
tiny and diverse sizes of memory allocation/de-
allocation [52, 53].

Real time systems are systems that rely on two
elements. The first is the logical outcome of
computing and the second is the moment when
the results are produced [54, 55]. A process to
finish its execution takes a certain period and the
system will fail if the time is over for the process.
Two real-time planning approaches exist: (1)
dynamic static (2). The priorities remain the
same for a job in the static algorithm
and priorities are set at conception, with
dynamic priority being assigned in due course
[56].

The Realtime systems are in which the accuracy
of the output depends not only on the logical
conclusions of the calculations, but on the time of
the output [57]. This indicates that the results
must be generated within the specified time
period [58]. The time limit for the system to reply
is termed the time limit. Deadline fulfilment in any
real-time system is an essential characteristic
[59]. The ETS enables to complete applications
in real time to fulfil their deadline utilizing the
scheduling mechanism [60]. The planning
approach is the core of any real-time system that
makes decisions regarding the execution of tasks
on the system in order to prevent overlap of any
sort [61].

A major feature of the RTOS is the level of
coherence about its length of time required for an
application to be accepted and completed, the
variability of which called 'jitter.' A 'hard' real-time
OS (Hard RTOS) is less jittered than a 'soft' real-
time OS (Soft RTOS) [62]. The late answer in a
hard RTOS is incorrect, but a late response in a
soft RTOS is okay [63]. The main objective for
design is a soft or hard performance category
rather than a high output [64]. An RTOS that
typically or generally meet a time limit is a Soft
Real-time OS, while it is a Difficult Real-time OS
if it meets a time limit deterministically [65]. An
RTOS has a sophisticated programming
algorithm [66]. Scheduler flexibility allows the
orchestration of process priorities by a larger,
computer system, although a real-time OS is
more often used to address a small number of
applications [67]. Key elements in a real-time OS
are minimum interrupt latency and minimum
thread latency; with a real-time OS, it's more
appreciated how quickly or reliably it reacts than
how much work it can do in a particular time
period [68].

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

38

2.2 Components of RTOS

A real-time operating system (RTOS), which
controls system resources in a timely fashion and
provides consistent foundation for the production
of application code, is described as a program
[69]. The RTOS must thus provide the temporal
planning of processes, hardware control and
access to RTOS resources. The RTOS kernel is
accessed through an interface known as the
System Call API [70]. This is a set of RTOS
services functions [71]. Atomic processing must
be performed, which implies the CPU cannot be
paused while the kernel resources are changed.
Implementation of a system call API function
might be blocked or blocked [72]. The process
does not halt a non-blocking system call, but a
blocking call suspends the system until a
requirement has been met. When a process
requires Kernel services, it configures system
call parameters and either conducts a
particular trap command or sets a kernel event to
force context into kernel space [68]. The kernel
then checks the reasons for the caller process,
carries out the requested action, and
returns control and operational outcome to the
user space process [73]. The following is a list of
the major components of real-time operating
system

 The Scheduler: This RTOS component
specifies the sequence in which tasks may
be done, which is often determined by their
priority [74].

 Symmetric Multiprocessing (SMP): is a
collection of the numerous distinct jobs that
the RTOS may manage in order to do
parallel processing [75].

 Function Library: It is a critical component
of RTOS since it serves as an interface
between the kernel and application code.
This application allows you to communicate
with the Kernel through a function library,
guaranteeing that the application produces
the required results [76].

 Memory Management: This component is
essential to ensure that the system
allocates memory to each program, which
is the RTOS's most crucial function [77].

 Fast dispatch latency: It is the average
time between a completion of the OS-
identified job and the beginning of
processing by the thread in the ready
queue [78].

 User-defined data objects and classes:
RTOS Systems make use of operating
systems such as Windows or C++, which
must be organized according to the
purpose for which they are designed [79].

Fig. 1. The components of real time operating system

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

39

2.3 Propertise of Real Time Operating
System

The time it takes the OS to receive and execute
an application request is the unpredictability of
an actual operating system jitter [80]. Hard RTOS
systems have little jitter, while soft RTOS
systems are quite jittery. There are a few
important OS features to consider when it comes
to data processing speed and jitter [81]:

 Reliability and stability: the operating
system is unlikely to break or crash.

 Scalability: this is the operating system's
ability, if more features are introduced, to
increase its performance [82].

 Availability: This is an opportunity for the
OS to actively process its request and not
crash when requested.

 Usability: this is the phase of the
development of an operating system.

 Security: This phase is not subject to an
external attack by the operating system.

2.4 Scheduling Algorithms

Scheduling refers to the process of allocating
available CPU resources to processes (s) [83].
This is a critical notion in the conception of
multitasking, multiprocessing, and the real time
operating systems [84]. Scheduler and
dispatcher are used to do this. It is a decision-
making process that involves allocating similar
resources across several activities and time
periods in order to accomplish many goals [85].
In a homogeneous/heterogeneous organization,
resources and tasks may take on a variety of
shapes. The jobs have been prioritized; each
assignment is assigned a due date and an early
completion date [86]. In real-time systems, the
most crucial parameter is the deadline, which is
defined as the time where the results should be
supplied. As seen below, there are three unique
types of timeline [85, 87].

 Soft Deadline: is that if findings are still
valuable after the deadline has past, this is
referred to as a soft deadline. This
subcategory includes reservation systems.

 Firm deadline: This timeline is one that has
no usefulness if it is missed. It is OK to
miss a few deadlines on sometimes. These
deadlines are often employed in systems
that execute critical activities [88].

 Hard deadline: If a disaster occurs as a
consequence of failing to meet the

deadline, this is referred to be a hard
deadline. This category includes systems
that conduct mission-critical tasks such as
air traffic control [89].

2.5 Scheduling Criteria

For CPU scheduling algorithms, several criteria
have been presented; the characteristics used
for comparison can make a considerable
difference in selecting which technique is
considered the most effective. Some of the
requirements are below [90, 91]:

 CPU Usage: most of the time, the CPU
would use the CPU the most instead of
wasting every cycle of the CPU (Ideally I00
percent of the time). Because of a true
system, CPU utilization should range
between 40% (without charge) and 90%
(heavily loaded).

 Performance: this indicates the whole
number of processes per unit or the
complete amount of labor per unit. This
may range from l0/second to 1/hour
depending on the particular processes
[92].

 Time to turn: the needed amount of time
for a certain procedure, i.e. the gap
between the time of presentation and
completion of the process [93].

 Waiting time: total of waiting time for a
ready queue process waiting to be
checked by the CPU.

 Load Average: the average number of
processes waiting for CPU access [94].

3. RELATED Work

The following paragraphs summarize the work of
different researchers in the topic of real-time
processor scheduler from 2018 to 2020.

Teraiya and Shah [95], recommended that the
LST and SJF be implemented in a real-time
operating system that is not strictly real-time.
Some algorithms were tested on a periodic work
set, and the following results were achieved.
They measured Success Ratio and Effective
CPU Utilization under the identical settings and
compared both algorithms. It is worth noting that
the LST method works well under load but fails
miserably under load. SJF is incapable of
scheduling particular tasks even when the
system is under stress, yet it functions well when
the system is overloaded. On a large dataset,

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

40

practical tests were undertaken. Each task set
has between one and nine operations. The data
set comprises 7500 task sets. Each process set
uses between 0.5 and 5 percent of the CPU. It
was validated against a 500-time unit to ensure
that both algorithms were accurate.

Capodieci et al. [96], showcased the
development of a sample real-time scheduler for
GPU functions on an embedded System on a
Chip (SoC) based on NVIDIA's cutting-edge
Architectures used in self-driving cars. The
scheduling acts as a software segmentation layer
on top of the NVIDIA hypervisor, taking use of
current-generation architectural features like as
pixel-level and thread-level preemption. We were
able to construct and test a GPU activity
scheduler that uses the Earliest Deadline First
(EDF) method. That provided Using a Constant
Bandwidth Server, you may isolate your
bandwidth. Using such an architecture (CBS).
Our research focused on alternative
programming paradigms for APIs computing,
which enabled to describe CPU and GPU
submittal of a request with more detailed
scheduling data. A full experimental
characterization is offered to demonstrate the
considerable increase in scheduling of recurrent
real time GPU operations.

Yang et al. [97], a hierarchy scheduling approach
for DAG jobs with bounded deadlines was
presented. Hierarchical scheduling separates the
scheduling of computing resources from the
scheduling of workloads, resulting in a
significantly more effective resource sharing
solution without regard for task kinds. We
demonstrate the feasibility of our suggested
hierarchical scheduling on a practical platform
with an acceptable runtime overhead.
Additionally, we conduct extensive tests to
determine the schedule ability of our hierarchical
scheduling system, and the findings indicate that
our suggested technique performs admirably.

Cao and Bian [98], using a homogeneous
multicore CPU, we suggested a DAG job
scheduling technique. This is a refinement of the
stretching method. The original method is
enhanced by adding the ability to pick subtasks
for conversion and by improving the computation
of release time and deadline. This method has a
substantially greater success rate than the
original approach in terms of scheduling.
Nevertheless, owing to the segmentation of
tasks, a high number of task migrations and
context switches occur throughout task

scheduling, adding significant overhead and
reducing task execution performance. The
algorithm's next areas of optimization will aim to
minimize task transfer and context switching.

Nasri et al. [99],The purpose of this study was to
demonstrate how the Non-preemptive
rescheduling may be made more useful by using
a first-in-first-out (FIFO) scheduling strategy
combined with a unique reduction tuning
process. This methodology allows the FIFO to
recreate a given viable scheduler, such as the
one used by CW-EDF, resulting in a high degree
of schedule ability and relatively modest runtime
overheads. Memory overheads are also kept to a
minimum by using a modest number of offsets
per process. The runtime overhead, memory
usage, and schedule ability ratio of the approach
are all examined using a preliminary result on an
Arduino Uno board.

Abeni et al. [100], proposed a new hierarchical
scheduler for Linux that is optimized for
container-based virtualization and can be utilized
with LXC container that have multiple virtual
CPUs. The provided scheduler is constructed by
changing the real-time control group’s
mechanism in such a way that the SCHED
DEADLINE policy is utilized to schedule each
group's real-time run queues. Experiments
demonstrate that a real-time application
scheduled inside an LXC container using the
new scheduler operates in the manner expected
by previous theoretical CSF analysis. Our control
groups scheduler proved to be simpler to setup
and produced superior outcomes, while also
having the ability to use less real-time
computing capacity inside the system, so
reducing runs.

Baital and Chakrabarti [101], proposed an
improved scheduling algorithm in which random
tasks with varying periodicity and execution time
are generated at different time intervals. Energy
consumption is a critical design consideration in
real-time systems, particularly battery-powered
systems. We extended our scheduling work to
heterogeneous multicore systems (HMS)
architectures, in which real-time tasks are
distributed to the appropriate cores while still
meeting the task deadline. They proved that the
heterogeneous multicore scheduler paradigm
may be utilized to create commercially
accessible heterogeneous multicore processors.
They validated the model using generated task
sets and discovered that our model performs
exceptionally well in all cases and significantly

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

41

reduces the system's energy consumption when
compared to some popular and novel scheduling
techniques.

Chen et al. [102], develop a lightweight real time
scheduling method that is based on job
duplication, RTSATD, with objective of lowering
both the time required to complete and the
financial expense associated with cloud-based
big-data workflow processing. RTSATD's
performance is assessed using simulated and
real-world processes. Testing findings indicate
that the suggested method beats two current
algorithms in terms of project length (by up to
28.73 %) and resource consumption (up to 46.31
percent).

Dauphin et al. [103], On parallel, heterogeneous,
Non-Uniform Memory Architecture (NUMA)
systems, a hybrid technique for scheduling and
memory management of periodical dataflow apps
was proven. The task ordering and memory
allocation for each Processing Element are
distributed and computed concurrently in Odyn.
Additionally, He provides a strategy for
preventing deadlocks induced by efforts to create
buffers in memory that are larger than the
available space. This method reduces the
requirement for backtracking, which is a feature
of dynamic scheduling algorithms. It is based on
static calculation of exclusion relations among
buffers in an application. They demonstrate
Odyn's efficacy on a test bench that simulates
the interactions of concurrent applications
generated randomly. Additionally, they
demonstrate their technique for avoiding
deadlocks through a variety of use cases.

Riasetiawan and Ashari [104], proposed a
schedule for the functioning of multiple landslide
sensors Separately, data processing is
transferred to an IoT device using FIFO and
Round Robin scheduling. Only the performance
of FIFO and Round Robin algorithms in
scheduling incoming processes in real time on an
IoT OS is discussed by the authors. Taking into
account the waiting time and response time. The
analysis is expected to result in a short response
time and waiting time, allowing for the selection
of an appropriate algorithm to complement the
IoT architecture for landslide detection. The FIFO
and Round Robin algorithms are implemented in
the Raspberry Pi 3 Model B IoT device via
Raspbian and Arches Ubuntu are two different
operating systems. A 64-bit 64-bit ARM Cortex-
A53 64-bit processor operating at 1.2GHz
powers the Raspberry Pi 3 Model B.

Chen et al. [105], The results reported here
establish the existence of Preemptive, fixed-
priority real time systems now have a new
scheduling side-channel (RTS). Systems that are
examples of this kind include automobile
systems, aviation system, electricity generation
plants and industrial control systems. Notably,
capturing this timing information is difficult
because to schedule runtime changes, the
system's incorporation of several interrelated
activities, and the normal limitations (e.g
deadline) inherent in the development of RTS.
Schedule-Leak methods reveal how to exploit
this side-channel successfully. On genuine
operating systems, a comprehensive
implementation is shown (in Real-time-Linux and
Free RTOS). Schedule Leak's facts about the
time period may considerably help other, more
sophisticated attackers in fulfilling their
objectives.

Malik et al. [106], suggested a novel For the
proper execution and administration of real-time
hard and soft activities in embedding IoT
devices, an adaptable and intelligent scheduling
mechanism is required. The reposed schedule
method prioritizes the performance of critical
real-time tasks with a high degree of priority
activities above the distribution of CPU resources
to potentially hungry, in overloaded instances,
soft real-time processes. This was accomplished
via the use of two astute deletions: Urgency
Measure (UM) and Failure Measure (FM). By
leveraging the available CPU unit for optimal
CPU usage and rapid reaction times, the
suggested methodology decreases the rate of
tasks missed and jobs starved. The findings
demonstrate that the suggested approach
outperforms the other techniques in terms of task
starvation rate reduction and CPU usage
increase.

Doan and Tanaka [107], suggested a novel way
of scheduling that is adaptable and intelligent for
the effective execution and administration of real-
time hard and soft tasks in embedded IoT
devices. The reposed scheduling method
prioritizes the execution of high-priority hard-real-
time activities preceding the distribution of CPU
resources to potentially hungry, in overloaded
instances, soft real-time processes. This was
accomplished via the use of two intelligent
erasures: Urgency-Measure (UM) and Failure-
Measure (FM). By leveraging the available CPU
unit for optimal CPU usage and rapid reaction
time, the suggested methodology decreases the
rate of tasks missed and jobs starved. The

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

42

findings demonstrate that the suggested
approach outperforms the other techniques in
terms of task starvation rate reduction and CPU
usage increase.

D'souza and Rajkumar [108], presented the
Cycle Tandem static frequency-scaling
methodology for co-optimization of the CPU and
hardware accelerators operating frequencies.
Consider different energy management situations
where the accelerator or CPU frequency may or
may not be configurable, and present the Cycle
Solo family of algorithms for such situations
based on practical considerations of real-world
platforms. Additionally, when multi-core
processors are utilized in combination with
hardware accelerators, partitioning solutions
should be investigated to lower operation
frequency. Experiments suggest that some
strategies may result in large energy savings.
Additionally, we offer a case study using the
NVIDIA TX2 embedded platform to demonstrate
the energy reductions that our suggested
solutions may achieve.

Nguyen et al. [109], suggested Real time
scheduling of Household Appliances' Quality
learning, a well-known value iterative
reinforcement learning methodology, is used to
calculate operational time (RSOTHA-QL). The
RSOTHA-QL procedure is a two-step procedure.
The first step involves Q learning agents
engaging with the smart home system with the
purpose of receiving a reward. Additionally, the
incentive value is used to arrange the operating
duration of home App in next step, ensure that
energy consumption is kept to a minimum. The
second phase addresses discontent caused by
the scheduling of the operating time of the home
user's domestic appliances by dividing them in to
Three categories: 1) deferrable, 2) non-
deferrable, and3) controlled. It is discovered that
the operating period of household appliances is
effectively planned in order to considerably
minimize energy usage and user discontent.

Khan et al. [110], demonstrated the efficacy of
our suggested DRL algorithm, for scheduling
energy harvesting times during UAV-assisted
,D2D communication. The terms of EE and
complexity, offered approaches outperform
benchmarks. The energy harvesting time
scheduling game may be resolving extremely
fast by exploiting the benefits of deep learning.
The findings indicate that the DRL method may
be a viable solution for a real time app, given the
energy storage constraints and the times

constraints associated with flying time-
constrained UAVs.

Chen et al. [111], has removed a significant
constraint associated with newly established
dependency graph approaches, namely just one
crucial section per task (DGA). Under terms of
computational complexity, shown that even in
extremely limited settings, the multiprocessor
synchronization issue is NP-complete. Suggest a
Provide the approximation ratio(s) for the
resulting computation time based on a
systematic proposed design based on the DGA
by leveraging current algorithms designed for job
shop scheduling. The results of the evaluation in
Section 6.2 show that the methodology is quite
effective for real-time task systems based on
frames.

Utkarsh et al. [112], a completely distributed
model-predictive and computational intelligence
program that enables micro grid devices to
function autonomously with little communication
exchange, hence eliminating the need for a
central controller. The proposed distributed
algorithm's convergence features are evaluated
and compared to those of a state-of-the-art
distributed algorithm, and numerical simulations
for various situations are conducted to
demonstrate that the proposed distributed
approach may be implemented to real-world
micro grids.

Lee et al. [113], It is advised that a real time
schedule study of transiently powered CPUs with
a NVMs be performed. To begin, quantitatively
analyze the energy harvester's charging and
discharging behaviors and extract the system's
compute capabilities in the time interval domain.
Then, using real time calculus, we establish
whether or not a particular multi-task workload
can be scheduled using the earliest possible
deadline first (EDF) or fixed-priority (FP)
scheduling rules. Furthermore, the work
examined how the threshold voltage parameter
selection influences schedulability and then
developed a practical threshold selection
technique to improve schedulable.
Comprehensive simulations are used to validate
the suggested technique's efficacy. In
comparison to the naïve selection approach, the
strategy consistently improves schedule ability
across a range of workloads.

El Ghor et al. [114], The challenge of real-time
scheduling of many processors at the systems
with an It was investigated if an energy reservoir

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

43

Table 1. Summary of literature review related to Scheduling Algorithms for Real Time Operating Systems

No. Ref.
and
Year

RTOS Type Operating
System

Significant Results Future Work Suggestions

1 [95]
2018

Soft RTOS Real time
operating system

Data Set Includes 7500 task sets. Each procedure is an individual job.
processor load

In the coming, we may suggest a new method that incorporates LST and
SJF. Load and demand will make it function well.

2 [96]
2018

Soft RTOS embedded
System

For quickly executing aperiodic jobs, we give them a null, or small,
deadline. This allows the aperiodic jobs to preempt already executing jobs.

In the near, we hope to introduce more complex reclamation techniques
for GPUs' excess bandwidth, which will make more flexible selections of
GPU task budgets possible.

3 [97]
2018

Hard
RTOS

A Hierarchical
Scheduling
Approach

Our hierarchical scheduling implementation was assessed and findings
showed it to be promising.

Future directions for this study abound. Let's first look into scheduling
many DAG jobs on several virtual platforms under various platforms.
Also, DAG task scheduling models with resource sharing is a worthwhile
consideration. Secondly, we want to use power scheduling techniques for
DAG.

4 [98]
2020

Hard
RTOS

Multi-core
Processors

This method's scheduling success rate is much higher than the original
approach.

Next up are tasks and context switching for the algorithm.

5 [99]
2018

Hard
RTOS

Arduino board With respect to code size, FIFO-OT scheduler footprints are likewise less
than OE's.

The aggregate minimum amount of offsets for all jobs and extended
systems with release jitter.

6 [100]
2019

Soft RTOS Linux Kernel Experimental findings reveal that real-time LXC-based scheduling
performed under the new scheduler behaved as expected by current CSF
analyses.

In the upcoming, we want to experiment with the suggested scheduler in
a multi-CPU container-based simultaneous real-time activity setting.

7 [101]
2019

Hard
RTOS

Multicore systems Our approach works very well in all instances, and greatly decreases
energy usage when compared to certain popular and novel schedules.

The additional feature will help implement dependent task sets.

8 [102]
2020

Hard
RTOS

Geo-Distributed
Clouds

The testing findings show that the suggested algorithm offers 28.73%
more completion time reduction and 46.31% greater resource usage than
the other alternatives.

Therefore, fault-tolerant huge data processing scheduling should be one
of the noteworthy approaches to pursue.

9 [103]
2019

RTOS Dataflow
Applications

Authors show the usefulness of Odyn on a test bench that replicates
random program interactions We illustrate the stalemate avoidance
strategy in several scenarios.

A suggests research project is to calculate the appropriate memory
assignments for PEs, depending on their performance requirements.

12 [106]

2019

Hard and
Soft Real
Time Hybrid

IoT Devices
Embedded

The study found that the suggested approach outperformed the other
techniques, considerably lowering task starvation and boosting CPU
usage.

One of the drawbacks of the suggested solution is that it requires time to
collect sufficient training data.

13 [107]

2018

Soft RTOS Real-time
embedded
systems.

The outcomes from our simulation demonstrate that our technique has
decreased time complexity while still maintaining schedulability, task
preemption, and task migration.

In addition, using a hardware accelerator may minimize the runtime
overhead of the method. This inquiry is in the realm of practice and
segmented near-optimal techniques.

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

44

No. Ref.
and
Year

RTOS Type Operating
System

Significant Results Future Work Suggestions

14 [108]

2018

Hard

RTOS

Cyber-physical
systems

Lastly, we implement the Cycle Solo and Cycle Tandem algorithms to full-
partitioned multi-core CPUs, where all CPU cores should be tuned to the
same rate.

Multi-core systems are where the rate of each processor core may be
separately adjusted in the next. Systems which feature numerous
accelerators may also be considered.

15 [109]

2020

Soft RTOS neural networks The findings show that the DRL method may be applicable for real-time
applications even if energy storage and flight duration are limited.

In the approach, we will handle more complex challenges by
simultaneously optimizing power allocation, trajectory planning, and
numerous UAV scenarios.

16 [110]

2018

Hard

RTOS

Smart Home
Appliances

The suggested scheduling technique improves on the LST based
scheduling when it comes to decreasing energy use and lowering
unhappiness for the house us.

Future research will use deep Q knowledge and artificial neural networks
to simulate a complex multiple-home user situation.

17 [111]

2020

Soft RTOS Multicore systems Using created task sets, the model was verified and shown to perform
brilliantly and dramatically lower energy usage in comparison to a few
popular and novel scheduling approaches.

Our next projects will be focused on validating the scheduling model,
ensuring it is fault tolerant and reliability conscious.

18 [112]

2018

Soft RTOS Network of Smart
Micro grids

in the simulation game, there are huge benefits to reactive power trading,
including dynamic price adjustments between micro grids.

Not mentioned

19 [113]

2020

Hard

RTOS

Wireless Sensor
Network

This article examines the schedulability of transiently supplied CPUs with
NVMs in real time. Quantified analysing the behaviour of the energy
harvester across time intervals permits real-time multi-task execution time
analysis using the RTC.

Additionally, minimizing the threshold voltage searching overhead without
approximation remains a future studies objective.

20 [114]
2018

Hard
RTOS

Ambient energy Our method delivers substantial performance improvement when
compared to EDF.

The next study will concentrate on an evaluation of the performance of
EH-RA comparison to EDF, which uses the bin-packing methodology.

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

45

could be recharged by an external source.. We
are particularly interested in energy-efficient
partitioning for periodic real-time applications on
a homogenous multi-core architecture, taking
into account both timing and energy needs.
Assume that the optimum scheduler is employed
on each core of the design, namely the Earliest
Deadline - Harvesting (ED-H). The purpose is to
provide realistic to achieve the intended absence
of both energy famine and deadline violation, a
segmentation method based on the real-time
execution of tasks given to sensor nodes utilizing
actual energy recovery data was developed. To
accomplish this, they presented an Energy
Harvesting Reasonable allocation (EH-RA)
method that is equivalent to the conventional bin-
packing methodology in terms of both temporal
limitations and energy awareness. Experimental
data indicate that our technique can significantly
outperform EDF in terms of performance.

4. DISCUSSION

Additionally, it is necessary to emphasize that in
some real-world applications, end-to-end time
limitations apply to calculations that span many
processing locations. We will present some of
the most prominent programming algorithms
used in programming for the CPU. They are not
all suited for usage in embedded systems in real-
time. Currently, non-preventative planning, round
timing and preemptive priority planning are the
most often used Algorithms in real RTOS. The
findings reveal that an overview of the linked
research is provided in the table below. The table
gives the reference name and the corresponding
year of the investigations (2018, 2019 and 2020),
the kind of RTOS system, the system used by
them and the results obtained from research and
recommendations or future study where these
are conducted.

5. CONCLUSION

Real-time operating system enables real-time
apps achieve their deadline through scheduling,
the scheduling approach is it the beating hearts
of every Real-Time System, which controls every
job execution to prevent overlap. Real-time
operating systems are fundamental to the
functioning of numerous technologies and
technologies that are crucial to our everyday
lives. Additionally, these systems have the
capacity to execute the software necessary and
to give temporal precision, which means that
they are able to assure that the termination of a
program or task execution is related to a time

interval or exact instant in time. This
characteristic is very important in many
applications where any delay in implementing the
program or any delay in the reaction time results
in adverse effects for the system, such as
automated control systems in industrial
equipment and different transportation modes. In
this review paper about real time operating
system a total of 20 papers we used in a related
works from years 2018 to 2020 based of the
findings the number of the papers about RTOS
increased from 2020. Most of the articles about
the hard RTOS type, and many of the related
work used in embedded systems.

DISCLAIMER

The products used for this research are
commonly and predominantly use products in our
area of research and country. There is absolutely
no conflict of interest between the authors and
producers of the products because we do not
intend to use these products as an avenue for
any litigation but for the advancement of
knowledge. Also, the research was not funded by
the producing company rather it was funded by
personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Sadeeq MA, Zeebaree S. Energy
management for internet of things via
distributed systems. Journal of Applied
Science and Technology Trends.
2021;2:59-71.

2. Hambarde P, Varma R, Jha S. The survey
of real time operating system: RTOS. 2014
International Conference on Electronic
Systems, Signal Processing and
Computing Technologies. 2014;34-39.

3. Abdullah RM, Ameen SY, Ahmed DM, Kak
SF, Yasin HM, Ibrahim IM, et al.
Paralinguistic Speech Processing: An
Overview. Asian Journal of Research in
Computer Science. 2021;34-46.

4. Ibrahim IM, Ameen SY, Yasin HM, Omar
N, Kak SF, Rashid ZN, et al. Web server
performance improvement using dynamic
load balancing techniques: A review. Asian
Journal of Research in Computer Science.
2021;47-62.

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

46

5. Omer MA, Zeebaree SR, Sadeeq MA,
Salim BW, Mohsin Sx, Rashid ZN, et al.
Efficiency of malware detection in android
system: A survey. Asian Journal of
Research in Computer Science. 2021;59-
69.

6. Donga J, Holia M. An analysis of
scheduling algorithms in real-time
operating system. International Conference
on Inventive Computation Technologies.
2019;374-381.

7. Maulud DH, Zeebaree SR, Jacksi K,
Sadeeq MAM, Sharif KH. State of art for
semantic analysis of natural language
processing. Qubahan Academic Journal.
2021;1:21-28.

8. Ahmed DM, Ameen SY, Omar N, Kak SF,
Rashid ZN, Yasin HM, et al. A state of art
for survey of combined iris and fingerprint
recognition systems. Asian Journal of
Research in Computer Science. 2021;18-
33.

9. Brucker P, Heitmann S, Hurink J, Nieberg
T. Job-shop scheduling with limited
capacity buffers. OR spectrum.
2006;28:151-176.

10. Ibrahim BR, Khalifa FM, Zeebaree SR,
Othman NA, Alkhayyat A, Zebari RR, et al.
Embedded system for eye blink detection
using machine learning technique. 2021
1st Babylon International Conference on
Information Technology and Science
(BICITS). 2021;58-62.

11. Maulud DH, Ameen SY, Omar N, Kak SF,
Rashid ZN, Yasin HM, et al. Review on
natural language processing based on
different techniques. Asian Journal of
Research in Computer Science. 2021;1-
17.

12. Salih AA, Ameen SY, Zeebaree SR,
Sadeeq MA, Kak SF, Omar N, et al. Deep
learning approaches for intrusion
detection. Asian Journal of Research in
Computer Science. 2021;50-64.

13. Hassan RJ, Zeebaree SR, Ameen SY, Kak
SF, Sadeeq MA, Ageed ZS, et al. State of
art survey for iot effects on smart city
technology: Challenges, opportunities, and
solutions. Asian Journal of Research in
Computer Science. 2021;32-48.

14. Zebari S, Yaseen NO. Effects of parallel
processing implementation on balanced
load-division depending on distributed
memory systems. J. Univ. Anbar Pure Sci.
2011;5:50-56.

15. Hasan DA, Zeebaree SR, Sadeeq MA,
Shukur HM, Zebari RR, Alkhayyat AH.

Machine learning-based diabetic
retinopathy early detection and
classification systems-A survey. 2021 1st
Babylon International Conference on
Information Technology and Science
(BICITS). 2021;16-21.

16. Sadeeq MM, Abdulkareem NM, Zeebaree
SR, Ahmed DM, Sami AS, Zebari RR. IoT
and Cloud computing issues, challenges
and opportunities: A review. Qubahan
Academic Journal. 2021;1:1-7.

17. Yahia HS, Zeebaree SR, Sadeeq MA,
Salim NO, Kak SF, Adel AZ, et al.
Comprehensive survey for cloud
computing based nature-inspired
algorithms optimization scheduling. Asian
Journal of Research in Computer Science.
2021;1-16.

18. Turci LdO. Real-time operating system
freertos application for fire alarm project in
reduced scale. International Journal of
Computing and Digital Systems.
2017;6:197-204.

19. Hasan DA, Hussan BK, Zeebaree SR,
Ahmed DM, Kareem OS, Sadeeq MA. The
impact of test case generation methods on
the software performance: A review.
International Journal of Science and
Business. 2021;5:33-44.

20. Ageed ZS, Zeebaree SR, Sadeeq MM,
Kak SF, Rashid ZN, Salih AA, et al. A
survey of data mining implementation in
smart city applications. Qubahan
Academic Journal. 2021;1:91-99.

21. Jacksi K, Ibrahim RK, Zeebaree SR,
Zebari RR, Sadeeq MA. Clustering
documents based on semantic similarity
using HAC and K-mean algorithms. 2020
International Conference on Advanced
Science and Engineering (ICOASE).
2020;205-210.

22. Ageed ZS, Zeebaree SR, Sadeeq MA,
Abdulrazzaq MB, Salim BW, Salih AA, et
al. A state of art survey for intelligent
energy monitoring systems," Asian Journal
of Research in Computer Science.
2021;46-61.

23. Jijo BT, Zeebaree SR, Zebari RR, Sadeeq
MA, Sallow AB, Mohsin S, et al. A
comprehensive survey of 5G mm-wave
technology design challenges. Asian
Journal of Research in Computer Science.
2021;1-20.

24. Arsinte R. Real time operating system
options in connected embedded equipment
for distributed data acquisition. Carpathian

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

47

Journal of Electronic and Computer
Engineering. 2018;11:35-58.

25. Sadeeq MA, Abdulazeez AM. Neural
networks architectures design, and
applications: A review. 2020 International
Conference on Advanced Science and
Engineering (ICOASE). 2020;199-204.

26. Ageed ZS, Ibrahim RK, Sadeeq M. Unified
ontology implementation of cloud
computing for distributed systems. Current
Journal of Applied Science and
Technology. 2020;82-97.

27. Zeebaree S, Ameen S, Sadeeq M. Social
media networks security threats, risks and
recommendation: A case study in the
kurdistan region. International Journal of
Innovation, Creativity and Change.
2020;13:349-365.

28. Sulaiman MA, Sadeeq M, Abdulraheem
AS, Abdulla AI. Analyzation study for
gamification examination fields. Technol.
Rep. Kansai Univ. 2020;62:2319-2328.

29. Sadeeq M, Abdulla AI, Abdulraheem AS,
Ageed ZS. Impact of electronic commerce
on enterprise business. Technol. Rep.
Kansai Univ. 2020;62:2365-2378.

30. Salih A, Zeebaree ST, Ameen S, Alkhyyat
A, Shukur HM. A survey on the role of
artificial intelligence, machine learning and
deep learning for cybersecurity attack
detection. 2021 7th International
Engineering Conference “Research &
Innovation amid Global Pandemic"(IEC).
2021;61-66.

31. Alzakholi O, Shukur H, Zebari R, Abas S,
Sadeeq M. Comparison among cloud
technologies and cloud performance.
Journal of Applied Science and
Technology Trends. 2020;1:40-47.

32. Abdullah DM, Ameen SY, Omar N, Salih
AA, Ahmed DM, Kak SF, et al. Secure data
transfer over internet using image
steganography. Asian Journal of Research
in Computer Science. 2021;33-52.

33. Ageed Z, Mahmood MR, Sadeeq M,
Abdulrazzaq MB, Dino H. Cloud computing
resources impacts on heavy-load parallel
processing approaches. IOSR Journal of
Computer Engineering (IOSR-JCE).
2020;22:30-41.

34. Kareem FQ, Ameen SY, Salih AA, Ahmed
DM, Kak SF, Yasin HM, et al. SQL
injection attacks prevention system
technology. Asian Journal of Research in
Computer Science. 2021;13-32.

35. Sallow A, Zeebaree S, Zebari R, Mahmood
M, Abdulrazzaq M, Sadeeq M. Vaccine

tracker. SMS reminder system: Design and
implementation; 2020.

36. Malallah H, Zeebaree SR, Zebari RR,
Sadeeq MA, Ageed ZS, Ibrahim IM, et al.
A comprehensive study of kernel (issues
and concepts) in different operating
systems. Asian Journal of Research in
Computer Science. 2021;16-31.

37. Sadeeq MA, Zeebaree SR, Qashi R,
Ahmed SH, Jacksi K. Internet of things
security: A survey. in 2018 International
Conference on Advanced Science and
Engineering (ICOASE). 2018;162-166.

38. Ismael HR, Ameen SY, Kak SF, Yasin HM,
Ibrahim IM, Ahmed AM, et al. Reliable
communications for vehicular networks.
Asian Journal of Research in Computer
Science. 2021;33-49.

39. Yasin HM, Zeebaree SR, Sadeeq MA,
Ameen SY, Ibrahim IM, Zebari RR, et al.
IoT and ICT based smart water
management, monitoring and controlling
system: A review. Asian Journal of
Research in Computer Science. 2021;42-
56.

40. Abdulla AI, Abdulraheem AS, Salih AA,
Sadeeq M, Ahmed AJ, Ferzor BM, et al.
Internet of things and smart home security.
Technol. Rep. Kansai Univ. 2020;62:2465-
2476.

41. Abdulraheem AS, Salih AA, Abdulla AI,
Sadeeq M, Salim N, Abdullah H, et al.
Home automation system based on IoT;
2020.

42. Salih AA, Zeebaree S, Abdulraheem AS,
Zebari RR, Sadeeq M, Ahmed OM.
Evolution of mobile wireless
communication to 5G revolution.
Technology Reports of Kansai University.
2020;62:2139-2151.

43. Dino HI, Zeebaree S, Salih AA, Zebari RR,
Ageed ZS, Shukur HM, et al. Impact of
process execution and physical memory-
spaces on OS performance. Technology
Reports of Kansai University.
2020;62:2391-2401.

44. Hamdi SJ, Ibrahim IM, Omar N, Ahmed
OM, Rashid ZN, Ahmed AM, et al. A
comprehensive study of malware detection
in android operating systems.

45. Ibrahim IM. Task scheduling algorithms in
cloud computing: A review. Turkish Journal
of Computer and Mathematics Education
(TURCOMAT). 2021;12:1041-1053.

46. Ageed ZS, Ahmed AM, Omar N, Kak SF,
Ibrahim IM, Yasin HM, et al. A state of art
survey of nano technology:

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

48

Implementation, Challenges, and future
trends.

47. Abdulazeez AM, Zeebaree SR, Sadeeq
MA. Design and implementation of
electronic student affairs system.
Academic Journal of Nawroz University.
2018;7:66-73.

48. Abdulqadir MM, Salih AA, Ahmed OM,
Hasan DA, Haji LM, Ahmed SH, et al. A
comprehensive study of caching effects on
fog computing performance.

49. Yazdeen AA, Zeebaree SR, Sadeeq MM,
Kak SF, Ahmed OM, Zebari RR. FPGA
implementations for data encryption and
decryption via concurrent and parallel
computation: A review. Qubahan
Academic Journal. 2021;1:8-16.

50. Ageed ZS, Zeebaree SR, Sadeeq MM,
Kak SF, Yahia HS, Mahmood MR, et al.
Comprehensive survey of big data mining
approaches in cloud systems. Qubahan
Academic Journal. 2021;1:29-38.

51. Zeebaree S, Zebari RR, Jacksi K.
Performance analysis of IIS10. 0 and
Apache2 Cluster-based Web Servers
under SYN DDoS Attack. TEST
Engineering & Management.
2020;83:5854-5863.

52. Abdulrahman LM, Zeebaree SR, Kak SF,
Sadeeq MA, Adel AZ, BW. Salim, et al. A
state of art for smart gateways issues and
modification. Asian Journal of Research in
Computer Science. 2021;1-13.

53. Sallow AB, Sadeeq M, Zebari RR,
Abdulrazzaq MB, Mahmood MR, Shukur
HM, et al. An investigation for mobile
malware behavioral and detection
techniques based on android platform.
IOSR Journal of Computer Engineering
(IOSR-JCE). 2020;22:14-20.

54. Abdulqadir HR, Zeebaree SR, Shukur HM,
Sadeeq MM, Salim BW, Salih AA, et al. A
study of moving from cloud computing to
fog computing. Qubahan Academic
Journal. 2021;1:60-70.

55. Dino H, Abdulrazzaq MB, Zeebaree S,
Sallow AB, Zebari RR, Shukur HM, et al.
Facial expression recognition based on
hybrid feature extraction techniques with
different classifiers. TEST Engineering &
Management. 2020;83:22319-22329.

56. AL-Zebari A, Zeebaree S, Jacksi K,
Selamat A. ELMS–DPU ontology
visualization with Protégé VOWL and Web
VOWL. Journal of Advanced Research in
Dynamic and Control Systems.
2019;11:478-85.

57. Zeebaree A, Adel A, Jacksi K, Selamat A.
Designing an ontology of E-learning
system for duhok polytechnic university
using protégé OWL tool. J Adv Res Dyn
Control Syst. 2019;11:24-37.

58. Jader OH, Zeebaree S, Zebari RR. A state
of art survey for web server performance
measurement and load balancing
mechanisms. International Journal of
Scientific & Technology Research.
2019;8:535-543.

59. Adel AZ, Zebari S, Jacksi K. Football
ontology construction using oriented
programming. Journal of Applied Science
and Technology Trends. 2020;1:24-30.

60. Zeebaree S, Zebari RR, Jacksi K, Hasan
DA. Security approaches for integrated
enterprise systems performance: A
Review. Int. J. Sci. Technol. Res. 2019;8.

61. Selamat SAAZA. Electronic learning
management system based on semantic
web technology: A review. Int. J. Adv.
Electron. Comput. Sci. 2017;4:1-6.

62. Abdullah RM, Abdulazeez AM, Al-Zebari A.
Machine learning algorithm of intrusion
detection system. Asian Journal of
Research in Computer Science. 2021;1-
12.

63. Zebari IM, Zeebaree SR, Yasin HM. Real
time video streaming from multi-source
using client-server for video distribution," in
2019 4th Scientific International
Conference Najaf (SICN). 2019;109-
114.

64. Shukur H, Zeebaree SR, Ahmed AJ,
Zebari RR, Ahmed O, Tahir BSA, et al. A
state of art survey for concurrent
computation and clustering of parallel
computing for distributed systems. Journal
of Applied Science and Technology
Trends. 2020;1:148-154.

65. Ibrahim BR, Zeebaree SR, Hussan BK.
Performance measurement for distributed
systems using 2TA and 3TA based on
OPNET principles. Science Journal of
University of Zakho. 2019;7:65-69.

66. Tahir B, Ali Saktioto J, Fadhali M, Rahman
R, Ahmed A. A study of FBG sensor and
electrical strain gauge for strain
measurements. Journal of optoelectronics
and advanced materials. 2008;10:2564-
2568.

67. Zeebaree SR, Sallow AB, Hussan BK, Ali
SM. Design and simulation of high-speed
parallel/sequential simplified DES code
breaking based on FPGA. 2019
International Conference on Advanced

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

49

Science and Engineering (ICOASE).
2019;76-81.

68. Harki N, Ahmed A, Haji L. CPU scheduling
techniques: A review on novel approaches
strategy and performance assessment.
Journal of Applied Science and
Technology Trends. 2020;1:48-55.

69. Ahmed A, Ahmed O. Correlation pattern
among morphological and biochemical
traits in relation to tillering capacity in
sugarcane (Saccharum Spp). Acad J Plant
Sci. 2012;5:119-122.

70. Zebari DA, Haron H, Zeebaree SR,
Zeebaree DQ. Multi-Level of DNA
Encryption Technique Based on DNA
Arithmetic and Biological Operations. 2018
International Conference on Advanced
Science and Engineering (ICOASE).
2018;312-317.

71. Ahmed AJ, Mohammed FH, Majedkan NA.
An evaluation study of an E-learning
course at the Duhok Polytechnic
University: A case study. Journal of Cases
on Information Technology (JCIT).
2022;24:1-11.

72. Ahmed O, Geraldes R, Ahmed A, DeLuca
G, Palace J. Multiple sclerosis and the risk
of venous thrombosis: a systematic review.
MUltiple Sclerosis Journal. 2017;757-758.

73. Juven V. Lightweight Event-driven real-
time operating system for resource
constrained connectivity; 2017.

74. Gracioli G, Fröhlich AA, Pellizzoni R,
Fischmeister S. Implementation and
evaluation of global and partitioned
scheduling in a real-time OS. Real-Time
Systems. 2013;49:669-714.

75. Holman P, Anderson JH. Adapting Pfair
scheduling for symmetric multiprocessors.
Journal of Embedded Computing.
2005;1:543-564.

76. Chapin SJ, Spafford EH. Support for
implementing scheduling algorithms using
MESSIAHS. Scientific Programming.
1994;3:325-340.

77. Kato S, Ishikawa Y, Rajkumar RR. CPU
scheduling and memory management for
interactive real-time applications. Real-
Time Systems. 2011;47:454-488.

78. Yousefi H, Malekimajd M, Ashouri M,
Movaghar A. Fast aggregation scheduling
in wireless sensor networks. IEEE
Transactions on Wireless
Communications. 2015;14:3402-3414.

79. Bjørk J, de Boer FS, Johnsen EB, Schlatte
R, Tarifa SLT. User-defined schedulers for
real-time concurrent objects. Innovations in

Systems and Software Engineering.
2013;9:29-43.

80. Salim NO, Abdulazeez AM. Human
diseases detection based on machine
learning algorithms: A review. International
Journal of Science and Business.
2021;5:102-113.

81. Khan S. Real-Time operating system
(RTOS) with Different application: A
systematic mapping. European Journal of
Engineering and Technology Research.
2021;6:100-103.

82. Yasin HM, Zeebaree SR, Zebari IM.
Arduino based automatic irrigation system:
Monitoring and SMS controlling. 2019 4th
Scientific International Conference Najaf
(SICN). 2019;109-114.

83. Zeebaree S, Yasin HM. Arduino based
remote controlling for home: Power saving,
security and protection. International
Journal of Scientific & Engineering
Research. 2014;5:266-272.

84. Salim NO, Zeebaree SR, Sadeeq MA,
Radie A, Shukur HM, Rashid ZN. Study for
food recognition system using deep
learning. Journal of Physics: Conference
Series. 2021;012014.

85. Khera I, Kakkar A. Comparative study of
scheduling algorithms for real time
environment. International Journal of
Computer Applications. 2012;44:5-8.

86. Salim NO, Abdulazeez AM. Science and
business. International Journal. 5:102-113.

87. Du D. Scheduling Algorithms: JSTOR;
2008.

88. Eesa AS, Sadiq S, Hassan M, Orman Z.
Rule generation based on modified
cuttlefish algorithm for intrusion detection
system. Uludağ University Journal of The
Faculty of Engineering. 2021;26:253-268.

89. Eesa AS. Optimization algorithms for
intrusion detection system: A review.
International Journal of Research-
GRANTHAALAYAH. 2020;8:217-225.

90. Mahmud N, Afrin S, Rahman F,
Monirujjaman M. An application based
improved round robin CPU scheduling for
real time operating system. Brac
University; 2017.

91. Haji SH, Zeebaree SR, Saeed RH, Ameen
SY, Shukur HM, Omar N, et al.
Comparison of software defined
networking with traditional networking.
Asian Journal of Research in Computer
Science. 2021;1-18.

92. Zeebaree S, Zebari I. Multilevel
client/server peer-to-peer video

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

50

broadcasting system. International Journal
of Scientific & Engineering Research.
2014;5:260-265.

93. Kareem FQ, Zeebaree SR, Dino HI,
Sadeeq MA, Rashid ZN, Hasan DA, et al.
A survey of optical fiber communications:
Challenges and processing time
influences. Asian Journal of Research in
Computer Science. 2021;48-58.

94. Abdullah SMSA, Ameen SYA, Sadeeq MA,
Zeebaree S. Multimodal emotion
recognition using deep learning. Journal of
Applied Science and Technology Trends.
2021;2:52-58.

95. Teraiya J, Shah A. Comparative study of
LST and SJF scheduling algorithm in soft
real-time system with its implementation
and analysis. 2018 International
Conference on Advances in Computing,
Communications and Informatics
(ICACCI). 2018;706-711.

96. Capodieci N, Cavicchioli R, Bertogna M,
Paramakuru A. Deadline-based scheduling
for gpu with preemption support. 2018
IEEE Real-Time Systems Symposium
(RTSS). 2018;119-130.

97. Yang T, Deng Q, Sun L. Building real-time
parallel task systems on multi-cores: A
hierarchical scheduling approach. Journal
of Systems Architecture. 2019;92:1-11.

98. Cao S, Bian J. Improved DAG tasks
stretching algorithm based on multi-core
processors. 2020 IEEE 11th International
Conference on Software Engineering and
Service Science (ICSESS). 2020;18-21.

99. Nasri M, Davis RI, Brandenburg BB. FIFO
with offsets: High schedulability with low
overheads. in 2018 IEEE Real-Time and
Embedded Technology and Applications
Symposium (RTAS). 2018;271-282.

100. Abeni L, Balsini A, Cucinotta T. Container-
based real-time scheduling in the linux
kernel. ACM SIGBED Review. 2019;16:33-
38.

101. Baital K, Chakrabarti A. Various
approaches for high throughput and
energy efficient scheduling of real-time
tasks in multicore systems. 2019 IEEE
International Symposium on Smart
Electronic Systems (iSES)(Formerly iNiS).
2019;402-405.

102. Chen H, Wen J, Pedrycz W, Wu G. Big
data processing workflows oriented real-
time scheduling algorithm using task-
duplication in geo-distributed clouds. IEEE
Transactions on Big Data. 2018;6:131-
144.

103. Dauphin B, Pacalet R, Enrici A, Apvrille L.
Odyn: Deadlock Prevention and Hybrid
Scheduling Algorithm for Real-Time
Dataflow Applications. 2019 22nd
Euromicro Conference on Digital System
Design (DSD). 2019;88-95.

104. Riasetiawan M, Ashari A. Performance
analysis of FIFO and Round robin
scheduling process algorithm in IoT
Operating system for collecting landslide
data. 2020 International Conference on
Data Science, Artificial Intelligence, and
Business Analytics (DATABIA). 2020;63-
68.

105. Chen CY, Mohan S, Pellizzoni R, Bobba
RB, Kiyavash N. A novel side-channel in
real-time schedulers. 2019 IEEE Real-
Time and Embedded Technology and
Applications Symposium (RTAS). 2019;90-
102.

106. Malik S, Ahmad S, Ullah I, Park DH, Kim
D. An adaptive emergency first intelligent
scheduling algorithm for efficient task
management and scheduling in hybrid of
hard real-time and soft real-time
embedded IoT systems. Sustainability.
2019;11:2192.

107. Doan D, Tanaka K. A novel task-to-
processor assignment approach for
optimal multiprocessor real-time
scheduling. 2018 IEEE 12th International
Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC).
2018;101-108.

108. D'souza S, Rajkumar R. Cycletandem:
Energy-saving scheduling for real-time
systems with hardware accelerators. 2018
IEEE Real-Time Systems Symposium
(RTSS). 2018;94-106.

109. Nguyen KK, Vien NA, Nguyen LD, Le MT,
Hanzo L, Duong TQ. Real-time energy
harvesting aided scheduling in UAV-
assisted D2D networks relying on deep
reinforcement learning. IEEE Access.
2020;9:3638-3648.

110. Khan M, Seo J, Kim D. Real-time
scheduling of operational time for smart
home appliances based on reinforcement
learning. IEEE Access. 2020;8:116520-
116534.

111. Chen JJ, Shi J, von der Brüggen G, Ueter
N. Scheduling of real-time tasks with
multiple critical sections in multiprocessor
systems. arXiv preprint arXiv:2007.08302;
2020.

112. Utkarsh K, Srinivasan D, Trivedi A, Zhang
W, Reindl T. Distributed model-predictive

Ismael et al.; AJRCOS, 11(4): 35-51, 2021; Article no.AJRCOS.73758

51

real-time optimal operation of a network of
smart microgrids," IEEE Transactions on
Smart Grid. 2018;10:2833-2845.

113. Lee D, Jung H, Yang H. Real-time
schedulability analysis and enhancement
of transiently powered processors with
nvms. IEEE Transactions on Computers.
2020;70:372-383.

114. El Ghor H, Chetto M, El Osta R.
Multiprocessor Real-Time Scheduling for
Wireless Sensors Powered by Renewable
Energy Sources. 2018 IEEE/ACS 15th
International Conference on Computer
Systems and Applications (AICCSA).
2018;1-6.

© 2021 Ismael et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle4.com/review-history/73758

http://creativecommons.org/licenses/by/4.0

