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Abstract 
In this paper, we shall show that the Hamiltonian structure can be defined for 
any nonlinear evolution equations which describe surfaces of a constant nega-
tive curvature, so that the densities of conservation laws can be considered as 
corresponding Hamiltonians. This paper obtains the soliton solution and 
conserved quantities of a new fifth-order nonlinear evolution equation by the 
aid of inverse scattering method. 
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1. Introduction 

The notion of pseudo-spherical surfaces (pss) (surfaces of a constant negative 
curvature 1k ≡ − ) appeared in geometry in the middle of the nineteenth 
century. It was an important step in the development of mathematics. Pss 
become the final factor in the visual interpretation of non-Euclidean hyperbolic 
geometry discovered by Klingenberg [1]. The further development of mathe- 
matics found a close connection between pss and theory of nets, theory of 
solitons, attractors, some nonlinear evolution equations (NLEEs) of mathe- 
matical physics, Bäcklund transformations (BTs), and so on [2] [3] [4] [5]. The 
connection between geometry and the nonlinear partial differential equations 
(NLPDEs) has been studied in mathematical physics for more than a century. 
For instance, the classical Liouville equation describes minimal surfaces in the 
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space 3E , and the sine Gordon equation is related to the geometry of pss, i.e., 
surfaces with a negative Gaussian curvature [6] [7] [8] [9]. 

Conservation law plays a vital role in the study of nonlinear evolution 
equations, particularly with regard to integrability, linearization and constants of 
motion. In the present paper, it is shown that infinitely many conservation laws 
for certain nonlinear evolution equations are systematically constructed with 
symbolic computation in a simple way from the Riccati form of the Lax pair. 
Noting that the Lax pairs investigated here are associated with different linear 
systems, including the generalized Kaup-Newell (KN) spectral problem, the 
generalized Ablowitz-Kaup-Newell-Segur (AKNS) spectral problem, the gene- 
ralized AKNS-KN spectral problem and a recently proposed integrable system. 
Therefore, the power and efficiency of this systematic method are well under- 
stood, and we expect it may be useful for other nonlinear evolution models, even 
higher-order and variable-coefficient ones [10]-[15].  

Hamiltonians are of great importance in their own right and have found a 
remarkable number of applications in both physics and mathematics. Hamil- 
tonians play a central role in the field of integrable systems and also play a fund- 
amental role in several others areas of mathematics and physics. Hamiltonians 
are often referred to as the master integrable system. Hamiltonians provide as 
with a means of generating and classifying many integrable systems and they 
also give a unified geometrical framework in which to analyze them. Moreover, 
in the context of the inverse scattering transform, an integrable equation admits 
well-behaved solutions obtained via the related linear problems [16]-[22]. 

The main aim of this paper is to use the BTs in the construction of exact 
soliton solutions for a new fifth-order nonlinear evolution equation which 
describes pss. An infinite number of conservation laws are derived for a new 
fifth-order nonlinear evolution equation just mentioned using the corre- 
sponding Hamiltonians. 

The latter yields directly the curvature condition (Gaussian curvature equal to 
−1, corresponding to pseudo-spherical surfaces). This geometrical method 
allows some further generalizations of the work on conservation laws given by 
Khater et al. [23]. An infinite number of conservation laws for a new fifth-order 
nonlinear evolution equation are derived in this way. 

The paper is organized as follows. In Section 2, we introduce the inverse 
scattering method and apply the geometrical method to obtain Hamiltonian 
structure for any nonlinear evolution equations which describe surfaces of a 
constant negative curvature. In Section 3, a new exact soliton solution and the 
corresponding Hamiltonians are obtained for a new fifth-order nonlinear 
evolution equation. Section 4 contains the conclusion. 

2. Hamiltonian Structure 

The inverse scattering transform method allows one to linearize a large class of 
nonlinear evolution equations and can be considered as a nonlinear version of 
the Fourier transform [24] [25] [26] [27] [28]. An essential prerequisite of 
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inverse scattering transform method is the association of the nonlinear evolution 
equation with a pair of linear problems (Lax pair), a linear eigenvalue problem, 
and a second associated linear problem, such that the given equation results as a 
compatibility condition between them [29] [30] [31] [32] [33]. Consider the 
following AKNS eigenvalues problem: 

, ,x tP Qψ ψ ψ ψ= =                           (1) 

where 1

2

,
ψ

ψ
ψ
 

=  
 

 P  and Q  are two 2 2×  null-trace matrices  

2 ,    ,

2

q A B
P Q

C Ar

η

η

 
   
 = =  −   − 
 

                     (2) 

and η  is a parameter independent of x and t, while q and r are assumed to be 
functions of x and t. From Equations (1) and (2), we get the following scattering 
problem: 

1 1 2

2 1 2

,
2

,
2

x

x

q

r

η
ψ ψ ψ

η
ψ ψ ψ

= +

= −
                           (3) 

in which eignfunctions 1ψ  and 2ψ  evolve in time according to  

( ) ( )
( ) ( )

1 1 2

2 1 2

, ; , ; ,
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A x t B x t

C x t A x t

ψ η ψ η ψ

ψ η ψ η ψ

= +

= −
                     (4) 

The integrability conditions reads 

[ ], 0,t xP Q P Q− + =                           (5) 

or in component form  

,
2 0,

2 ,

x

t x

x t

A qC rB
q Aq B B
C r Ar C

η
η

= −

− − + =

= + −
                        (6) 

Konno and Wadati [34] introduced the function 

1

2

.ψ
ψ

Γ =                               (7) 

Differentiating Equation (7) with respect to x and t, respectively, and using 
Equations (3), (4) and (7), then Equation (1) are reduced to the Riccati equ- 
ations: 

2 2,   2 .r q A C B
x t

η
∂Γ ∂Γ

= Γ − Γ + = Γ − Γ +
∂ ∂

                (8) 

Now we construct a transformation ′Γ  satisfies the potential and then de- 
duce a BTs for the considered nonlinear evolution equation  

( )0 , ,u u f η′ = + Γ                          (9) 

where 0u  is the old solution and u′  is a new solution corresponding non- 
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linear evolution equation. In order to determine conserved densities and fluxes, 
we can written Equation (8) in the form   

( ) ( )2 .C r qC Br C Ar
x t

η
∂Γ ∂Γ

− = − + − Γ
∂ ∂

                (10) 

Adding tr− Γ  to both sides and using Equation (6), then Equation (10) takes 
the form of conservation laws 

( ) ( ) ,
r A C
t x

∂ Γ ∂ − + Γ
=

∂ ∂
                       (11) 

where rΓ  are conserved densities and ( )A C− + Γ  are fluxes. 
From Equation (3), I obtain  

2

2

,
2

x rψ η
ψ

= − + Γ                           (12) 

then  

2ln d .
2

x r xη
ψ  = − + Γ 

  ∫                       (13) 

By rearranged the first equation of Equation (8) to take the form 

( ) ( )2 ,
x

rr rq r r
r

η
Γ Γ = − + Γ −  

 
                  (14) 

then, I can expand rΓ  into a power series in inverse power of η  as follows 
[28] 

( ) ( )
1

, ; , .n
n

n
r x t x tη φ η

∞
−

=

Γ =∑                     (15) 

By the same way, I expand 2lnψ  into a power series in inverse power of η  
so that  

2 0
1

ln ,l
l

l
H Hψ η

∞
−

=

= +∑                       (16) 

where 0H  and lH  are Hamiltonians (conserved quantities), by substituting 
(15) into (14), the following system of conservation laws appears 

( ) ( ) ( )2
1

1 1 1

,
, , .nn n n

n n
n n n x

x t
x t rq x t r

r
φ

φ η φ η η
∞ ∞ ∞

− + − −

= = =

   = − + +          
∑ ∑ ∑    (17) 

Now equate powers of η  on both sides of this expression to produce the set 
of recursions,  

( ) ( ) ( ) ( ) ( )1

1 2 1
1

,
, ,   , ,  , , ,  2.

n
n

x n k n k
k x

x t
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Then, by equate powers of η  on both sides of Equations (13), (15) and (16), 
we obtain the infinite number of Hamiltonians may explicitly be determined in 
terms of smooth real functions ( ),n x tφ  and their derivatives, as follows 

0 1 1,      d d ,
2

H x H x qr xη
φ = − = = − 

  ∫ ∫  
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2 2d d ,xH x rq xφ= = −∫ ∫  

Hamiltonians in general form 

( ) ( ) ( ) ( )1

1
1

,
, , , d ,   2.

n
n

n k n k
k x

x t
H x t x t x t r x n

r
φ

φ φ
−

+ −
=

  
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∑∫       (19) 

The explicit expressions of the first few order Hamiltonians are 

( ) ( )2 2 2 2
3 3 4 4 3d ,      d 4 d ,xx x x xH dx q r rq x H x r qq rq r rq xφ φ= = − = = + −∫ ∫ ∫ ∫  

2 2 2 2 3 3
5 5 2 2 4d 6 6 4 2 d .x x x x x xH x r qq rqr q r q rq r q r rq xφ  = = + + + − − ∫ ∫  

The procedure is clarified in the following example. 

3. Soliton Solution and an Infinite Number of Conserved  
Quantities for a New Fifth-Order Nonlinear  
Evolution Equation   

Now we consider a new fifth-order nonlinear evolution equation  

2 3 4
5 3 2

5 5 1510 ,
2 2 8t x x x x x xu u u u uu u u u u= − − − +                (20) 

for ( ),u x t  which describes a pss. There exist functions ijf , 1 3i≤ ≤ ,  
1 2,j≤ ≤  which depend on ( ),u x t  and its derivatives such that, for any 
solution u of the evolution equation, ijf  satisfy (5). For Equation (20) we con- 
sider the functions defined by [33]  

2 2 2 5 2 3 4
11 12 4 2
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For any solution ( ),u x t  of a new fifth-order evolution Equation (20), the 
matrices P  and Q  are  

2 2 ,

2 2

u

P
u

η
η

η
η
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                      (23) 

where 22 12,f f  and 32f  defined by (21). The above matrices ,P Q  satisfy the 
Equation (5). Then the first equation of (8) becomes  

( ) ( )2 21 1 .
2 2

u
x

η∂Γ
= Γ −Γ − + −Γ

∂
                    (24) 

If we choose ′Γ  and u′  as  
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1 ,′Γ =
Γ

                                (25) 

14 tanh ,u u
x

−∂′ = − + Γ
∂

                         (26) 

then ′Γ  and u′  satisfies Equation (24). 
Now we shall choose some known solutions of the above a new fifth-order 

evolution equation and substitute these solutions into the corresponding 
matrices P  and Q . Next, we solve Equations (3) for 1ψ  and 2ψ . Then, by 
(9) and the corresponding BT we shall obtain the new solutions for a new fifth - 
order evolution equation. I choose the known solution is a constant 0u , then 
substitute 0u u=  into the matrices P  and Q  in (22) and (23), then by (1) we 
have  

d d d d ,x tx t Pψ ψ ψ ψ ρ= + =                        (27) 

where  

0
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                         (28) 

4 2 2
40 03 3

, 9 .
8 2
u ux t η

ρ α α η= + = + +                   (29) 

The solution of Equation (27) is  

( )
2 2 3 3

0 0exp ,
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P PP I P ρ ρ

ψ ρ ψ ρ ψ
 
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 

            (30) 

where 0ψ  is a constant column vector. The solution (30) takes the following 
form:  

0

cosh sinh 1 sinh
2

.
1 sinh cosh sinh
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η η
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Now, we choose 0

1
,

0
ψ

 
=  
 

 in (31) and use (7) and the BT (26); we obtain  

the new solution class of the new fifth-order evolution Equation (20) corre- 
sponding to the known constant solution 0u  as follows  

( )

2

0 2

4  csch  ,
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au u
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αρ
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                    (32) 

where ,
2 2

a bα η
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. If we choose 0

0
1

ψ
 

=  
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 in (31), we will obtain  

another solution. Obviously all of these solutions are traveling waves with  

velocity 
4 2 2

40 03 3
9

8 2
u uη

α η= + + .   

From Equations (19) and (22) the first few order Hamiltonians are deter- 
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mined by the relation  
2

2
0 1 2,  d ,  d , etc.

2 4 2 2
xuu uH x H x H xη η η

    = − = − − = − +    
    

∫ ∫      (33) 

From the solution ( ),u x t  of a new fifth-order evolution equation. This 
Hamiltonians (conserved quantities) given by the relation  

( )( )

( )

( )
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( )

0

2 2
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2
0 0

3
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0 0 0
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4  sinh 2
4 2 4 coth 2

2 2 4 2 arctanh 1 tanh
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4 8 4 8 2 2  cosh 2
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u u u
H
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α η αρη
α η α η η αρ

ηα α α αη η αρ
α

α η

α α α αη η η η η αρ

α η η αρ

 = − 
 

 
= − + 

+ − − + 
 

− + − +  
 −

+

− − + − + + −
=

+ −

   (34) 

4. Conclusion   

We may hope to find the relationship between the conserved quantities and pss. 
The conserved quantities play a central role in the field of integrable systems and 
also play a fundamental role in several other areas of mathematics and physics 
[35]. In addition, the conserved quantities are a rich source of integrable systems 
suggested by the fact that they are the compatibility condition of an associated 
linear problem which admits enormous freedom if one allows the associated 
gauge algebra to be arbitrary [36]. 
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