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Abstract
Joint ptycho-tomography is a powerful computational imaging framework to recover the refractive
properties of a 3D object while relaxing the requirements for probe overlap that is common in
conventional phase retrieval. We use an augmented Lagrangian scheme for formulating the
constrained optimization problem and employ an alternating direction method of multipliers
(ADMM) for the joint solution. ADMM allows the problem to be split into smaller and
computationally more efficient subproblems: ptychographic phase retrieval, tomographic
reconstruction, and regularization of the solution. We extend our ADMM framework with
plug-and-play (PnP) denoisers by replacing the regularization subproblem with a general
denoising operator based on machine learning. While the PnP framework enables integrating such
learned priors as denoising operators, tuning of the denoiser prior remains challenging. To
overcome this challenge, we propose a denoiser parameter to control the effect of the denoiser and
to accelerate the solution. In our simulations, we demonstrate that our proposed framework with
parameter tuning and learned priors generates high-quality reconstructions under limited and
noisy measurement data.

1. Introduction

Ptychography [23] is a scanning-based coherent diffraction imaging technique that can provide high
resolution imaging of thick samples without the need of an optic to form an image. While ptychography can
only provide projective imaging of samples in 2D, series of ptychography scans can be acquired in a
tomography setting to reconstruct thick volumetric samples in 3D [13]. In ptycho-tomography, a 3D object
is scanned with a small coherent beam to collect a series of diffraction patterns through a pixel array detector
located in the far-field; see figure 1. The detector records the intensity images of the incident wave on
detector plane; therefore, the phase of the wave needs to be recovered through a computational procedure
called the phase retrieval. This scanning procedure can be repeated for different view angles of the 3D object
around a common rotation axis in order to collect tomographic data and to recover the complex refractive
index of the object in 3D. The conventional approach for reconstruction then consists of solving a 2D
ptychographic phase retrieval problem independently for each angle, followed by a 3D tomographic
reconstruction from the retrieved angular projections of the phase (and amplitude) of the object plane wave.
Because phase retrieval algorithms require significant overlap (60% or more) between neighboring
illuminations for a successful recovery, the sequential approach is not optimal and limits scanning large
volumes within reasonable data collection times.

While the sequential approach, that is, first performing phase retrieval for each angle and then
tomographically reconstructing the object, is still the method of choice in practice, recent efforts have
focused on relaxing or avoiding the illumination overlap requirement. These methods pose the
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Figure 1. Illustration of a ptycho-tomography data acquisition process. A 3D object is scanned with a focused coherent
illumination beam while collecting far-field diffraction images with a pixel array detector. This process is repeated for each view of
the object around a common rotation axis to collect tomographic data.

reconstruction problem in a joint fashion. In other words, the phase retrieval problems for each rotation
angle are solved simultaneously with the tomographic reconstruction through a joint optimization
framework, resulting in a better-posed problem with those extra constraints and allowing for less stringent
scanning requirements. Beginning with the first successful demonstration of the joint inversion concept
through a numerical simulation [18], and later on experimentally [26], more efforts have focused on further
relaxing these overlap constraints and finding new sparse scanning schemes for high-speed or dose-efficient
implementations. Different optimizers such as the Levenberg–Marquardt algorithm [38] and Adam
algorithm [14] have been used for successfully solving the joint optimization problem. In parallel, an
extensible and a generic distributed optimization framework has been proposed in [2] as a solution when
additional experimental uncertainties due to noise, motion blur, or other types of model mismatches need to
be corrected. The framework is based on the alternating direction method of multiplier (ADMM) [5] and
allows splitting the problem into smaller parts where each subproblem can be solved with an independent
optimizer. With this modular structure, the whole reconstruction procedure can be expanded by adding new
subproblems that often emerge in practical experimental settings. Also, because ADMM sub-problems can
be solved independently, we can effectively map those sub-problems onto available computing resources.

Choosing an appropriate prior for the model is a major challenge for many imaging applications. To
tackle this challenge, several regularization methods have been introduced. While some methods define
priors explicitly in a regularized optimization framework such as total variation (TV) [41], Tikhonov
regularization [48], and other types of sparsity-based regularization methods [49]; others do not have
explicit formulation as an optimization problem, such as BM3D [10] and WNNM [17]. We also studied
incorporating TV as part of our joint optimization scheme to regularize the solution when data points are
significantly reduced or when data is heavily corrupted with noise [36]. Also recently, learning-based
denoisers have been popularized because of their success in improving the quality of low-dose images [25].
Unlike physics-based optimization methods, learned priors are based on training a mapping between noisy
images and a desirable image, and they are often applied after the reconstruction step is completed [30] or, in
some cases, before the reconstruction in order to improve the raw data [53]. Furthermore, with the aid of
special hardware, the reconstruction times can be improved significantly. One challenge in incorporating
learned priors into the ADMM framework is that because the corresponding regularized optimization
problem is not explicitly defined, a formal optimization strategy is not applicable. To overcome this
challenge, Venkatakrishnan et al [50] proposed the plug-and-play (PnP) framework, which enables
integrating implicit priors for denoising, to enable use of iterative optimization methods. Although the PnP
framework was originally proposed ad hoc, it has been popularized quickly in various inverse problems
because of its performance [6, 20, 27, 40, 45, 47, 51, 54]. This success has also led to related studies; for
example, convergence of PnP has also been discussed in studies [6, 7, 42, 46]. Another related framework,
regularization by denoising, has also been popularized to solve the denoising problem [32, 34, 39].

While the PnP framework provides flexible means to incorporate machine-learning-based denoising
models into physics-based models, it has been mainly used for additive white Gaussian noise (AWGN)
denoising of linear problems. In ptycho-tomography, or in phase retrieval problems in general, the problem
is nonconvex and hard to solve optimally. In addition, the frequency spectrum of reconstruction noise is
different from AWGN; see figure 2 for a representative example. This is because the measurements are taken
in Fourier space; thus, high-frequency signals dampen quickly, and in turn they are more corrupted than the
low-frequency signals because of the Poisson measurement statistics. Therefore, the reconstruction at high
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Figure 2. Demonstration of the effect of measurement noise on reconstructions: the ground truth (left) and a representative
ptycho-tomography reconstruction of a 3D synthetic chip section (right). Because the high-frequency signals in measurement are
corrupted more than the low-frequency signals, the resulting effect in the reconstruction is a mix of strong blurring and weak
speckle noise.

measurement noise is blurry, and the state-of-the-art AWGN denoisers are not effective in addressing these
types of noise in ptycho-tomography.

To address the unique challenges of solving ptycho-tomography problem at high noise levels, we propose
using pre-trained generative prior models in an ADMM framework. As a generative model, we used
conditional coupled generative adversarial network (GAN), however, other types of generative models may
also be suitable for the task. We implemented this approach on graphical processing units (GPUs) and
validated its effectiveness on realistic data sizes with highly sparse data and noisy measurements. We compare
our results with the conventional offline denoising and TV regularization, which are commonly used for
denoising in ptycho-tomography applications. Our results show that our optimizations can decrease the total
number of required projections (with significantly fewer overlapped regions) by 75% compared with using
adequately sampled data (based on Nyquist) while maintaining good image quality.

The remainder of this paper is organized as follows. In section 2, we give an overview of the joint
ptycho-tomography problem and its solution using the ADMMmethod. Section 3 describes the challenges
in using the original PnP framework and how we tackle the problem. The training, network design, and
other important implementation details of the framework are given in section 4. In section 5, we validate our
proposed framework for the joint ptycho-tomography problem via simulated experiments. Discussion and
conclusions are given in section 6.

2. Background

In this section, we formulate the ptycho-tomography forward and inverse problems and describe the ADMM
scheme for the reconstruction.

2.1. The forward problem
In the ptycho-tomography problem, the model for reconstructing the complex refractive index of a 3D
object, x= δ+ iβ, is given by:

Poisson{|GHx|2}= d. (1)

Here, we use a Poisson-based measurement model, which accurately captures photon-counting statistics in
diffraction data in Fourier space. G is the ptychography operator,H is the tomography operator, x is the
unknown object, and d is the measurement data. G is defined as Gψ = FQψ, where ψ =Hx is the object
transmission function, F is the discrete Fourier transform operator, andQ is the illumination matrix.H is
defined asHx= exp(ıcRx), where ı is

√
−1, c is the wavenumber of the illumination beam, andR is the

Radon transform [21].

2.2. The inverse problem
Let p(x|d) be the posterior conditional probability of having an object x with given measurements d. Then
using Bayes’s rule, the maximum a posteriori probability (MAP) estimate for the solution xMAP is defined as
follows:

xMAP = argmax
x

p(d|x)p(x)
p(d)

= argmin
x

− log{p(d|x)}− log{p(x)}, (2)
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where logp(d|x) is the log-likelihood of the observation and logp(x) is the prior of x, also referred to as the
regularization term. The MAP estimate in equation (2) for the ptycho-tomography model in equation (1) is
given as:

xMAP = argmin
x

n∑
j=1

(
|GHx|2j − 2dj log |GHx|j

)
+φN (x), (3)

where φN (x) is the regularization term to stabilize or to constrain the solution. For simplicity of notation, j
indexes all measurement varieties, namely, detector pixel, rotation angle, and scan position. Next, we rewrite
equation (3) into a consensus form by introducing auxiliary variables ψ and η:

min
ψ,η,x

n∑
j=1

(
|Gψ|2j − 2dj log |Gψ|j

)
+φN (η),

subject to

{
Hx= ψ,

x= η.
(4)

The objective function is a real-valued function of complex variables, and its augmented Lagrangian is a
complex-valued function. We follow [29] and work with the following real-valued augmented Lagrangian:

Lλ,µρ,τ (ψ,x,η) =
n∑

j=1

(
|Gψ|2j − 2dj log |Gψ|j

)
+φN (η)

+ 2Re{λH(Hx−ψ)}+ ρ∥Hx−ψ∥22
+ 2Re{µH(x− η)}+ τ ∥x− η∥22 , (5)

where ρ> 0 and τ > 0 are penalty parameters, λ and µ represent dual variables, and H corresponds to the
Hermitian conjugate. This augmented Lagrangian enables us to include the linear terms, 2Re{λH(Hx−ψ)},
ρ∥Hx−ψ∥22, and 2Re{µH(x− η)}, τ ∥x− η∥22 in the L2-terms.

2.3. Solution to the inverse problem
Minimization of equation (5) can be achieved by ADMM with iteratively solving the sub-problems followed
by dual variable updates:

ψk+1 =argmin
ψ

n∑
j=1

(
|Gψ|2j − 2dj log |Gψ|j

)
+ ρ

∥∥Hxk −ψ+λk/ρ
∥∥2
2
, (6)

xk+1 =argmin
x

ρ
∥∥Hx−ψk+1 +λk/ρ

∥∥2
2
+ τ

∥∥x− ηk +µk/τ
∥∥2
2
, (7)

ηk+1 =argmin
η

φN (η)+ τ
∥∥xk+1 − η+µk/τ

∥∥2
2
, (8)

λk+1 =λk + ρ
(
Hxk+1 −ψk+1

)
, (9)

µk+1 =µk + τ
(
xk+1 − ηk+1

)
. (10)

Using the ADMM framework, we formulate the joint ptycho-tomography problem in equation (2) in terms
of three independently defined subproblems: ptychographic phase retrieval in equation (6), tomographic
reconstruction in equation (7), and regularization in equation (8). The dual variable updates promote the
satisfaction of the constraints in equations (9) and (10).

2.4. Solutions of the subproblems
For the first subproblem, we minimize the following objection function:

FP(ψ) =
n∑

j=1

(
|Gψ|2j − 2dj log |Gψ|j

)
+ ρ

∥∥Hxk −ψ+λk/ρ
∥∥2
2
. (11)
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The corresponding gradient is:

∇ψFP(ψ) = GH

(
Gψ− d

(Gψ)∗

)
− ρ(Hxk −ψ+λk/ρ), (12)

which is computed by using the Wirtinger calculus [24]. Here ∗ denotes the complex conjugate. For the
solution, we use the nonlinear conjugate gradient (CG) method [37]:

ψm+1 = ψm + γmξm, (13)

where γm is a step length computed via a backtracking line search method and ξm is the search direction. The
first iteration is the steepest descent direction, ξ0 =−∇ψFP(ψ0). For other iterations, ξm+1 is computed
recursively by using the Dai–Yuan [11] formula, which gives the fastest convergence in our simulations:

ξm+1 =−∇ψFP(ψm+1)+
∥∇ψFP(ψm+1)∥22

yHmξm
ξm, (14)

where ym = (∇ψFP(ψm+1)−∇ψFP(ψm)).
For solving the subproblem with respect to x in equation (7), we transform the nonlinearity introduced

byHx as in [36] and instead minimize the following objection function:

FT(x) = ρ∥KRx− ζ∥22 + τ
∥∥xk+1 − η+µk/τ

∥∥2
2
, (15)

where the linear diagonal operator K is defined as :

KRx=
2πi

ν
(ψk+1 −λk/ρ)Rx, (16)

and ζ is given by:

ζ = (ψk+1 −λk/ρ) log(ψk+1 −λk/ρ). (17)

Hence, we replace the objective function in equation (7) with equation (15). The gradient is given as follows:

∇xFT(x) = ρRTKH(KRx− ξ)+ τ(x− ηk +µk/τ). (18)

Similar to the ptychography subproblem, we use the CG method with the Dai–Yuan formula; see
equations (13) and (14).

While equations (6) and (7) can be solved via well-known optimization methods, the solution of
equation (8) depends on the choice of the image prior. The question of how to choose a prior,
− log{p(x)}= φN (η) is a challenging topic in image processing. While one can choose an explicit image
prior and measure its distance using the TV norm, we turn our attention to learning-based priors because of
their effectiveness.

3. Learned priors for denoising

In this section, we discuss the solution of the denoising problem. We first rewrite equation (8) for some prior
N (η) as follows:

ηk+1 = argmin
η

N (η)+ τ/φ
∥∥x̃k+1 − x

∥∥2
2
, (19)

where x̃k+1 = xk+1 +µk/τ and x correspond to the noisy and noise-free images, respectively. Several
state-of-the art denoisers do not have closed-form expressions for the prior,N (η). Hence, integrating these
denoisers into the joint ptycho-tomography problem is challenging. We use the PnP framework [50] to
replace equation (19) with a general denoising operator as follows:

ηk+1 = Denoiser
(
x̃k+1

)
, (20)

where an explicit definition of the image prior,N (η), is not necessarily known. While PnP was originally
proposed to remove the AWGN of variance, σ2 = τ/2φ, the method has been extended to Poisson inverse
problems [40]. In this work, we use a Poisson-based MAP model to accurately capture photon-counting
statistics in diffraction data. While we still use the ADMM to solve equation (4) and while the first two
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subproblems corresponding to the ptychographic phase retrieval and tomography are the same, the last
sub-problem corresponding to the regularization is replaced with a denoising operator in equation(20). The
PnP framework allows us to use state-of-the-art denoising algorithms, such as BM3D [10], K-SVD [15], and
WNNM [17]. Although the PnP framework does not give a clear definition of the objective function because
of the implicit regularization parameter, the method has shown empirical success in various image
reconstruction problems [20, 27, 40, 51]. Alternatively, deep-learning-based denoisers have shown great
success implementing the PnP framework; see, for example, [8, 33, 56]. In this work, we use our recently
developed denoising technique based on GAN, whose implementation details will be discussed in the
following section.

We point out that the regularization parameter, φ, that tunes the regularization term in equation (3) is
associated with the additive noise in the denoising operator, σ2 = τ/2φ. In our application, we have observed
that replacing the regularizer problem, equation (19), by the denoising operator using equation (20) can lead
to divergence of the overall ADMM scheme. In particular, it appears that the denoiser pushes early iterations
to nonphysical solutions from which the ADMM cannot recover. This observation motivates the
introduction of a denoising parameter, αk ∈ [0,1], that controls the influence of the denoising operator.
Moreover, ADMM can reach a modest accuracy even when the individual subproblems do not converge to
optimal values [5], and this fact has been used for accelerating ptycho-tomography reconstruction [2]. When
acceleration is used, however, the role of the denoiser for approximate solutions of the subproblems needs to
be balanced for stabilizing the solution. To this end, we choose a denoiser parameter that gives weight to the
data fidelity term at earlier iterations and gradually increases the weight of the denoiser at later iterations as
we get closer to the solution. An alternative approach has also been proposed in [52] whenN (η) is a closed,
convex, and proper function. In particular, we rewrite equation (20) as

ηk+1 = αkDenoiser(x̃k+1)+ (1−αk)x̃k+1, (21)

which makes ηk+1 a convex combination of the denoised reconstructions and the noisy reconstructions,
x̃k+1. The extremes αk = 0 and αk = 1 corresponds to the maximum likelihood (ML) estimate (i.e. no
regularizer) and full denoising (i.e. PnP denoiser), respectively. In our implementations, we heuristically
choose αk to provide fast convergence to good reconstructions.

One challenge that arises from including equation (21) in the ADMM framework is that it does not
directly correspond to an optimization problem (unless the denoiser can be written as a gradient) and
therefore cannot directly be included in the augmented Lagrangian in equation (5). This make it harder to
generalize the traditional augmented Lagrangian or ADMM convergence theory.

4. Implementation

In this section, we discuss the implementation aspects of our approach; see algorithm 1. For the
ptychography and tomography subproblems, we use the same solvers (CG) as in our previous work; see
section 4 in [36]. Hence, we devote this section to the details of the denoising operator used in equation (21).

In our simulations, we use our recently developed denoiser, TomoGAN [30], an image-quality
enhancement model based on generative adversarial networks [16], which was originally developed for
low-dose x-ray imaging as the learned prior. Figure 3 shows the training pipeline of the model where two
neural networks (i.e. generator and discriminator) contend with each other during the training until an
equilibrium is reached. Specifically, the generative network generates noise-free images from noisy images
while the discriminative network evaluates them; thus both networks are trained from the competition. The
VGG [44] is a neural network model with 19 convolutional neural network (CNN) layers followed by three
fully connected layers for image classification. Here, the VGG was pretrained with the ImageNet dataset [12],
and we only keep the 19 CNN layers to work as a feature extractor for quantifying the difference between
denoised image and true image in VGG’s feature space. The generator model will work as the learned prior
(i.e. for denoising in equation (21)) once trained by using the pipeline. That is, we can input a noisy image to
the generator, and it outputs the corresponding enhanced image.

The TomoGAN generator network architecture is a variation of the U-Net architecture proposed for
biomedical image segmentation by Shan et al [43]. It comprises a down-sampling network followed by an
up-sampling network. In the down-sampling process, three sets of two convolution kernels (the three boxes)
extract feature maps. Then, followed by a pooling layer, the feature map projections are distilled to the most
essential elements by using a signal maximizing process. Ultimately, the feature maps are 1/8 of the original
size. Successful training should result in the 128 channels in this feature map, retaining important features.
In the up-sampling process, bilinear interpolation is used to expand the feature maps. At each layer,
high-resolution features from the down-sampling path are concatenated to the up-sampled output from the
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Algorithm 1. Joint ptycho-tomography reconstruction with learned prior.

Require: Given 0⩽ αk ⩽ 1,ρ > 0, τ > 0 and initialize: ψ0,η0,x0,λ0,µ0

while not converged do

ψk+1← argminψ
∑n

j=1

(
|Gψ|2j − 2dj log |Gψ|j

)
+ ρ

∥∥∥Hxk−ψ+λk/ρ
∥∥∥2
2

xk+1← argminx ρ
∥∥∥Hx−ψk+1 +λk/ρ

∥∥∥2
2
+ τ

∥∥∥x− ηk +µk/τ
∥∥∥2
2

x̃k+1← xk+1 +µk/τ
for j= 1 · · ·M do
ηk+1
j ← αkDenoiser(x̃j

k+1)+ (1−αk)x̃j
k+1

end for

λk+1← λk + ρ
(
Hxk+1−ψk+1

)
µk+1← µk + τ

(
xk+1− ηk+1

)
end while

Figure 3.Model training pipeline. Once the model is trained, only the generator is used as the learned prior to advance the
tomographic reconstructions.

layer below to form a large number of feature channels. This structure allows the network to propagate
context information to higher-resolution layers, so that the following convolution layer can learn to assemble
a more precise output based on this information. The detailed TomoGAN generator architecture can be
found in [30].

We implemented TomoGAN with TensorFlow [1] and used one NVIDIA Tesla V100 GPU card for
training where the total training time is around 6 h. The Adam algorithm [28] was used to train both the
generator and discriminator, with a batch size of 16 samples. In order to train and evaluate the
model (discussed in section 5), we synthesized two different 3D samples as shown in figure 4. For each
sample, we simulated two different cases with different features (e.g. removed a few features of the chip, and
used different random seeds to construct circles of the phantom object) for model training and testing
separately. As a data augmentation to avoid overfitting, each image of the batch is a patch (of size 128× 128)
that was randomly cropped from the original 512×512 image (i.e. slice of the 3D objects).

5. Numerical experiments

In this section, we demonstrate the effectiveness of applying the proposed framework for reconstruction of
3D simulated objects in figure 4.

5.1. Simulation settings
In the first experiment, the object is a simulated chip of size 64× 512× 512 and voxel size 5 nm. The 3D
simulated chip and its 2D slice are given in figure 4(a). Our interest is to recover the object that is defined by
its complex refractive index, x= δ+ iβ. We use a flat-top Gaussian probe function with probe size 16× 16
pixels. The far-field diffraction patterns are recorded by a 128× 128 pixelated detector. We use 8.8 keV beam
energy to simulate the refractive index values for ptychographic data. We emulate a ptychographic
experiment by simulating a 3D chip, where δ yields the main imaging contrast. We distort the data with
Poisson noise. In figure 5, we demonstrate the effect of Poisson noise on the measured data for three different
detector photon counts in the ranges I= [0,8644], I= [0,968], and I= [0,123] on average. As the interval I
decreases, the simulations become noisier. Initially, the distance between adjacent probe center positions is

7



Mach. Learn.: Sci. Technol. 2 (2021) 045017 S Aslan et al

Figure 4. The 3D objects and corresponding 2D slices. Only the real part of the object (δ) is shown.

Figure 5. Intensity on the detector for different noise levels. From left to right, the noise level increases.

set to 8 pixels that approximately correspond to 50% overlap. Then, the object is rotated 3N/2 times at
regular intervals from 0 to π, satisfying the Nyquist criterion. We refer to this case as well-sampled data. Next,
we report reconstructions using under-sampled data where we further decrease the probe overlap to 25% and
rotate the object 3N/8 times at regular intervals from 0 to π. It is essential to point out that solving the
ptycho-tomography problem jointly enables relaxing high probe overlap restriction where the conventional
methods would fail to reconstruct good quality reconstructions. A more detailed study on conventional
methods vs jointly solving the ptycho-tomography problem via ADMM can be found in [2].

An additional 3D phantom with a shape of 180× 512× 512 and a voxel size 5 nm is generated via
XDesign [9] to demonstrate the effectiveness of the proposed method. The object consists of two different
materials: gold (Au), mercury (Hg) with densities of 19.32 and 13.53 g cm−3, respectively. The 3D object and
its 2D slice are given in figure 4(b). While we use 5 keV beam energy to simulate the refractive index values
for ptychographic data, the probe and the detector settings are the same as in the first experiment. The
detector photon counts are given as I= [0,649], and I= [0,190] on average.

For acceleration of the ADMM, we use 4 inner CG iterations for ptychography and tomography
problems, and the ADMM outer iteration limit is set to 250. Early termination is a common practice to
accelerate the ADMM solution; see the review in [5] and more detailed analysis for our application in [2].
Further accelerations can be possible by varying the penalty parameters ρ and τ dynamically during the
ADMM iterations [5, equation (3.13)].

5.2. Simulation results
In this section, we demonstrate the effect of learned priors for the joint ptycho-tomography problem via two
3D simulated objects, see figure 4. To quantify image quality degradation, we use the peak signal-to-noise
ratio (PSNR).

In figure 6, we report reconstruction results for the real part of the object, δ, using three different
reconstruction results: (1) the ML estimate (i.e. no regularizer), (2) the MAP estimate with TV prior (i.e.
equation (8) is replaced with a TV prior, see [36]), (3) the proposed method denoted by PnP-GAN. In Rows
1–3, we demonstrate 2D slices of the 3D simulated chip to give the details of the image at different noise
levels, and in the last row, we show the 3D reconstruction for the high-noise simulation. While the first row
of figure 6 corresponds to the well-sampled data at high-noise level, the remaining rows correspond to the
under-sampled data at two different noise levels. While most of the features are recovered with well-sampled
data using a sparse prior such as TV, the reconstructions are blurred. We observe that PnP-GAN not only
removes the artifacts generated by ML, but also denoises images without the blurring effect. Next, we report
reconstructions with under-sampled data in figure 6 to highlight the effect of the proposed method, Rows
2–4. While the features are sharper at I= [0,968], the loss of quality is clear as the noise level increases at
I= [0,123], see Rows 2–4. Without prior knowledge, reconstructions suffer from high noise levels as
confirmed by the low PSNR values in the ML reconstructions. While using TV improves the reconstruction
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Figure 6. Reconstruction results of a typical slice of the 3D synthetic chip of size 64× 512× 512 at different probe intensity levels.
The first row corresponds to reconstructions with 50% probe overlap and 768 projection angles and high noise level. The
remaining rows correspond to reconstructions with 25% probe overlap and 192 projection angles and various noise levels. ML:
the ADMM outer iteration is 250, and inner CG iterations are 4 for each ptychography and tomography subproblem. TV: the
ADMM outer iteration is 250, and inner CG iterations are 4 for each ptychography and tomography subproblem followed by TV
subproblem. PnP-GAN: the ADMM outer iteration is 250, and inner CG iterations are set to 4 for each ptychography and
tomography subproblem followed by TomoGAN subproblem.

quality compared to the ML reconstructions, the blurring effect is still visible in all reconstructions. On the
other hand, PnP-GAN improves reconstruction quality with the help of iterative denoising and generates
sharp images with significantly higher PSNR values.

In this paper, our main focus is to generate good-quality reconstructions under limited and noisy
measurement data. Therefore, in the next experiment, we only demonstrate reconstructions with
under-sampled data where the probe overlap is 25% and the object is rotated 3N/8 times at regular intervals
from 0 to π. Reconstruction results for δ are reported in figure 7 using ML, MAP (with TV), and the
proposed PnP-GAN methods. The first two rows of figure 7 demonstrate 2D slices of the 3D simulated chip
to provide the details of the image at low- and high-noise levels, and in the bottom row, we show the 3D
reconstruction for the high-noise simulation. The imaging artifacts in ML when there is no prior
information or regularization is due to the combination of under-sampling artifacts in tomography (also
known as the streaking artifacts) and measurement noise in diffracted measurements. TV regularization
partly compensates for the high-frequency artifacts in images but a residual artifact pattern is still visible
unless the regularization parameter is selected to be too high. PnP-GAN can successfully recover a
good-quality image as demonstrated visually and through a high PSNR.

Simulations show that the proposed method can decrease the total number of projections by 75% based
on Nyquist sampling with significantly fewer overlapped regions while generating good quality
reconstructions. Although small artifacts are introduced in the reconstructions with under-sampled
measurements at high noise levels, the proposed method still gives the highest PSNR value. The
reconstructions can be further improved by extending the training data or using different
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Figure 7. Reconstruction results of a slice of the 3D synthetic phantom of size 64× 512× 512. We use 25% probe overlap and 192
projection angles and two different noise levels. ML: the ADMM outer iteration is 250, and inner CG iterations are 4 for each
ptychography and tomography subproblem. TV: the ADMM outer iteration is 250, and inner CG iterations are 4 for each
ptychography and tomography subproblem followed by TV subproblem. PnP-GAN: the ADMM outer iteration is 250, and inner
CG iterations are set to 4 for each ptychography and tomography subproblem followed by TomoGAN subproblem.

deep-learning-based denoisers. Our goal is not to favor a single deep-learning-based denoiser, but to
introduce a generic framework that integrates such learned priors into the ADMM framework to remove the
unique type of noise in ptycho-tomography problem.

To give some perspective for the computational performance of the proposed method, consider the
second numerical experiment with the object size of 180× 512× 512 and detector size of 128× 128. We
implemented the main solvers using CUDA and accelerated their computations with NVIDIA RTX 2080
GPUs. The total time for recovering the image is around 10 h when we set the outer ADMM iterations to 250,
inner CG iterations to 4 for ptychography and tomography subproblems and an additional denoiser step at
each ADMM iteration.

In the remaining of this section, we want to show the advantage of using PnP-GAN as opposed to
ML-GAN where TomoGAN is used as a postprocess denoiser. In ML-GAN, we first solve the joint
ptycho-tomography problem using the ADMMmethod as in [2]. Then, TomoGAN is applied to the
resulting reconstruction as a postprocess denoiser. To be consistent with the experiments in this paper, we
also set the ADMM outer iteration to 250, and inner CG iterations to 4 for each ptychography and
tomography subproblem. On the other hand, PnP-GAN splits the joint problem into three parts:
ptychography, tomography and denoiser where learned priors are used for iterative denoising at each
iteration of the ADMMmethod. The reconstruction results are shown in the figure 8. While ML-GAN can
generate decent reconstructions with well-sampled data, the reconstruction quality highly depends on the
noisy input of the image. Therefore, the degradation in image quality is severe when using under-sampled
and noisy measurement data. On the other hand, PnP-GAN iteratively denoises the input image, and
improves reconstruction quality even at high noise levels. This is potentially due to the nature of the iterative
optimization process, where earlier iterations are less noisy and a tunable GAN model is effectively
enhancing the image without generating artificial artifacts. In fact, the effect of learned priors is more drastic
at high noise levels because the small features in the ML estimate are hardly separable from the background.

5.3. Effect of the denoiser parameter, αk

In this section, we present an empirical study on the effect of the denoiser parameter, αk, based on
reconstruction quality and residual decay using six representative schemes. The goal of this section is not to
provide an optimal denoiser parameter, but to share valuable observations to decide on an effective one.
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Figure 8. Reconstruction results of a slice of the 3D synthetic chip of size 64× 512× 512. We use 25% for I= [0,123]. We use
25% probe overlap and 192 projection angles. ML-GAN: the ADMM outer iteration is 250, and inner CG iterations are 4 for each
ptychography and tomography subproblem, and TomoGAN is applied as a postprocess. PnP-GAN: the ADMM outer iteration is
250, and inner CG iterations are set to 4 for each ptychography and tomography subproblem followed by TomoGAN subproblem.

Figure 9. The reconstruction results for the corresponding αk values.

In figure 9, we give the α-schedules and reconstructions with corresponding αk values. To demonstrate
reconstruction quality, we provide 2D slice of the simulated chip for each denoiser parameter and report the
PSNR value on each image. In some cases, we observe that MSE loss in TomoGAN causes some peak
amplitude information to be lost since it tries to fit the average. However, this loss does not affect the image
quality notably as it is confirmed with relatively high PSNR values.

To highlight the effect of the denoiser parameter on convergence, we also monitor the optimality
conditions for the ADMM problem, which are the primal and dual feasibility. For our problem, the primal
residuals for the two constraints at iteration k+ 1 are defined as follows:

rk+1
1 =Hxk+1 −ψk+1 and rk+1

2 = xk+1 − ηk+1, (22)

which we call the first and second primal residuals, respectively. In addition, we define the residual for dual
feasibility at iteration k+ 1 as follows:

sk+1 =Hxk+1 −Hxk; (23)

see [2, section (2.3)]. In figure 10, we show the residual decays for each αk values.
To summarize, we conclude that we obtain poor reconstructions in the early ADMM iterations for the

joint ptycho-tomography problem using the general PnP denoising operator in equation (20), α1. Hence,
reducing the denoiser effect is essential in the first few tens of outer ADMM iterations. Furthermore, we
observe that solving ψ and x subproblems higher number of inner iterations does not improve the
reconstruction quality in the early ADMM iterations and denoiser parameter is still needed. Next, we
implement the denoising operator only incrementally and maximize the denoiser effect as a postprocessing
step in the final iteration. This selection not only gives one of the highest PSNR values but also gives the
fastest convergence behavior, as can be confirmed in figure 10. While α5 also generates good-quality
reconstructions, we observe that the oscillation in αk values leads to oscillation in the residual decays. Our
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Figure 10. Residual decays for the corresponding αk values.

observations show that an effective denoiser parameter satisfies the convergence criteria and produces
good-quality reconstructions. We obtain reconstructions with high PSNR values in both experiments using
the same denoiser parameter, α6. While denoiser parameter requires tuning, the observations presented in
this paper are applicable to other applications as well.

6. Discussion and conclusions

In this paper, we derive a generic reconstruction framework for solving the joint ptycho-tomography
problem with learned priors. The framework splits the joint problem into three parts: ptychography,
tomography, and a learned denoiser. The PnP framework is proposed as a flexible way to add state-of-the-art
priors to the ADMM. For the joint ptycho-tomography problem, however, these denoisers are not effective
because of the different noise characteristics in reconstructions. To this end, we adopted a Poisson process to
accurately model our measurements, and further improve reconstruction quality with deep generative
models as priors.

A popular way to speed up the ADMMmethod is through early termination of the subproblems. In our
previous work [2], we observed that by solving only a few iterations of ptychography and tomography
subproblems, we obtained good-quality reconstructions. In this work, we showed that the general PnP
framework leads to poor denoising visible as big white blocks in the reconstructions; see α1 and α4 in
figure 9. In our simulations, we discuss the importance of the denoiser parameter and introduce an empirical
way to control the denoising process. Even though an optimal selection rule is challenging because of the
nonconvex nature of the problem, this empirical strategy allows to obtain good results and maintains a
robust inversion.

Another way to improve the time-to-solution performance of the ADMMmethod is to use
high-performance many-core architectures, such as GPUs. Depending on the algorithm used, the solution of
each subproblems defined in our framework can require significant computational throughput [3, 36]. In
our work, we implemented the main solvers using CUDA and accelerated their computations with NVIDIA
RTX 2080 GPUs. Similarly, we implemented TomoGAN in TensorFlow, which can be ported to and executed
on variety of GPUs, for efficient training and inference operations. While our code is not yet optimized or
parallelized, the approach is scalable [35, 36] and there are available software frameworks that we can
translate our approach to significantly improve runtimes [55]. We plan to further improve the
computational performance of our solvers and intermediate steps using the methods introduced in our
previous works [4, 22] and provide a comprehensive evaluation in a future work.

In this work, we focused on under-sampled and highly noisy measurements where we reduced the probe
overlap to 25% and projection angles to 3N/8. Hence, we decrease the total number of projections by 75%
compared with well-sampled data. Our simulations show that we can successfully resolve features at high
noise level. While a serial approach of using TomoGAN for denoising after reconstruction improves
reconstruction quality at lower noise levels, the degradation in image quality is substantial at high noise. In
addition, our proposed framework generates a reconstructed object with minimal loss in the quality.

We demonstrated the effectiveness of the framework using synthetic 3D images from under-sampled and
noisy measurement data. It should be noted that ptycho-tomography is a relatively new 3D coherent imaging
technique and instruments and thus collecting experimental data is not always available for validation
studies. For example, at the Advanced Photon Source today, there is no dedicated beamline to
ptycho-tomography for general users. While this situation will change soon with the upcoming upgrades of
the diffraction limited storage rings at multiple light source facilities worldwide, there are other common
challenges in order to work with experimental data that we have not considered in writing this manuscript.
For example, because the spatial resolution is on the order of nanometers, it is challenging to precisely know
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the position of the measurement geometry. This is a research field by itself, and there are numerous
numerical methods to estimate those positions of the data points (also known as the geometrical data
alignment or probe position correction; e.g. see [19, 31] and references therein), however those are
additional inverse problems and add complexity to the understanding of the learned image priors in the
context of ptycho-tomography inverse problem. Naively, we think that those geometrical estimation
problems can be solved by introducing an additional set of new auxiliary variables in equation (4). by solving
those inverse problems as part of a larger joint solver, however, we leave this work as a future investigation.

Similar to other supervised learning methods, PnP-GAN technique is only applicable when a training
dataset is available. This requires either knowing of the expected structure in the images before data is
acquired or collecting a representative high-quality dataset (through oversampling) for training the model.
While this may not be applicable to all types of samples or specimens, there are key applications that we think
will benefit from this supervised approach. For example, the blueprints of integrated circuits (i.e. the GDS
file that layouts the design of the chips) could be used to train the model before the experiment, and then the
model can be used as part of our framework during image reconstruction. Another potential application
could be brain imaging, where the training can be performed from data collected at an electron microscope.

Even there is training data available, it is always finite and often is not completely representative of the
whole set of images that are being reconstructed. Because these types of samples have repeating components
or structures, our main concern of using GANs as priors is the bias to learned patterns, because sometimes
GAN can create imaginary structures (i.e. image artifacts) from arbitrary noise patterns [16]. To evaluate
this effect, we performed numerical tests to evaluate this bias. We removed reasonably small wires (rectangles
in figure 4(a)) to break the possible learned pattern of the arrangement of wires and check if the network
would add those wires back during reconstruction to preserve their arrangement. To our surprise, we have
not observed such imaginary artifacts as we may expect at high noise levels. We think this behavior could be
explained by the joint (and iterative) solution strategy. Earlier iterations in tomographic reconstruction
create blurry but less noisy reconstructions, therefore, the model is not affected by measurement noise as it
would be affected in a single image denoising application. We think this may be one of the main advantages
of our approach and we believe using GANs as part of an iterative optimization technique may be applicable
to other types of imaging modalities as well. As a side note, we also observed through numerous numerical
tests that scaling up or down image features does not affect from a potential bias to size of the structures. This
is more understandable because we use data augmentation through rotation and scaling for enriching the
training data. Ultimately, we conclude that this approach is potentially applicable and can provide improved
results if the samples are reasonably sparse such that a well-represented training data can be generated.
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