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Abstract
Single-molecule force spectroscopy (smFS) is a powerful approach to studying molecular
self-organization. However, the coupling of the molecule with the ever-present experimental device
introduces artifacts, that complicate the interpretation of these experiments. Performing statistical
inference to learn hidden molecular properties is challenging because these measurements produce
non-Markovian time series, and even minimal models lead to intractable likelihoods. To overcome
these challenges, we developed a computational framework built on novel statistical methods
called simulation-based inference (SBI). SBI enabled us to directly estimate the Bayesian posterior,
and extract reduced quantitative models from smFS, by encoding a mechanistic model into a
simulator in combination with probabilistic deep learning. Using synthetic data, we could
systematically disentangle the measurement of hidden molecular properties from experimental
artifacts. The integration of physical models with machine-learning density estimation is general,
transparent, easy to use, and broadly applicable to other types of biophysical experiments.

1. Introduction

Single-molecule experiments provide an invaluable tool for understanding how molecules self-organize in
cells and complex materials [1]. These experiments quantify the dynamics of individual molecules, capturing
their heterogeneity and stochasticity. They are instrumental in understanding molecular self-assembly
phenomena, like folding, the process by which proteins, nucleic acids, and other polymers form well-defined
3D structures.

Single-molecule force spectroscopy (smFS) is a powerful approach to investigating the microscopic
mechanisms of folding and other structural rearrangements [2]. It can reveal folded and unfolded states,
short-lived intermediates, characterize the transition paths connecting metastable states and binding and
unbinding events [3–11]. Typically, a globular biomolecule will mainly populate its folded state and only
rarely unfold and refold again. In smFS, two handles are attached to the biomolecule and used to apply
mechanical tension to it (figure 1(a)). Normally, devices such as optical tweezers, magnetic tweezers, and
atomic force microscopes are used to generate force. This tension destabilizes the folded state and promotes
unfolding. In experiments at constant force, the biomolecule is in quasi-equilibrium and repeatedly unfolds
and refolds. By monitoring an order parameter, e.g. the molecule’s extension, we could obtain a
one-dimensional time series showing hopping between the folded (low extension) and unfolded (high
extension) states (figure 1(b)). We could then estimate the populations and lifetimes of each state as a
function of the applied force [12–15].

However, the influence of the measuring apparatus—a pulling device attached to the small molecule via
long flexible linkers (figure 1(a))—significantly affects the measurements and complicates a quantitative
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interpretation of smFS. Ideally, we would directly monitor the dynamics of the molecular extension x and
measure a time series xt . In practice, we have only access to the measured extension q (figure 1(b)), a
combination of the molecular and linker extensions. The measuring apparatus is a mesoscopic object, much
larger and slower than the molecule. The linkers are flexible and respond relatively slowly to forces.
Therefore, the time series of the measured extension qt reports only indirectly on the molecular extension.
Ignoring this effect leads to significant artifacts [16–24].

Ingenious methods exist to disentangle measuring artifacts from measurements [25–28] or to reduce the
apparatus’s distortion [29, 30]. Yet, these methods are often challenging to apply or lack generality. Some are
only valid if the diffusion coefficient of the pulling device is as fast as the molecular one, which is generally
not true. Formulating a general and systematic framework to extract reduced quantitative models from smFS
that recapitulate the molecular thermodynamic and kinetic properties is still an open challenge [2].

Simulation-based inference (SBI) is a powerful technique to perform Bayesian inference to connect
observations to mechanistic models [31]. SBI is particularly suited for systems with an intractable likelihood,
i.e. with no closed analytical form, and computationally expensive to evaluate [32]. The main idea is to
encode a parametric mechanistic model of an experimental observation into a simulator. Given specific
parameter values, the simulator produces synthetic data. Parameters that lead to synthetic data close to the
original observation are the most plausible ones explaining it. Advances in density estimation due to neural
networks and deep learning enabled a new generation of powerful SBI methods, which produce surrogate
models of the likelihood or posterior using simulated data [33]. SBI is a general approach [34, 35] and a
growing field with broad applications ranging from particle physics [36] to cosmology and astrophysics
[37–40], nuclear fusion [41], genomics [42], and neuroscience [43, 44].

Here, we develop a computational framework that performs Bayesian inference to build quantitative
models from smFS experiments at constant force. The purpose of this work is to show how SBI can be
applied to smFS and demonstrate its usefulness on challenging examples. We show how we can easily extract
hidden molecular properties using only the measured time series qt . We overcome the intractable likelihood
problem by using neural density estimation to directly estimate the Bayesian posterior. Our approach is
general, conceptually transparent, easy to use, and broadly applicable to other biophysical experiments,
which require analyzing measurements with intractable likelihoods.

2. Methods

2.1. Theoretical model of smFS experiments
The harmonic-linker model is a well-established model of smFS experiments [21, 23, 45]. In this model, a
two-dimensional free energy surface describes the combined system of molecule and apparatus. The
molecular (hidden) extension x is defined as a distance between two amino acids in the protein to which the
linkers are attached. A smFS experiment returns the measured extension q, which reports the distance
between the molecular linkers connecting the molecule and the experimental apparatus. The free energy
surface G(q,x) is:

G(q,x) = G0(x)+
κl

2
(x− q)2. (1)

The first term G0(x) describes the molecular free energy profile and implicitly includes the constant pulling
force of the apparatus applied in smFS experiments at constant-tension. We considered several models for
G0, as explained in the next section. The second term describes the spring-like coupling of the molecule to
the apparatus by the linker. The parameter κl describes the stiffness of the linker, and (x− q) is the linker
extension. We assume that the diffusion is position independent and anisotropic, Dx ̸= Dq. Whereas Dx is a
molecular property, Dq characterizes the dynamics of the mesoscopic pulling device.

We obtained trajectories describing the time evolution the system from an initial position by simulating
Brownian dynamics on the free energy surface G(q,x). In the simulations, the system will spend most of the
time in one of the metastable states while only rarely jump between them (figure 1(b)). To mimic the
situation of a smFS, we kept only the measured trajectories qt .

In practice, for the model parameters to be physically meaningful and to have a direct comparison with
the experimental measurement, one should match the units of Dx, Dq, and q with the experimental one, as
well as the frequency at which the data are recorded.

2.2. Models of the molecular free energyG0(x)
We used various models to describe the one-dimensional molecular free-energy profile G0(x).
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Figure 1. Schematic modelling of a smFS experiment at constant force. (a) Experimental setup. The red spheres represent the
mesoscopic beads that are used in optical tweezer experiments to apply force. The molecule of interest (blue) is attached via
flexible polymer linkers (green) to the pulling device. The measured extension q includes the length of the polymer linkers plus
the extension of the molecule. (b) A time series qt modelling an observation from a smFS experiment at constant force. The
bi-stable trajectory shows rapid stochastic transitions between two states. (c) Example of the two-dimensional free energy surface
G(q,x). Isolines are drawn every 1 kBT. The black curve shows a representative trajectory transitioning between the states. The
upper panel shows the molecular free energy profile G0(x), with a high hidden barrier of∆G‡ = 8 kBT. The right panel shows the
observed free energy G(q)—the potential of mean force along q—with a projected barrier height of approximately 2.5 kBT.

2.2.1. Symmetric-double-well
In the simplest case, the molecular free energy profile consists of a symmetric bi-stable double-well

G0(x) = ∆G‡ · f(x/x‡) , (2)

where

f(x) =

{
−2x2 for 0⩽ |x|⩽ 1/2
2(|x| − 1)2 − 1 otherwise,

(3)

with∆G‡ the energy barrier between the two minima at x= 0. The two meta-stable states are positioned at
x=±x‡ and represent, for instance, the folded and unfolded states of a protein. We set x‡ = 1.5 [q] in all
simulations. For this model, the parameters that enter the prior and posterior are θ = {∆G‡,Dq/Dx,κl}.

2.2.2. Two- and three-well states surfaces
To follow a more general approach, we modelled the full two-dimensional free energy surface G(q,x) using
the negative logarithm of a linear combination of two-dimensional Gaussian functions. We did not have to
explicitly define the potential of the linker molecule, which is implicitly encoded in the relative configuration
of the Gaussians. We defined:

G(q,x) =−kBT ln

{
K−1∑
i=0

ωi

2πσq,iσx,i
exp

(
− (x− xi)2

2σ2
x,i

− (q− qi)2

2σ2
q,i

)}
, (4)

where qi and xi are the positions of the minima of the different states, and σq,i, σx,i their widths, along q and
x, respectively. The ωi are the weights of the different states, with

∑
i ωi = 1.

We used three states to construct a nested model. The states where positioned along q at q0 = q2 =−0.75
and q1 = 0.75. Thus, two of the states (i = 0,2) overlapped along the measured extension. We inferred the
x-position of the second and third states (i = 1,2), while the first state was kept fixed at x0 =−1.5. We set
the weight for each state such that the projected free energy G(q) is the same symmetric double-well. The
weight of the second state was set to ω1 = 0.5, while the weight of the first and last state are set to ω0 = ω and
ω2 = 0.5−ω. Changing ω the weight between the first and last states changes, while keeping G(q) constant.
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2.2.3. Rough double-well
To investigate the effect of moderate model misspecification, we produced synthetic experimental time series
qt generated from a rough (noisy) version of the symmetric double-well potential introduced in the previous

section: Grough
0 (x) = G0(x)+ η(x). The perturbation function η(x) is a sum of different sinus functions, with

different amplitudes ai, frequencies bi, and phase shifts ci, i.e. η(x) = A
∑N−1

i=0 ai sin(bi x+ ci). We constructed
random realizations of this rough potential by drawing the parameters from uniform distributions. The
factor A is a scaling constant controlling the amount of noise added to the molecular free energy profile, and,
therefore, the deviation from the idealized profile G0(x). We set A= 0.7 and N = 15 for all simulations.

2.2.4. Flexible spline profile
We used a cubic spline interpolation from the GNU Scientific Library to build a flexible model of the
molecular free energy profile G0(x). We selected 15 points {(xi,G0(xi))}14i=0, equally spaced out along the
x-axis, and connected them pairwise with a third degree polynomial: G0(x) = ai · x3 + bi · x2 + ci · x+
di ∀ x ∈ [xi,xi+1]. The first two and last two nodes had fixed values to avoid the system escaping the energy
wells. The first and last node had a fixed values of G0(x0) = G0(x14) = 70 kBT, the second and second last
G0(x1) = G0(x13) = 30 kBT.

The values of G0(xi) for the inner eleven spline nodes i ∈ {2, . . . ,12} specify the details of free energy
profile. Every new simulation propagates the system on a different spline G0(x). Therefore, for this system,
the parameters that enter the prior and posterior are θ = {G0(x2), . . . ,G0(x12),Dq/Dx,κl}. After training, we
sampled the posterior and aligned the free energy profiles, which are defined up to an additive constant.

2.3. Details of the simulator
The simulator integrated the equations of motion according to Brownian dynamics (over-damped Langevin)
on a free energy surface G(q,x). We used the the Euler–Maruyama integration scheme

q(t+∆t) = q(t)−β∂qG(q,x) ·Dq∆t+
√
2Dq∆t ·Rq(t) (5)

x(t+∆t) = x(t)−β∂xG(q,x) ·Dx∆t+
√
2Dx∆t ·Rx(t) , (6)

where Dx and Dq are the diffusion coefficients along the q and x-axis, respectively, and Rq(t) and Rx(t) are
uncorrelated Gaussian random numbers with zero mean and a unit variance. We set the integration time
step in all simulations to Dx∆t= 5× 10−4. We decimated the raw trajectories to get time series reproducing
synthetic experimental data for the measured and molecular extensions, qt = {qt∆τ}Mt=1 and xt = {xt∆τ}Mt=1,
respectively, savingM time frames every∆τ . For the symmetric double-well and the Langevin models we
savedM= 108 frames, saving every∆τ = 100; for the nested modelM= 2× 107 frames, saving every
∆τ = 50; and for the cubic spline modelM= 106, saving every∆τ = 100.

For the under-damped Langevin simulations, we used the Langevin integrator in OpenMM [46]. We set
the temperature to 500K, the mass to 10−3 atomic units, and the timestep to 5× 10−4 ps.

2.4. Time series featurization
Time series are structured (very) high-dimensional data, which cannot be directly used to perform neural
density estimation. We must therefore project the original data qt on a medium-dimensional set of features
y= y(qt). We can either use summary statistics, which might be already available in a given scientific
domain, or use an additional neural network that extracts features from the data, e.g. an encoder. Here, we
chose to use summary statistics.

For the double-well models, we described each time series qt with 25 features yi. We used the number of
observed transitions between metastable states per unit time—an estimate of the microscopic rates—the first
four statistical moments of the distribution of observed positions ρ({qi}), and of the distribution of
displacements ρ({∆qk}), with∆qk = qi+k − qi calculated at five different lag-times
k= [1,10,100,10000,100000]. We estimated the number of transitions based on changes in the running

mean qi = 1/w
∑w/2

j=−w/2 qi+j. The parameter w determines the window size and affects the estimate of the
number of jumps. However, the final inference does not strongly depend on the estimated rate.

For the complex spline model, we used the transition matrices Tij(∆τ) for different lag times∆τ as
summary statistics. To compute the transitions matrix Tij(∆τ) the trajectory qt was binned in 20 equally
spaced bins. For each lag time, we populated the transition matrix counting the transitions between bins i
and j. The matrix was normalized to one along the columns. We computed the transition matrix for the lag
times∆τ = [1,10,100,1000,10000,100000]. We did not use the rate as a feature for simulations obtained on
the complex spline molecular free energy profile.
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2.5. Details of SBI
We used SBI to perform Bayesian inference with an intractable likelihood [31]. In particular, we used neural
posterior estimation (NPE) [47], where we approximate the posterior p(θ|y(qt)) from simulated data with a
neural network-based conditional density estimators fϕ(θ|y(qt)). The neural network model can vary
depending on the specific problem. We used mixture density networks (MDNs) and normalizing flows.

Relatively simple posterior distributions can be approximated with MDNs [48]. MDNs are a general
framework to approximate conditional densities with a superposition of K Gaussians,

fϕ(θ|y) =
K∑

k=1

αkN (θ|mk,Sk), (7)

where the meansmk, covariance matrices Sk and mixing coefficients {αk} are all non-linear functions of the
observation y, approximated by a neural network of parameters ϕ. To train the network, we maximised the

average log probability 1
N

∑N
i=1 log fϕ(θ

(i)|y(i)(q(i)t )) w.r.t. ϕ on the training setD = {(θ(i),y(i)(q(i)t )}Ni=1.
For more complex models, we instead used normalizing flows, an alternative approach to estimating

conditional densities that offer more flexibility [43, 49]. A normalizing flow is a series of invertible mappings
to transform a simple base distribution into a complex target distribution [50]. We used the neural spline
flow, which uses cubic splines parameterized by neural networks to model f ϕ [51]. We used the
implementation of both MDNs and neural spline flows available at the SBI package [47].

We trained both the MDN and the neural spline flow using the Adam optimizer. We adjusted the specific
training settings and hyper-parameters for each problem separately (appendix). We terminated the training
after the validation loss did not improve for a given number of epochs.

2.6. Code
We generated, analysed, and visualized the data with custom code based on NumPy [52], SciPy [53], Numba
[54], Cython [55], Pytorch [56] and Matplotlib [57]. We performed the spline interpolation using the
implementation of the GNU Scientific library [58]. We used the SBI algorithm NPE and the implementation
of the MDN and the neural spline flow from the SBI-Toolkit [47].

3. Results

3.1. Diffusive models of smFS with hidden degrees of freedom
We aim to extract reduced quantitative models from smFS experiments based on a diffusive Brownian
dynamics on a two-dimensional free energy landscape [59]. The experiment will measure the
one-dimensional time series of the measured extension qt = {qt∆τ}Mt=1, recorded with a lag-time∆τ and
containingM data points. The measured extension will indirectly report on the molecular extension,
described by the time series xt = {xt∆τ}Mt=1. Ideally, from xt we could estimate a probability distribution P(x)
at a given force and then get the force-dependent free energy profile G(x) =−kBT logP(x), where T is the
absolute temperature and kB is Boltzmann’s constant. We could also estimate the diffusion coefficient Dx

from the fluctuations of x [59]. In practice, all these quantities are hidden by the compounded dynamics of
the measuring apparatus.

We consider here a well-established minimal model to describe the joint dynamics of the molecule and
apparatus, first introduced by Hummer and Szabo [21, 23, 45], where qt and xt are diffusive processes on the
two-dimensional free energy surface G(q,x) = G0(x)+

κl
2 (x− q)2 (figure 1(c)). The molecule’s extension x

diffuses with diffusion coefficient Dx on the molecular free energy profile G0(x). The measured extension q is
coupled to x by an harmonic linker term, with stiffness κl, and diffuses with Dq. Both parameters describe
the pulling device’s properties. Let us first consider the simple case where G0(x) is an ideal symmetric
double-well, with a barrier of height∆G‡ separating folded and unfolded states. The challenge becomes to
estimate the parameters θ = {∆G‡,Dq/Dx,κl} by using only the measured extension qt . By naively
estimating the free energy profile G(q) from qt , we would obtain a significantly biased value of the free
energy barrier (figure 1(c)).

Bayesian inference provides a general framework to estimate the hidden molecular parameters from the
measured extension. The result of the inference is the posterior p(θ|qt), a probability distribution that
quantifies how much the parameter values are compatible with the observed trajectory qt . The posterior
distribution is given by Bayes’ theorem

p(θ|qt) =
p(qt|θ) · p(θ)´

p(qt|θ
′) · p(θ ′)dθ ′ , (8)
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Figure 2.Workflow of simulation-based inference of smFS experiments. Given an experimental observation q(obs)t , we want to
explain it with a parametric mechanistic modelM(θ), encoded in a simulator. The parameters θ(i) are drawn from the prior

distribution p(θ). The simulator takes parameters drawn from the prior and generates synthetic observations q(i)t . The synthetic
observations and corresponding parameters are used to train a conditional density estimator to approximate the posterior

p(θ|qt). Evaluating the posterior, p(θ|qt = q(obs)t ), we obtain the most plausible parameters explaining a given observation.

where p(qt|θ) is the likelihood of the data given the model, and p(θ) is the prior, which encodes all previous
knowledge of θ. The normalization at the denominator is the model’s evidence.

Even though often parameter inference relies on likelihood optimization, the likelihood is intractable in
many cases of practical interest, even for minimal models. Here, the likelihood for qt is a marginalization
(projection) of the full likelihood, p(qt|θ) =

´
Dxtp(qt,xt|θ), which is a path-integral over all possible

hidden trajectories xt . It is, in general, analytically intractable and computationally costly. This significantly
hinders conventional approaches that require many repeated evaluations of the likelihood or its gradient. SBI
is a powerful way to perform Bayesian inference avoiding the evaluation of intractable likelihoods [31]. NPE,
a specific SBI algorithm, aims to directly estimate the posterior from the data [33, 43, 49].

3.2. NPE of smFS
The main ingredients of SBI are an experimental observation, a simulator, a prior, and a suitable density
estimator (figure 2). The simulatorM(θ) is a computer program encoding a parametric model that should
explain the observed data. The simulator implicitly encodes the model’s likelihood—even if intractable. For
any parameter choice θ(i), the simulator samples the implicit likelihood producing synthetic data

q(i)t ∼M(θ(i)), which, ideally, should reproduce the experimental observation q(obs)t . Drawing N parameter

6
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Figure 3. Neural posterior estimation of smFS at constant force. (a)–(f) Posterior marginal distributions trained on 600
(a)–(c) and 6000 (d)–(f) simulations. All posteriors are evaluated on the same observation, which was computed with the true
parameters indicated by the red vertical lines. The blue shaded area represents 68% of the marginal density, corresponding to a 1σ
confidence interval. The insets show a zoom-in of the posterior marginals. (g)–(i) Posterior marginals as a function of increasing
numbers of simulations. For each number of simulations, we trained ten independent posteriors using different training data.
The blue line represents the average of the mean of the posteriors, while the blue shaded area is the average of the 1σ confidence
intervals. The observation was generated with the true parameters indicated with the horizontal red line. (j) Difference between
best estimate and true molecular barrier height as a function of increasing true barrier height. The synthetic observations varied
only in the barrier height, while we kept log(Dq/Dx) =−1 and κl = 2 kBT[q]−2 fixed. We used the mean of the posterior as the
best estimate (blue line). (k) Difference between the best estimate and true molecular barrier height∆G‡ = 7 kBT as a function
of the ratio of diffusion coefficients (blue line). Difference between the best estimate and true linker stiffness κl = 2 kBT[q]−2 as a
function of the ratio of diffusion coefficients (green line). We estimated the 1σ confidence interval as the 68% of the posterior
marginal density.

samples from the prior p(θ), the simulator produces a data-setD = {(θ(i),q(i)t }Ni=1. In NPE, we use a neural
network of parameters ϕ to model a conditional density estimator fϕ(θ|qt) and train it onD. The trained
network is a surrogate of the posterior. It allows us to perform inference for any given observation,

p(θ|qt = q(obs)t )≈ fϕ(θ|qt = q(obs)t ), at a negligible computational cost.
We applied NPE on synthetic constant-force smFS experiments to extract quantitative models and

studied how well the inference matched the ground truth parameters. In every numerical experiment, we ran
Brownian dynamics on G(q,x) with a given set of true parameters θ(o) to obtain a synthetic observation

q(obs)t . We discarded the corresponding hidden time series xt and projected all time series qt on a
medium-dimensional feature space (see Methods for more details). We used a uniform prior p(θ) defined in
a reasonable range of values.

NPE extracts hidden parameters from incomplete observations with high accuracy and precision. In the
first computational experiment, we trained the posterior on only 600 Brownian simulations
(figures 3(a)–(c)). To visualize the inference’s quality, we plot the marginal posterior distributions of every

single parameter θi, having integrated out all the remaining ones, p(θi |qt = q(obs)t ) =
´
p(θ|qt = q(obs)t )·∏

j̸=i dθj. The inference is remarkably good, especially for Dq/Dx and∆G‡. The posterior’s peak is close to
the true values for all three parameters. The posterior’s spread provides the uncertainty of the inference.
While this is reasonably precise for∆G‡ and Dq/Dx, it is not for κl. Reducing the uncertainty requires more
simulated data. Training over 6000 Brownian trajectories led to an exceptional inference (figures 3(d)–(f)).

Obtaining high-quality inference is computationally efficient. We studied the inference quality as a
function of the number of simulations (figures 3(g)–(i)). A few thousand simulations are sufficient to
provide very good estimates of all three parameters. Dq/Dx is the most accessible parameter to extract,
probably because contained in the statistics of local fluctuations. The stiffness κl is the most challenging
parameter to extract, and its uncertainty decreases significantly only after approx. 1000 simulations.
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Figure 4.Model comparison. (a) We compare the inference of an observation using a two- or three-state models. In the latter, one
state is hidden due to the projection on q. The molecular free energy profile G(x) shows two and three states, whereas G(q) is the
same and only exhibits two states. (b) Brownian simulations in the three-state model show jumps between three states in x, but
only two states in q. (c), (d) Posterior marginals obtained by NPE trained on simulations of a nested model. In general, the model
contains three Gaussian states. The parameter ω determines their relative weight. For ω= 0.5, the model contains only two

Gaussian states. (c) Marginals of the posterior p(θ|qt = q(3)t ), evaluated on a synthetic observation produced by a three-state

model. p(ω) favours a three-state model to explain this observation. (d) Marginals of the posterior p(θ|qt = q(2)t ), evaluated on a
synthetic observation produced by a two-state model. p(σ2) and p(x2) are dashed because not necessary.

3.3. Amortized inference
Having trained a neural network to approximate the conditional posterior, we can perform inference for new
observations without running any additional simulations. The inference is amortized. Further posterior
evaluations only require a forward pass of the trained network, which takes milliseconds.

We used the posterior trained over 60 000 simulations and systematically investigated the inference’s
quality. The estimate of the hidden barrier height is excellent for values between 4 and 13 kBT (figure 3(j)).
Lower barriers do not produce clear transitions between the two states. Larger barriers cause poor transition
statistics in the training set. Yet, the most significant error is only a fraction of kBT. We could obtain excellent
estimates of the barrier height and linker stiffness varying Dq/Dx over four orders of magnitude
(figure 3(k)). The quality degrades for very small values of Dq. These data show that SBI allows us to extract
accurate diffusive models from synthetic data of smFS experiments over a broad range of parameters.

3.4. Hidden states andmodel comparison
Bayesian inference enables model comparison, quantifying how well two alternative modelsM1 andM2

explain the observed data. Usually, this comparison relies on the calculation of the Bayes factor, defined as
the ratio of the models’ evidences introduced in equation (8). Intractable likelihoods—like in our
case—hinder calculating Bayes factors. Here, we performed model comparison by formulating nested
models, whereM1 is a particular case of the more general modelM2.

An interesting question in the context of smFS is whether we can detect a hidden metastable state. By
measuring a single quantity—the observed extensions q—we project an inherently high-dimensional
dynamical system on a one-dimensional coordinate. If the projection of two states leads to similar values of
q, we might not resolve one of them.

To investigate this problem in a simplified setting, we considered two alternative models,M1 andM2.
M1 is defined by free energy surface G1(q,x), which contains two states (figure 4(a)). The first state is
centered at (q0,x0), while the second is at (q1,x1). This model is very similar to the harmonic-linker model
studied in the previous section, with the linker implicitly modeled by the relative position and the width of
the two states. We then considered a modelM2 with the surface G2(q,x), defined by three states. The two
bottom states are centered at the coordinates (q0,x0) and (q0,x2); and the top state is centered at (q1,x1)
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Figure 5.Model misspecification. (a) Best inference assuming an idealized symmetric double-well (blue line), evaluated on a
synthetic observation produced by a rough molecular profile Gr

0(x) (red line). (b) and (c) Marginal posterior distributions (blue
lines) for the ratio of diffusion coefficients and linker stiffness, respectively. Red lines indicate the parameter true values, while
blue shaded areas indicate a 68% confidence interval.

(figure 4(a)). In the two bottom states, the molecular extension takes different values x0 and x2, but both are
projected on the same value q0 (figure 4(b)). The time series of qt produced by both modelsM1 andM2

describe a hopping process between only two states. Can an inference tell us whether a two-state model is
enough to explain the observed data or if we need a three-state one?

The posterior trained on a nested model enables us to choose between models of different complexity.
We trained a conditional posterior p(θ|qt) using Brownian simulations on a free energy surface G(q,x)
defined by a linear combination of three Gaussian distributions (equation (4)). The model’s parameters are
{xi,σi} for i = 1,2, which describe location and width, and the mixing coefficient ω, which determines the
relative weight between the states. This model contains, in general, three states, likeM2, but for ω = 1/2 it
reduces to the simpler two-state modelM1. We compared the posterior of a synthetic observed time series

produced from the three-state model, p(θ|qt = q(3)t ) (figure 4(c)), and one produced with a two-state model,

p(θ|qt = q(2)t ) (figure 4(d)). In the first case, the marginal posteriors peak around the true values for all
parameters of the three Gaussians. Also, the marginal of ω indicates that we need a three-state model to make

an inference on the q(3)t observation. In the second case, instead, the posterior is sharply peaked around
ω = 1/2, indicating that a two-state model is sufficient.

3.5. Robustness to model misspecification
SBI performs an excellent inference if the synthetic observed data are produced by the same model that we
encoded in the simulator. But what happens if this is not true? In reality, our model will only be an
approximation of the process that produced the experimental observation.

A moderate model mismatch slightly degrades the estimate’s accuracy. If a rough two-state curve

Grough
0 (x) generated qobst , performing inference with the posterior trained assuming a smooth symmetric

double-well model will return the best fit to the true curve (figure 5(a)). The estimated Dq/Dx is very
accurate since this quantity depends only on local fluctuations (figure 5(b)). The estimated κl is close to the
true value (figure 5(c)). However, the posterior severely underestimate the uncertainties. It is too narrow and
does not include the true value of κl. We also considered misspecification of the system’s dynamics. Making
an inference on synthetic observations produced with inertial dynamics (under-damped Langevin), while
assuming a diffusive one, leads to good results in the limit of high friction (supplementary data figures
7(a)–(c)), but breaks down for low friction (supplementary data figures 7(d)–(f)).

SBI provides tools to diagnose model misspecification. The posterior predictive check reveals whether the
experimental observation is ‘unusual’ compared to the simulated data (supplementary data figures 8 and 9).
If so, the inference should not be trusted. Synthetic observations produced with the rough double-well or an
inertial dynamics are atypical compared to simulations performed in the smooth symmetric double-well
with Brownian dynamics (supplementary data figures 10 and 11).
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Figure 6. Amortized and sequential SBI of complex free energy profiles. (a) Best inference of a complex hidden molecular free
energy profile G0(x). The true hidden profile is indicated in red, while the best estimate obtained from an amortized and
sequential inference in blue and dashed black, respectively. Best estimate and error bars are the mean and the 68%marginal
density of the posterior, respectively. The inset shows a representative trajectory qt . (b) Posterior marginal as a function of the
ratio of diffusion coefficients, and (c) the linker stiffness. The inset in (b) shows a zoom-in.

3.6. Inference of complex free energy landscapes
Having proven the potential of the SBI approach, we aimed to making inferences of more realistic free energy
profiles. Describing folding and other conformational rearrangements generally requires profiles presenting
several long-lived intermediates and barriers of different heights. We considered a new class of models for
G0(x) using polynomial splines. These allow for greater flexibility than the models considered so far, albeit at
the cost of increasing the parameter space, requiring 11 parameters corresponding to the height of the nodes.
The total dimension of θ is now 13.

Despite the increased complexity, SBI successfully extracts complex hidden molecular free energy
profiles. We trained a posterior on simulations performed with the flexible spline model of G0(x), and
extracted profiles with an average error smaller than a kBT (figure 6(a)). The estimate is also very good for
the diffusion coefficients of the linker stiffness (figures 6(b) and (c)). The inference is amortized, and allows
us to show without further simulations that we can extract G0(x) over a broad range of parameters
(supplementary data figure 12). Notably, the spline model does not require defining the number and location
of states and barriers. Both are automatically extracted from the observed time series. We obtained this result
training on 1.5 million simulations. Whereas for our minimal model this required only a few days of
simulations, the same might not be possible for more complex simulators.

Sequential SBI is a powerful alternative for computationally expensive simulators, or if we are interested
in making inference on a single observation. In this approach, we iterate between running small batches of
simulations, training a posterior, and using this posterior as a proposal distribution to initiate new
simulations. This is a form of active learning: the algorithm autonomously learns where it should run
simulations in the parameter space. In 20 iterations, the sequential approach provided an excellent inference
(figure 6), and used only 30 000 simulations—2% of the simulations used for the amortized posterior
(supplementary data figure 13).

4. Discussion

Despite their great success, the challenge of extracting quantitative models from partial observations
hampers the full potential of smFS experiments. This challenge is a fundamental inverse problem. We lose
information by projecting a high-dimensional system on a single quantity. Additionally, we measure this
quantity via the mediation of an ever-present experimental apparatus that further distort the measurement.

In this work, we showcased how machine-learning-empowered SBI is a general, conceptually simple, and
powerful technique for addressing these challenges for smFS experiments at constant force. Using synthetic
data, we could extract compact interpretable models of increasing complexity that accurately described
hidden physical processes over a broad range of parameters.
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Model misspecification remains an outstanding problem for every practical inference. One of the clear
advantages of SBI is that it provides a self-contained quality control. Posterior predictive checks can reveal
that the model encoded in the simulator is unsuitable for reproducing the observed data and that the
inference should not be trusted.

The main advantage of our approach is that the inference is amortized. The heavy computational
part—running the simulator with many different choices of parameters—is necessary to train the posterior
but has to be done only once for any given choice of model and priors. Once trained, any new inference
requires only plugging the observation in the trained posterior and performing a forward-pass of the
underlying neural network. Sequential inference offers a powerful alternative in situations where amortized
inference is not feasible or desirable. If prior measurements are available, for example, for the linker stiffness
and its uncertainty, one can encode them in the prior and reduce the parameter search space.

As increasingly more challenging smFS experiments are established, approaches like the one we explored
here, together with non-parametric Bayesian techniques [60], will become more and more crucial.
Identifying mechanistic heterogeneity requires monitoring subtle differences in the transition paths, i.e. how
molecules re-organize between alternative meta-stable states. Transition paths are particularly affected by
kinetic artifacts from measuring devices [22]. With more and more available computational power, it will
soon be possible to use quasi-atomistic molecular dynamics with SBI. The simulator will then explicitly map
trajectories containing molecular structures to measured extensions, keeping into account the specific
position of the linkers, beads, and their physics. Moreover, our SBI formalism could be generalized to
account for incomplete observations from multiple rebinding events [61], force-rupture [45], or other types
of single-molecule experiments.

The main challenge of applying inference schemes to actual experimental data is to model the noise
correctly. Whereas many approaches are often limited to idealized noise models—e.g. Gaussian
distributed—real noise is generally complex. A simulation-based approach like ours can consider any noise
model that can be encoded in a simulator. This includes not only known functions that would frustrate
analytical treatments but also data-driven models of noise obtained, for instance, using machine learning
approaches.

The combination of amortized and sequential inference enables the establishment of so-called
foundation models. These would consist of amortized posteriors trained on complex, realistic simulations of
biophysical experiments, which might require months to simulate and train. Once trained, they can be made
available to the community and serve as the proposal distribution of an inexpensive sequential approach to
fine-tune the posterior to specific experiments or observations.

Intractable likelihoods are very common for many important problems and hinder analytical
investigations. On the other hand, generating synthetic data with high-fidelity simulators is very often
straightforward. By integrating physics-based parametric models with machine learning density estimate,
SBI enables accurate Bayesian inference for models with an intractable likelihood. In this way, it enables us to
consider more complex and realistic models that would be otherwise ruled out due to their mathematical
intractability, with great potential for applications in the quantitative biomolecular sciences.
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Appendix. Priors and hyperparameters

Symmetric double-well
Prior
We chose uniform distributions covering reasonable values based on previous publications [21, 23]:

log10(Dq/Dx)∼ U(−3,1), ∆G‡ ∼ U(3 kBT,17 kBT), κl ∼ U(1 kBT/[q]−2,5 kBT/[q]
−2).

Hyperparameters
We used an MDN as the density estimator, with K = 50 and a feed-forward neural network with three layers.
Each layer had 80 hidden nodes (sometimes called features in the SBI literature) and used the ReLU
activation function. The output from the third layer yielded the parameters of the Gaussians. We kept 25% of
the simulation data for the validation. The batch size was the default value of 50. We stopped training after
the validation loss did not improve for over 30 epochs. The training took 267 s on one Intel Core i9-12900K
processor.

Nested model
Prior
We chose the priors to ensure that the configuration of the three Gaussian distributions would reproduce the
essential features of a smFS experiment: σ1 ∼ U(0.2,0.5),σ2 ∼ U(0.2,0.5),σ3 ∼ U(0.2,0.5),
x1 ∼ U(0.0,0.5),x2 ∼ U(1,2),ω ∼ U(1/4,1/2).

Hyperparameters
We used an MDN as the density estimator with K = 50, with the same neural network topology as
in appendix ‘Nested model’. We only increased the number of hidden features per layer to 150. We kept 15%
of the simulated data for validation. The batch size was set to 500. We stopped the training after the validation
loss did not improve for over 20 epochs. The training took 446 s on one Intel Core i9-12900K processor.

Cubic spline
Prior
For the diffusion coefficients and linkers we used the similar priors as for the symmetric double-well
log10(Dq/Dx)∼ U(−2,1), κl ∼ U(1 kBT/[q]−2,5 kBT/[q]−2). The prior for the internal spline values were
instead G0,i ∼ U(0 kBT,10 kBT) ∀i ∈ {2, . . . ,12}.

Hyperparameters
We used a neural spline flow as the density estimator as implemented in the SBI-toolkit [47]. We used five
transformations with 100 hidden features. We augmented the neural spline flow with an convolutional layer
with six input channels and six output channels. The kernel had a size of 6x6 and a stride of 2. The
convolutional layer used an ReLu activation function. We kept 15% from the simulation data for validation.
The batch size was set to 1500. The training stopped after the validation loss did not improve for more than
20 epochs. The training took 27 778 s on one Xeon Skylake Gold 6148 Processor.

For the sequential approximation of the posterior, we iteratively ran new simulations with parameters
from a prior or the previous posterior. The new simulations were added to the training set and the
approximate posterior was further trained. We used the SNPE-C version of the sequential posterior
estimation from the SBI-Toolbox [47]. In total, we performed 20 rounds of approximation each adding 1500
new simulations to the data set. We used the same hyperparameters for the training and the density estimator
as for the amortized case. Just the batch size was set to 50. The cumulative training time for all 20 sequential
runs was 24 619 s on one Intel Core i9-12900K processor.
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