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Abstract 

 
Some goodness-of-fit statistic (Likelihood ratio test, Pseudo (R2) test, Hosmer-lemeshow test and Chi-square 

test) were used to determine model fit in binary logistic regression, their estimates were compared to each 

other, to determine their performances.  From our analysis the likelihood ratio test, the pseudo (R2) test and 

the chi-square test, produced results that are similar and shows the presences of poor fit, with  model1 being 

the most fit of the three models. Even though hosmer-lemeshow test produced a P-value that is very low, 

indicating the presence of poor fit in all three models, the differences between these models were not 

revealed, because the test produced the same estimates for the three models. The likelihood ratio test 

produced results that are similar to the chi-square test. We also observed that the goodness-of-fit parameters 

(Null Deviances, Residual Deviance and the Alkaike Information Criteria (AIC)), that accompany model 

formation in R-statistical software produced result that align with the goodness-of-fit statistic used, the set 

back is that the summary provided by this parameters, does not reveal model similarities. 
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1 Introduction 
 

The four types of multivariate methods are linear regression, logistic regression, discriminant analysis, and 

proportional hazard regression which are primarily utilized in the health sciences. Although the expression and 

output of the outcome variables are different in these methods, they share mathematical similarities. The result 

variable of linear regression is a continuous quantity, such as an individual’s height and weight. An outcome 

produced by logistic regression is typically a binary event, such as “Yes” or “No,” Case vs. Control. In 

discriminant analysis, which yields outcomes akin to logistic regression, the outcome variable is category or 

class to which subjects belong for two categories. The result of the proportional hazards regression indicate how 

long it will take for a binary “failure” event to occur. i.e. (death) throughout an observational follow-up period. 

Of them, the logistic regression is the most often utilized in the healthcare industry (Wells, Concato, Tetrault, & 

Sauler, 2008). A technique called logistic regression (LR) models several independent or predictor factors in 

order to calculate the likelihood of a binary occurrence. Because the exponentiation of the parameters obtained 

from logistic regression forms an odds ratio, which measures the strength of association between the 

independent and dependent variables, epidemiologists primarily examine the impact of multiple independent 

variables on a binary outcome, such as the presence or absence of disease. The logistic regression model is the 

most often used regression technique in applied research, and it has gained widespread acceptance as a useful 

tool for analyzing binary outcome variables. Finding a source journal without at least one article using the 

model is frequently difficult. The accessibility of user-friendly software in all major statistical packages and the 

simplicity of interpreting the fitted model’s results are the main causes of its popularity. A continual stream of 

new statistical research is being conducted on model evaluation and fit techniques as well as model expansions 

to novel environments. Even yet, there have been shortcomings in the model fit techniques that are now 

accessible, which is what led us to conduct this study. The predicted value of the outcome variable is expressed 

by the logistic model as the total of products of the predicted variable, where each product is created by 

multiplying the independent variable’s value and coefficient. The best mathematical fit for the given model is 

found in these coefficients. After controlling for all other independent variables, a coefficient shows the effect of 

each independent variable on the outcome variable. In order to forecast the value of the dependent variable for 

each new value of the independent variables added to the model, the model may be used for two purposes: first 

predicting the value of the dependent variable for each new value of the independent variables enter into the 

model, and secondly for illuminating the relative contributions of each independent variable to the dependent 

variable while accounting for the effects of other independent variables. This study was conducted to evaluate 

the results of several goodness-of-fit test in determining model correctness and to illustrate the idea of logistic 

regression. 

 

2 Literature Review 
 

A multivariable technique designed for dichotomous variables is called logistic regression (Volker RT, 1996, 

[1]. This technique, sometimes known as the logistic model or logit model is used to simulate the possibility of a 

given event occurring, such as pass/fail, win/lose, alive/dead. It can be applied to represent how several 

independent factors are related to a categorical dependent variable. This correlation can be displayed on an S-

shaped logistic curve. There are three types of logistic models: ordinal, multinomial, and binary logistic 

regression. When the dependent variable is dichotomous, the binary model is utilized; when there are more than 

two categories and the independent variables are either continuous or categorical, the multinomial model is 

employed; and when there are more than two categories that exhibit a particular pattern, the ordinal model is 

employed. The reason the logistic model is well-known is that it presents results in a probabilistic manner, with 

values ranging from 0 to 1. Additionally, an S-shaped curve depicted in the plots of these values illustrates the 

combined influence of all explanatory variables on the dependent variable [2]. The actual application of the 

approach is the same even though the kind of data utilized for the dependent variable in logistic regression 

differs from that of linear regression (Eberhardt & Breiwick, 2012). 

 

The hypothesis that the distribution of the observed outcome variable matches the distribution of the conjectured 

observation produced by model upon fitting additional data is tested using goodness-of-fit (GOF) statistics. This 

thesis focuses on GOF tests. When the explanatory variable is discrete in character, the Pearson chi-square test 

( )2X  might be a useful tool (Hosmer et al.,2013; Kendall et al., 1999). However, if one or more of the model’s 
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explanatory variables are continuous, each observation will provide a different trend, potentially leading to 

multiple groupings. The asymptotic theory that underpins the distribution has becomes obsolete if the number of 

covariate patterns rises at a pace that is almost equal to the number of observations (Hosmer et al., 2013; 

Kendall et al., 1994, 1999). Many goodness-of-fit tests for logistic regression have been developed over the last 

three decades, grouping observations to address the challenge posed by ( )2X  test i.e. [3]. Hosmer and 

Lemeshow, [4] Liu et al., 2012; Pigeon and Heyse, 1999b; Pulkstenis and Robinson, [5] Xie et al., 2008). 

Numerous grouping techniques have been developed; some group the outcome variable’s predicted 

probabilities, while others base their groupings strategy on the model’s covariates. The number of groups 

selected and partitioning technique may have an impact on the test results. One of the most widely used 

goodness-of-fit test created to address the problems that arise when continuous covariates are included in a 

binary logistic regression model is the Hosmer-Lemeshow (LR) test [4]. It has received widespread review in 

the literature and it effectiveness has been compared with numerous other goodness-of-fit statistics for logistic 

regression (e.g. Dreiseitl and Osl, 2012; Hosmer et al., [6] Le Cessie and van Houwelingen, [7] Lemeshow and 

Hosmer, [1] Pigeon and Heyse, 1999b; Pulkstenis and Robinson, [5]. Similar to that of the
2X , the LR process 

groups the anticipated probability by sorting them and assigning them to groups. The “deciles-of-risk” (DOR) 

method is widely used to create the groups. Observations are graded based on their anticipated probability and 

placed into G = 10 roughly equal sized groups, with LR having an approximate )2(2 −GX distribution. The 

expected number of observations in each group is determined using the mean of predicted probabilities within 

that group. According to Bertolini et al. [8] different grouping arrangement might result in different values of 

LR when there are ties between the expected probability and the ties fall on the boundary between deciles. This 

happens because each time the software is run; observation may be assigned to different groups because the 

ranks of the connected observations are not stable. Hosmer et al., (2013), advise grouping connected 

observations together to prevent this issue. 

 

2.1 Evaluation metrics used for logistic regression in R 
 

AIC is a useful metric for model fit and is comparable to the adjusted R square in multiple linear regression, 

when creating models, this statistic aids in preventing overfitting. The smaller it value in the model summary, 

the better. It aids in penalizing the model’s growing number of coefficients. It would be more logical to compare 

these figures for several models rather than looking at this value for just one. It can therefore be applied to 

model selection. The model with the lowest AIC, for instance, will be the best of all of them, when having two 

or many alternative models producing the same result. Another assessment measure that is produced in your R 

output is called Deviance. It is separated into two parts: Null and Residual Deviance. When calculating the null 

deviation, the intercept is the only variable taken into account; all other variables are eliminated. We compute 

the residual deviation for each of the model’s covariates. The residual deviation in a linear regression model can 

be compared to the residual sum of squares, whereas the null deviance can be compare to total sum of squares. 

A model is considered better if the discrepancies between the null and residual deviation are larger. The model 

that explains deviation the best is the one with a lower null deviance, which may also be used to compare 

different models. Furthermore, a model is better the lower residual deviation. When assessing model fit, AIC is 

typically prioritized over deviation.  

 

3 Materials and Methods 
 

A sigmoid or S-shaped curve, the logistic curve is frequently used to simulate population expansion (Eberhardt 

& Breiwick, 2012). The ratio of the likelihood that an event won’t occur is (1-K) if the probability of it 

happening is K. Then the resulting odds can be given by 

 

K

K
odds

−
=

1
  

 

Since logistic regression compares the likelihood of an event occurring to its likelihood of not occurring, the 

impact of the independent variables is typically described in terms of odds. With logistic regression the mean of 

the response variable p in terms of an explanatory variable x is modeled relating )(x  and x through the 

equation xx  +=)( .  Note that this is a flawed model since extreme values of x will provide a result of 
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xx  +=)(
 that does not fall into the range 0 and 1. Therefore, the natural logarithm should be used to 

transform the odds in order to solve this problem [9]. Through the use of linear function of the explanatory 

variable to represent the log odds: 
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Where )(x
 is the interest outcome probability and x is the explanatory variable. Keep in mind that this is a 

basic model, with 
 and

, serving as the parameters of the logistic regression. By taking the antilog, an 

equation for estimating the likelihood that an outcome of interest will occur can be derived as 
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By using the understanding of multiple logistic regression to simple logistic regression, one can create the 

following equation: 
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Keep in mind that the odds ratio (OR) compares two odds in relation to distinct events. That is to say, given tow 

event y and z, the equivalent chances of y happening in relation to z occurring is 
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An odd ratio is typically used to calculate the correlation between an exposure and a result. The odds ratio (OR) 

displays the likelihood of an event (disease or illness) occurring in relation to a certain exposure (health 

behavior, medical history), as opposed to the likelihood of the outcome occurring in the absence of that 

exposure. The predicted rise in the log odds of the result for each unit increase in the value of the independent 

variable is known as the regression coefficient i , in logistic regression calculations. Stated otherwise, the OR 

corresponding to an increase of one unit in the independent variable is the exponential function of the regression 

coefficient. The OR can also be used to assess the relative importance of different risk factors for a given 

outcome and to ascertain whether a given exposure is a risk factor for that outcome. If OR=1, it indicates that 

exposure has no effect on the odds of the result; if OR>1, it indicates that exposure increases the odds of the 

outcome; and if OR<1, it indicate that exposure reduces the odds of the outcome. For instance, if the odds ratio 

for the variable “diabetics” is 1.2, the variable is coded as 0=not diabetic and 1=diabetic. Hence, in cases with 

diabetes, the likelihood of favorable outcome is 1.2 times greater than in those without diabetes. One method for 

expanding the OR beyond two binary variables is to use logistic regression [9]. 

 

3.1 Deviance 
 

The fits of two or more models to the observed data are compared using the deviation. The null and residual 

deviances are the two components of this likelihood ratio test. The null model that is being examined is the first, 
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and the saturated model that the null is nested in is the second. For every j covariate pattern, there is a parameter 

in the saturated model. The theory under investigation is that all saturated model parameter equal 0 that are not 

included in the working model. One way to express the residual deviation is as  
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Where in  is the number of observation with 
thi  covariate pattern and 

î is the probability for the 
thi  covariate 

pattern. iz Is the number of observations from the in  subjects with response 1=z  When testing the fit of a 

binary logistic regression model with k fitted covariates and  
thi  covariate patterns, the deviance statistic is 

expressed as 
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2),(  , When, 
iin ̂ ,is not small, the deviance has an asymptotic distribution that is 

)1(2 −− kiX , (Kendall, et al. 1999, Hosmer, et al. 2000, Agresti 2007). 

 

3.2 Pearson’s chi-squared 
 

The chi-square test of independences and the chi-square goodness-of-fit test are the two versions of Pearson’s 

chi-squared test. It is denoted as
2X , it checks whether a variable distribution deviates from its actual 

distribution. If the test’s value is little, it indicates that the observed data closely matched the expected data; if 

the value is large, it indicates that the observations did not match the expectations. Showing the link between 

two category variables is mostly how it is used. With the above-described notation, Pearson’s residual is stated 

as 
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3.3 Hosmer-lemeshow statistic (HL) 
 

Similar to the chi-square test, the Hosmer-Lemeshow (HL) test measures the goodness-of-fit for logistic 

regression by splitting the data into smaller groups. This test is limited to response variable that are binary. To 

address the inefficiencies with the chi-square test, the HL test was created. By sorting the estimated probabilities 

from a model and organizing them into g groups ideally, each group having roughly the same number of 

members and tied values grouped into the same group. The HL statistics is express as 
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Hosmer and Lemeshow [4] showed that HL has an approximate χ 2 (g - 2) distribution. 

 

3.4 Likelihood ratio test 
 

The premise that a model performs best when there are two or more nested model is tested using the likelihood 

ratio test, also known as the likelihood-ratio chi-square test. The likelihood ratio test is used to determine which 

model is better when there are two or more built for same purpose using the same data, each with unique 

quality. The model with the lowest likelihood function will be most suitable. Because these functions can be 

difficult to compute, statistical software are required for used. This test basically examines how well two models 

fit each other over time. According to the null hypothesis, the optimal model has fewer variables. If the test 

statistic is high, the hypothesis is rejected, and the model with the most parameter is therefore deemed to be the 

best. It is easier to determine the likelihood ratio test when one knows the likelihood of any two model; the 

procedure is as follows;  
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Where )( 1kL = Likelihood Function of mode1 

               )( 1kL = Likelihood function of model2 

               )(log ikL = natural log of the likelihood functions 

 

The test statistics obtained is chi-square distributed, with degrees of freedom equivalent to the number of 

bounded parameters. 

 

3.5 McFadden's pseudo-R squared 
 

Many researchers have proposed various quantities for logistic regression that can inherit the properties of the 

R-square of linear regression in an attempt to obtain a copy of that R-square. One of such quantity is the 

McFadden R-square statistics and its pseudo R2 values, which are reported by stata. Given that regressions are 

fitted using the maximum likelihood approach, the McFadden Statistics are determined as follows: 
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Where 

 

)( ck  =Maximum Likelihood value for the current model 

)( Nullk = Maximum Likelihood value for the Null model (The model with only an intercept and no covariates) 

 

The metric goes from 0 to slightly about 1, with values closer to zero indicating that the model has little 

predictive capability 

 

4 Results and Discussion 
 

We used the built-in R data in the PimaIndiansDiabetes2 library caret, which contain 8continuous random 

variable and 1 categorical variable, to study the response variable Diabetes on the 8 covariates. We develop 

three distinct models and evaluate each one’s goodness-of-fit in order to determine which model best captures 

the connection between the variables and the response variable. The missing variable was removed from 768 

data in PimaIndiansDiabetes2, leaving 392 observations overall that were used in the analysis. Two sets of data 

were created from this data: the first group included 80% (314) of the observations used to develop the model, 

and the second group included 20% (78) of the observations used to predict and determine the accuracy of the 
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model. All of the variables in our data are included in the first model; only the variables that were found to 

significantly contribute to the response variable in the first model are included in the second model; and the 

variables that have been found to independently contribute to or promote the response variable are included in 

the third model [10,11]. 

 

 
Data Visualization 

 

Fig. 1. Correlation graph of variables 

 

Using R, a correlation plot was created using a dot representation: a larger dot indicates a higher correlation. 

Blue indicates a positive correlation and red a negative correlation. Every variable in the matrix is associated to 

itself, resulting in symmetry. The data reveals that there is a correlation between age and being pregnant, 

between insulin and glucose, and between mass and triceps. 

 

Table 1. An overview of maximum likelihood approximations 

 

Parameter Estimates Std. Error Z-Score P(Z-Score) Odds Ratio 

Intercept -1.004 1.218 -8.246 
 

0.00004 

Pregnant 0.0822 0.0554 1.482 0.1383 1.0856 

Glucose 0.0383 0.0058 6.635   1.039 

ressure -0.0014 0.0118 -0.12 0.9045 0.9986 

Triceps 0.0112 0.0171 0.657 0.5113 1.0113 

Insulin -0.0008 0.0031 -0.632 0.5276 0.9992 

Mass 0.0705 0.0273 2.58 0.0099 1.0731 

Pedigree 1.141 0.4274 2.669 0.0076 3.1296 

Age 0.034 0.0184 1.847 0.0647 1.0345 

 

The plot of the response variable (diabetes) on each of the eight variables in the data is show in Table 1. The 

greatest estimations of the beta coefficients and their significance level are displayed in the summary above. The 

estimation of the relationship between each predictor variable and the response variable is provided by the 

intercept and beta coefficient in column 2. The coefficient of estimates’ standard error indicates the accuracy of 

the estimations; the larger the standard error, the less certain we are of the estimate. The Z-score, or Wald 

statistic of the estimated coefficients, is calculated by dividing the standard error of (column3) by the coefficient 

estimate of (column2). The variables’ level of importance is shown by the P(z-score); the smaller the values, the 

more important the variable is to the model. As can be seen from the table, the response variables were 

significantly influenced by only three of the eight predictor factors. These consist of pedigree, mass and glucose. 
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The positive coefficient of glucose (b=0.0383) indicates that there is a positive correlation between glucose 

levels and the likelihood of having diabetes. Additionally, the negative coefficient of insulin, b= (-0.0008), 

shows that a rise in insulin is linked to a fall in the likelihood of having diabetes. The correlation between a 

predictor (xi) and the response (y) is measured by the odd ratio. The ratio between an event that happens when a 

predictor is present and an event that happens when the predictor variables are absent is compared. For instance, 

the odds of becoming pregnant are (1.0685), meaning that the probability of having diabetes will rise by (1.065) 

for every unit increase in pregnancy concentration. 

 

Table 2. An overview of maximum likelihood approximations 

 

Parameter Estimates Std. Error Z-Score P(Z-Score) Odds Ratio 

Intercept -8.4603 0.6677 -12.670 16100.2 −  0.0002 

Glucose 0.0379 0.0035 10.916 16100.2 −  1.0386 

Mass 0.0809 0.0142 5.690 081027.1 −  1.0844 

Pedigree 0.8675 0.2962 2.929 0.0034 2.3809 

 

Some factors, such as Pregnancy, insulin, triceps and pressure, are not statistically relevant to the model, as can 

be seen from the result in Table 1. As a result, maintaining them in the model may lead to overfitting, thus it is 

necessary to remove them. As a result, Table 2 is created, which includes a summary of the model with fewer 

predictors and variables that are statistically significant for being associated with diabetes in the model 1.  

 

Table 3. An overview of maximum likelihood approximations 

 

Parameter Estimates Std. Error Z-Score P(Z-Score) Odds Ratio 

Intercept -9.0149 0.8129 -11.090 16100.2 −  0.0001 

Glucose 0.0346 0.0036 9.697 16100.2 −  1.0352 

Mass 0.0886 0.0155 5.732 09109.9 −  1.0927 

Pedigree 0.9233 0.3040 3.037 0.0024 2.5176 

Age 0.0345 0.0085 4.066 51078.4 −  1.0351 

Pressure -0.0074 0.0085 -0.874 0.3821 0.9926 

 

One of the factors from our correlation chart in Fig. 1 that was shown to be significantly associated was 

removed to create Table 3. Our chart shows that there are strong correlations between age and pregnancy, 

glucose and insulin, and mass and triceps. Based on these correlations, we choose to exclude one and select the 

other, leading to creation of model 3. The model summary is shown in Table 3. 

 

Table 4. A Summary of model fit. 

 

Parameter Model 1 Model 2 Model 3 

Value DF Value DF Value DF 

Null Deviance 498.10 391 974.75 751 931.94 723 

Residual 

Deviance 

344.02 383 729.76 748 685.66 718 

AIC 362.02 - 737.76 - 697.66 - 

Mean  0.6097 - 0.7832 - 0.6050 - 

 

The null deviance, residual deviance, and Akaike Information Criteria (AIC) are three factors that R provides in 

order to examine model fit in the model summary. The residual deviance indicates how well the response 

variable is predicted when the predictor variables are included, whereas the null deviance indicates how well the 

response variable is predicted by a model that only includes the intercept. The model is better the larger the 

difference between the null and residual deviances. For instance, in model 1, the null deviance is 498.10. The 

residual deviance, or deviation after the addition of the eight predictor variable is 344.02. keeping in mind that 

the deviation qualifies the poor fit; the lower the value, the more accurate the model, while helpful in model 

comparisons, the Akaike Information Criterion (AIC) cannot be interpreted in isolation. The model with the 
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lowest (AIC) is thought to be the most fit when there are multiple similar models. Therefore, model (1) will be 

regarded as the most fit among the aforementioned models. The percentage of observations that have been 

accurately classified serve as a proxy for model accuracy, while the percentage of observations that have been 

incorrectly classified is known as the classification error. The mean in Table (4) provides this forecast. It is 

evident from the Table (4), that model (2) has the greatest mean, having a misclassification error rate of 22%, 

and classification accuracy is a respectably 78%. 

 

Table 5. Some statistic of goodness-of-fit 

 

 Model 1 Model 2 Model 3 

Statistic Value DF P-value Value DF P-value Value DF P-value 

Likelihood 

Ratio Test 

(LR Test) 

-172.0 - - -181.9 -5 0.0014 -173.6 2 0.3601 

Pseudo 

)( 2R  

0.3093 - - 0.2698 - - 0.3029 - - 

Hosmer-

Lemeshow 

Test )ˆ(C  

392 8 16102.2 −
 

392 8 16102.2 −
 

392 8 16102.2 −
 

Chi-square 

Test 

)( 2X  

344.02 383 - 363.70 388 0.0014 347.23 386 0.3601 

 

To decide which of the three models provides the best match, the likelihood ratio test is used to compare them. 

It compares the likelihood of the data under a model with full predictors and the likelihood of the data under a 

model with fewer predictors. A P-value for the total model fit statistic less than 0.05 would force us to reject the 

null hypothesis. The model with lower likelihood is referred to as less fit. Table (5) indicates that model (2) has 

a lower fit Value of (-181.9). this difference is statically significant when compared to model (1) with a P-value 

of (0.0014), which is less than 0.05. Utilizing the likelihood ratio test, it is determined that there is no 

statistically significant difference between model (1) and (3) (P-value=0.3601). The Pseudo (R2) test has a value 

between 0 and 1, where a value closer to zero indicates a less fit model and a value closer to one indicates a very 

fit model. The values for all three of the models are skewed towards zero, suggesting poor fit, as can be seen 

from row 2 in Table (5). Model (1) has the highest value, (0.3093), indicating the best match. Given the values 

for the three models are identical, the Hosmer-Lemeshow test yields a P-value (
16102.2 − ) of less than 0.05, 

which indicates that the models are ill-fitting and that there are no significant difference between them. When 

model (1) is compared to other models, their difference is statistically significant with model (2) and not 

significant with model (3). The chi-square test looks to be similar to the likelihood ratio test. Model (1) has the 

lowest value, indicating the most fit. The data suggest that model (1) is superior to the other two models, and 

that there is no significant difference between model (1) and (3). 

 

5 Conclusion 
 

Fitting a logistic regression model and identifying which model best fits our data is our main goal. Using the 

PimaIndiansDiabetes2, we were able to create three distinct models based on highlighted features. Of the two 

reduced models, model1, which contain every variable in the data set, seemed to suit the data the best. This was 

the case both when the goodness of fit test statistic and the model summary statistic were used (the alkaike, 

residual deviance, and null deviance). When comparing model fit, the information criterion from the model 

summary of the fit proved to be correct; model 1 had the lowest values of these parameter in contrast to the 

other two models. These parameters drawback was that they concealed the models shared characteristics from 

one another. For example, model1 and model 3 are similar, yet the goodness-of-fit summary statistics from the 

models does not show this. The goodness of fit statistic allowed us to quantify the model’s accuracy as well as 

the differences between the models. We could then assess whether the discrepancies between the models are 

significant enough to refute our hypothesis. The findings of our analysis using the likelihood ratio test, the 

pseudo (R2) test, and the chi-square test are similar and support the model summary that indicate model 1 fits 
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the data the best out of the three models. We also review that model 1 and model 3 are nearly identical; the 

difference between them was tested and was found not to be statistical significance. Upon evaluation, the 

difference between models 1 and 2 was shown to be statistically significant. The test yielded the same results for 

all three models, where the difference between them cannot be determined. However, the hosmo-lemeshow test 

provided a very low P-value indicating the presence of poor fit in all three models. The results of the likelihood 

ratio test and pseudo (R2) test all point to the model’s poor fit and complied with the finding of the chi-square 

test. 

 

6 Recommendations 
 

Based on our investigation, we will advise against utilizing the summary of fit statistic generated by the R 

statistical package during model construction and instead use the goodness of fit statistic, such as the likelihood 

ratio test, Pseudo (R2) test, chi-square test, etc., when evaluating the fit of the model. When assessing the 

accuracy of a model, we will advise using the Hosmo-Lemeshow test because, in comparison to other three test 

statistic employed in this study (likelihood ratio test, pseudo (R2) test, chi-square test), it yield a Pvalue that was 

most significant. When comparing models, we will advise using the chi-square test or likelihood ratio test. 
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