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ABSTRACT 
 

Compressed sensing on the graph, signals can be approximated by the graph and with the nodes 
containing information, so compressed sensing can collect information distributed on nodes or links. 
Also, compressed sensing on the graph becomes important due to the high cost of examining 
parameters one by one and the unavailability of information on some of them directly in the graph. 
In this article, by using the idea of active learning and random walking, a method has been 
introduced to improve the construction of the measurement matrix in the field of the graph, so that 
information from the graph that is used in the construction of the measurement matrix (assuming 
that the measurement matrix is underdetermined and non-horizontal) is introduced by the random 
walk method. They may be missed, identified, and, after observation, inserted into the 
measurement matrix, resulting in a stronger recovery of the original signal. To test this method, 
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firstly, from the data set containing five hundred and ninety as the initial signal, the measurement 
matrix is constructed with two random walking methods and the proposed method, and the output 
vector is obtained from it, then the initial thin signal is received with two recovery algorithms, convex 
optimization and model is recovered and finally calculates the amount of error and the degree of 
similarity of the four recovered signals compared to the original signal and from their comparison, it 
is clear that the recovery of the thin signal from the matrix made by the proposed method and the 
recovery with the convex optimization algorithm has the highest The degree of similarity and the 
lowest amount of error with the original signal is compared to the other three recovered signals. 
 

 

Keywords: Compressed sensing; graph structural constraint; measurement matrix; active learning. 

 
1. INTRODUCTION 
 

Compressed sampling or sensing is an emerging 
research field with applications in signal 
processing, error correction, medical imaging, 
seismology, and many other fields. By using the 
compressed sensing technique, a thin or 
compressible signal vector can be effectively 
measured and then recovered through linear 
measurements with dimensions much smaller 
than the dimensions of the original signal. 
Compressed sensing has significantly reduced 
the sampling and computational cost of signals 
that have a thin or compressible representation 
[1]. There are differences between intensive 
sampling in the graph and normal intensive 
sampling (in the field of image or sound) that 
distinguish them from each other. Among the 
most important differences, we can mention the 
structure of the measurement matrix. Gaussian 
random matrix is used to construct the 
measurement matrix in normal compressed 
sensing (image or image domain), but the 
observations we have on the graph are all non-
negative coefficients, on the other hand, due to 
the structure and limitations of the network, such 
as the absence of a link between two nodes, the 
absence of nodes In the communication vector or 
other factors, it is not possible to have any 
observation [2]. 
 

If the signal contains information about nodes, 
every node that is observed must be on the 
same path and the graph related to the desired 
network must be connected. If the information of 
the edges is displayed by the signal, it is still not 
possible to have any desired observation even if 
the graph is complete. Network constraints affect 
the construction of the measurement matrix. It 
can be said that the family of measurement 
matrices that can be used for compressed 
sensing on the graph is more limited than the 
matrices that can be used in the field of normally 
compressed sensing (audio or image) and must 
be proportional to the structure of the graph 
(network) [3]. 

Active learning is a special mode of supervised 
learning, in which the learner interactively asks 
the information source, or so-called oracle, 
questions about data labels, that is, instead of 
providing a large amount of data with labels 
(which generally cost a lot to prepare), it is 
enough. A limited number of samples are labeled 
according to the learner's choice, the learner 
chooses a question from all the choices he has 
for the question and asks it, then stores the result 
of the question in the labeled data set and 
performs the learning again based on the learned 
model. And the level of uncertainty based on this 
model about the samples asks the oracle again. 
This process is repeated until a certain number 
of questions are asked or the error rate is less 
than a certain limit. A comparison between the 
modes of actively selecting samples for labeling 
versus the normal mode shows a lower amount 
of training samples required and a higher 
accuracy. This mode is especially useful for 
those cases where training data preparation is 
expensive and we have a small amount of 
training data [4-6]. Considering that limited works 
have been done in the field of measurement 
matrix construction in the field of compressed 
sensing on the graph, this article, with an idea 
similar to the idea of active learning, a method to 
improve the construction of the measurement 
matrix has been presented, the result of which is 
a stronger recovery of the thinnest signal that 
matches the measurement. 
 

2. LITERATURE REVIEW  
 
A paper titled "Recovery of Sparse Signals Using 
Markovian Random Field", extended the theory 
of compressed sensing to include signals that 
are sparsely represented based on a graphical 
model. They used Markeffian random fields 
(MRF) to express and represent signal 
sparseness, whose non-zero coefficients were 
grouped or clustered. From the new model-
based recovery algorithm known as LAMP 
Lattice Matching Pursuit (LAMP), they were able 
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to consistently recover MRF-modeled signals 
using measurements and calculations far less 
than the current advanced algorithms [7]. 
 
Another article, presented and introduced a new 
theory in an article titled 'Model-Based 
Compressed Sensing'. By introducing a theory, 
they developed model-based compressed 
sensing that is parallel to conventional theory 
and provided important guidelines on how to 
create structured signal recovery algorithms with 
provable performance guarantees. By reducing 
the number of degrees of freedom of a 
thin/compressible signal, they identified two 
advantages for compressed sensing. First, these 
instructions enabled them to reduce the number 
of measurements m needed to recover the signal 
constant. Second, during signal retrieval, it 
enabled them to distinguish correct signal 
information better than other recycled false 
information, leading to stronger retrieval. To 
quantify the advantages of model-based 
compressed sensing, they introduced and 
studied several new theoretical concepts that 
could be of general interest. They first introduced 
structured thin models for K-thin signals. Then, 
using the model-based RIP property, they proved 
that these thinly structured signals can be 
powerfully extracted from noisy compressed 
measurements. Furthermore, they determined 
the required number of sizes M and showed that 
for a number of structured scattering models, M 
is independent of N. These results generalize the 
limited works related to structure scattering 
models for thin fine signals. They then introduced 
the idea of structured compressible signals. To 
prove that structured compressible signals can 
be robustly recovered from compressed sizes, 
they extended the standard RIP to a new limited 
amplification property or RAMP. Using RAMP, 
they showed that the required number of 
measurements M to recover compressible 
signals is independent of N. For the practical use 
of this new theory, they recovered the way of 
integration, structured thin models with two 
CoSaMP and iterative hard thresholding (IHT) 
compressed sensing recovery algorithms. The 
key modification made was very simple: they 
simply replaced the nonlinear scatter 
approximation step in these greedy algorithms 
with a structured scatter approximation. Now, 
thanks to this new theory, both model-based 
recovery algorithms are highly guaranteed to 
recover structured and sparsely structured 
compressible signals. To confirm their theory and 
algorithms and the usefulness of the theory, they 
presented two specific cases of model-based 

compressed sensing and performed simulation 
experiments [8]. 
 
Another article studied the active learning of 
open global graphs for node classification. The 
great power of Graph Neural Networks (GNN) 
relies on a large amount of labeled training data, 
but obtaining labels can be expensive in many 
cases. Graph Active Learning (GAL) has been 
proposed to reduce such annotation costs, but 
existing methods mainly focus on improving 
labeling efficiency with fixed classes and are 
limited to handling the emergence of new 
classes. This problem was called Open Global 
Graph Active Learning (OWGAL) and a 
framework with the same name is proposed in 
this paper. The key is to identify new as well as 
instructive class nodes in an integrated 
framework. Instead of a fully connected neural 
network classifier, OWGAL uses prototype 
learning and label propagation to assign high 
uncertainty scores to target nodes in the 
representation space and topology. Weighted 
sampling reduces the influence of insignificant 
classes by weighing the importance of node and 
class. Experimental results on four large-scale 
data sets show that the framework of this paper 
achieves a significant improvement from 5.97% 
to 16.57% in Macro-F1 compared to advanced 
methods [9]. 
 
In another study, the teaching of graph 
representation and its applications was 
considered. Learning graph representation is an 
important task because it can facilitate various 
downstream tasks, such as node classification, 
link prediction, etc. The goal of graph 
representation learning is to map graph entities 
into low-dimensional vectors while preserving the 
graph structure and entity relationships. Over the 
decades, many models for graph representation 
learning have been proposed. The purpose of 
this article is to show a comprehensive picture of 
graph representation learning models, including 
traditional and advanced models on different 
graphs in different geometric spaces. The 
authors of this paper first start with five types of 
graph embedding models: graph kernels, matrix 
factorization models, shallow models, deep 
learning models, and non-Euclidean models. In 
addition, graph transformer models and 
Gaussian embedding models were also 
discussed. Then, practical applications of graph 
embedding models are presented, from 
constructing graphs for specific domains to using 
models to solve tasks. Finally, the challenges of 
existing models and future research directions 
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were discussed in detail. As a result, this paper 
presents a structured overview of the variety of 
graph embedding models [10]. 
 

Lal et al. (2023) present a comprehensive review 
of compressed sensing (CS) techniques 
specifically tailored for physiological signals. 
Their analysis, published in the IEEE Sensors 
Journal, highlights the challenges and 
innovations in acquiring high-dimensional 
physiological data efficiently. The authors 
emphasize the importance of CS in mitigating 
issues related to data acquisition and storage, 
which are especially pertinent in healthcare 
settings. The review categorizes various CS 
strategies, assessing their effectiveness in 
different physiological contexts, such as ECG 
and EEG signal processing. The authors 
conclude that future research should focus on 
integrating machine learning algorithms with CS 
techniques to enhance signal reconstruction 
accuracy [11]. 
 

Wang, Gao, and Xu (2024) extend the discourse 
around compressed sensing through their study 
on opportunistic sensing in task-oriented wireless 
sensor networks. Their work, published in 
the IEEE Transactions on Network Science and 
Engineering, explores how graph-based 
compressed sensing can optimize the 
performance of sensor networks by reducing 
energy consumption and improving data 
collection efficiency. The authors propose a 
novel framework that combines CS with 
opportunistic sensing, demonstrating the 
potential for enhanced network lifetimes and data 
quality, thereby addressing real-time sensing 
challenges [12]. 
 

In the realm of active learning, Brown et al. 
(2023) investigate the application of contrastive 
learning within graph-based active learning 
frameworks for Synthetic Aperture Radar (SAR) 
data. Their work, presented at SPIE, highlights 
how leveraging the structural information 
inherent in graphs can improve the labeling 
efficiency of SAR datasets. They demonstrate 
that contrastive learning can effectively reduce 
the amount of labeled data required for model 
training, enhancing performance in object 
detection tasks. This approach reflects a growing 
trend in machine learning practices, where 
unsupervised learning principles are               
harnessed to augment supervised learning 
techniques [13]. 
 

Simultaneously, Miller and Bertozzi (2024) 
contribute to the active learning dialogue by 

focusing on model change scenarios in graph-
based semi-supervised learning frameworks. 
Their paper, published in Communications on 
Applied Mathematics and Computation, delves 
into adaptive strategies for model adjustment 
based on changing data distributions. The 
authors argue that incorporating model change 
detection into active learning can lead to more 
robust and adaptable learning systems, 
particularly in dynamic environments where data 
characteristics evolve over time. Their research 
underscores the necessity of responsive learning 
models in the face of variability within datasets 
[14]. 
 

3. METHODOLOGY  
 
According to the proposed method, the idea of 
active learning is applied to the problem of 
signal-based compressed sensing (active 
compressed sensing). Considering that the 
investigated signal describes the characteristics 
of a network, in this sense the proposed method 
is a fundamental step in the three fields of 
compressed sensing, graph, and machine 
learning. A walker has two basic steps, choosing 
the starting point of the walk and taking a random 
walk that follows a connected path. The 
proposed idea tries to make an intelligent way to 
choose the starting point. The goal is to predict 
the ambiguity that we have about each part of 
the original vector by using the previous 
observation and starting the observation from a 
place where the ambiguity is reduced. In each 
random walk, one row of the measurement 
matrix is filled, according to the essence of the 
problem, the values of the matrix of this matrix 
are zero and one, that is, either an edge is 
present in an observation (one) or it is not 
present (zero). The columns of this matrix also 
correspond to the edges of the network and 
generally correspond to the main signal 
channels. The important point is that the sum on 
a column shows the number of presence of an 
edge in the observations. 
 
To measure the ambiguity of the measurement 
matrix, it is suggested to use the presence of an 
edge in the observations. Based on this criterion, 
the edge whose corresponding column has the 
lowest sum is selected. In this way, in each step, 
an edge is selected to start walking, which has 
more ambiguity (column sum corresponding to 
zero edges). If we pay attention to the similarity 
of this idea with active learning, perhaps another 
criterion for measuring ambiguity seems to be 
signal recovery and using the entropy of p(y|x) 
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distribution, but this idea faces two problems. 
Probabilities are not efficient because the 
probability distribution p(y|x) will not be available 
and secondly, it has a very high computational 
load because it needs to perform a recovery 
operation once for each observation. In this 
regard, a criterion is defined regarding the edges 
of the graph called the awareness criterion 
(ambiguity image) and it is equal to the number 
of times that an edge has participated in the 
observations. To determine the value of this 
criterion, we assume that we have a large 
number of observations, but we have not yet 
observed edge e. The proposed method 
identifies this edge by calculating the ambiguity 
criterion and goes to it. However, the normal 
method works randomly and may not reach this 
edge. 
 
This criterion is applied to the observation matrix 
created for the graph. Each row of the 
measurement matrix corresponds to one 
observation (step). In each execution of steps, 
the edges of the graph that are observed are 
inserted in the corresponding line. Therefore, the 
number of rows of the measurement matrix is 
equal to the steps performed on the graph, and 
the number of ones in each row of the matrix is 
also equal to the number of edges observed in 
one step (the sum of the number of ones in each 
column corresponds to the number of passes 
through that edge). In calculating the ambiguity 
measure, we measure the ambiguity of all edges 

once every time we want to walk. For this, we 
consider a total row as follows for the 
observation matrix. 
 

Each row of this matrix contains the set of 
elements of the corresponding column in the 
matrix. As the number of steps increases, the 
matrix and ambiguity criterion will change as 
follows. 
 

Finally, the matrix and the ambiguity criterion 
after the third step will be as follows, as can be 
seen, the ambiguity criterion randomly selects an 
edge from the set of edges with the lowest 
number of observations and travels a random 
path as an observation, and from the equation 
(1) is obtained. 
 

hi =  ∑ aij
#RW
j=1                                               (1) 

 

a=random measurement matrix 
 
h= is the sum for the jj-th column, and these 
sums can be computed in parallel for               
efficiency. 
 
After building the measurement matrix, it is time 
to recover the signal. Various methods have 
been provided to recover the signal. The 
optimization relation related to L1 is in the form of 
equation (2). 

 
Min |x|1, y=Ax                                           (2) 

 

Table 1. Measurement matrix 
 

Matrix 0 0 0 0 0 0 0 0 0 

Sum 0 0 0 0 0 0 0 0 0 
 

Table 2. Observation matrix 
 

Matrix 1 0 0 1 1 1 0 0 0 

Sum 1 0 0 1 1 1 0 0 0 
 

Table 3. Matrix and ambiguity criterion 
 

Matrix 1 0 0 1 1 1 0 0 0 

0 1 1 1 1 0 0 0 1 

Sum 1 1 1 2 2 1 0 0 1 

 
Table 4. Final observation matrix 

 

Matrix 1 0 0 1 1 1 0 0 0 

0 1 1 1 1 0 0 0 1 

1 0 0 1 0 0 1 1 0 

Sum 2 1 1 3 2 1 1 1 1 



 
 
 
 

Chekousari; Asian J. Res. Com. Sci., vol. 17, no. 9, pp. 92-102, 2024; Article no.AJRCOS.122713 
 
 

 
97 

 

The main idea in L1 is to use a soft one as a 
convex approximation of soft zero. In the Ising 
model, the relationship between the input and 
output of the recovery system is simulated using 
a graphical model. In the meantime, a series of 
new variables are defined for signal attenuation 
modeling, which are the main signal distribution 
parameters. These variables are binary and 
show the zero or non-zero state of a part of the 
signal, so the number of non-zero elements of 
the signal is equal to the sum of these variables. 
First, different degrees of sparseness (k-rate = 
.01, .001, .005, .05) were applied to the dataset, 
containing flight information from five hundred 
airports in the United States of America, to 
generate the flight delay vector with the specified 
sparseness rates created (input signal: thin 
vector x as flight delay vector). Next, the 
observation matrix was made by the usual 
method and the proposed method, and then it 
was recovered by two methods, L1 and 
Modeling, and finally, the x ̂ obtained with the 
initial thin signal x was evaluated separately with 
the following criteria. The error metric reports the 
reconstruction error. This measure shows the 
soft distance between the two original signals 
and the recovered signal in a normalized and 
logarithmic scale. The next criterion is the 
similarity, which shows the power (energy) of            
the original signal to the noise in a logarithmic 
scale. 
 
The ambiguity criterion in the proposed active 
compressed sensing method introduces a 
mechanism for selecting edges from a graph 
representation of the signal. By randomly 
selecting an edge from the set of edges, the 
method aims to enhance the robustness and 
adaptability of the signal acquisition process. 
This random selection serves several important 
purposes: 
 

1. Exploration of Signal Space: Randomly 
selecting edges allows the method to 
explore different parts of the signal space, 
ensuring that various signal characteristics 
are captured. This exploration is crucial in 
scenarios where the signal may exhibit 
sparse representations across different 
regions. 

2. Reduction of Bias: By employing a 
random selection process, the ambiguity 
criterion mitigates potential biases that 
could arise from deterministic selection 
methods. This randomness helps in 
obtaining a more representative sample of 

the signal, leading to improved 
reconstruction accuracy. 

3. Adaptive Learning: The random edge 
selection aligns with the principles of active 
learning, where the method can adaptively 
focus on edges that provide the most 
information about the signal. This 
adaptability enhances the efficiency of the 
measurement process, allowing for better 
utilization of resources. 

4. Parallel Processing: The random 
selection of edges can be executed in 
parallel, similar to the column sum 
calculations of the measurement matrix. 
This parallelism not only speeds up the 
computation but also allows for 
simultaneous assessments of multiple 
edges, further optimizing the overall 
process. 

5. Robustness to Noise: Randomly 
selecting edges can also contribute to the 
robustness of the method against noise 
and uncertainties in the signal. By 
diversifying the selection process, the 
method can better handle variations and 
maintain performance even in challenging 
conditions. 

 

4. RESULTS AND DISCUSSION 
 
The description of the proposed method was 
implemented on the data set consisting of 590. 
This dataset contains the United States flight 
network that models the connectivity between 
airports. This data set contains three columns 
that specify the airport of origin, destination, and 
connecting edge number. This graph is 
undirected and unweighted. To simulate the 
proposed method, a random delay was created 
corresponding to each edge of this graph with 
the assumption that a small number of all edges 
have a non-zero delay. This generated delay 
vector is compared with the value generated 
after observing and recovering the signal. The 
recovery results are evaluated with two criteria. 
The error metric reports the reconstruction error. 
This measure shows the soft distance between 
the two original signals and the recovered signal 
in a normalized and logarithmic scale. The 
second criterion is the SNR criterion, which 
shows the power (energy) of the main signal to 
the noise in a logarithmic scale. In drawing the 
graphs, for easier display, the degree of thinness 
is also shown in a logarithmic scale. A summary 
of the real data set and the data set resulting 
from the implementation of the conventional 
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method and the proposed method are given 
separately in Table 1. 
 
The result data set includes two data sets based 
on the similarity criterion and the Euclidean 
distance criterion, each of which is approximated 
separately with thinning rates of .01, .05, .001, 
.005. A number of data sets of the results               
with a thinning rate of .001 are shown in Table 2. 
 
This test was performed four times with a 
thinning rate of 0.01, 0.05, 0.001, and 0.005 

separately, and each test was repeated five 
times, and the results are shown in Figs. 1 to 3. 
 
In the above diagram, the proposed method 
(called sum-ising) and the previous method 
(called rand-ising) are compared.                              
The horizontal axis shows the logarithm of 
density (thin image) in base ten and the vertical 
axis indicates the error which is obtained from 
equation (3). 
 

error=(norm(edge_delay-X,2)/norm(edge_delay,2)    (3) 
 

Table 5. Contains several real data sets 
 

Connector edge number Destination airport Airport of origin  
283362 81 2 
132110 165 2 
104566 91 2 
117412 117 2 
90464 258 3 
368022 49 3 
81277 273 3 

 

 
 

Fig. 1. Comparison of the proposed sum-ising method and the previous rand-ising method 
 

Table 6. Some of the results of building the measurement matrix by random walker and the 
proposed method and then recovering the x vector with two L1 algorithms and the Ising model 

with a thinning rate of 0.001 for the initial vector 
 

Reconstructed vectors for rate=0.001 

X sum-l1 sum-ising rand-l1 rand-ising 

1.00000000000000000000 0.0000021715 0.0000378900 0.0000980799 0.0000574990 Error 

0.00000000000000000000 0.0000000000 0.0000250605 0.0001789093 0.0000000000 

0.00000000000000000000 0.0000000000 0.0000000000 0.0000000000 0.0000076227 
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At the bottom of the diagram in Fig. (1), the 
detailed information of each state is shown. To fill 
the houses of this table and its corresponding 
diagram, the desired methods have been 
implemented five times and the average results 
have been reported. According to this diagram, it 
can be seen that the amount of error increases 
with the increase in the density of vectors and 
moves away from the assumption of thinness. 
The above diagram is for the case where the 
recovery method is the Ising model. For the case 
where the L1 method is used, the following 
diagram is obtained. In this graph, it can be seen 
that the error increases with the decrease of the 
thinness, and it is also seen that in all these 
cases, the proposed method shows less error 
than the previous method. So it can be said that 
the thinner the initial signal is, the recovery error 
based on the measurement matrix made by the 

proposed method, and the random walk method, 
with the convex optimization algorithm, has a 
lower value than the recovery with the Ising 
model algorithm. The general result of Fig. (1) is 
as follows: 
 
✓ Error rate: The recovery error with the L1+ 

matrix construction algorithm by the 
proposed method is much less than                   
the recovery error with the L1+                    
matrix algorithm using the random walk 
method. 

✓ The recovery error with the Ising model 
algorithm + the proposed method is much 
less than the recovery with the Ising + 
matrix by random walk method. 

 
In Fig. (2), the error rate diagram is shown in 
terms of thinness. 

 

 
 

Fig. 2. Error rate diagram in terms of thinness 
 

 
 

Fig. 3. Graph of the degree of similarity in terms of thinness 
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Fig. 4. Graph of the degree of similarity in terms of thinness 
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The diagram in Figs. (3) and (4) calculates the 
similarity of the reconstructed vector with the 
original vector based on the SNR criterion. It can 
be seen that the SNR of the proposed method is 
always higher than the competitor method. 
 
When we recover the information collection 
method using the L1 method and use the SNR 
criterion to compare the degree of similarity with 
the original vector, the above graph is obtained, 
which shows the superiority of the proposed 
method. As can be seen in this figure, by 
increasing the signal thinness, the proposed 
method produces much better results. By 
examining these four tests, we can say that: 
 

1. The proposed method is generally better 
than the conventional method. 

2. The smaller the thinning rate of the signal 
(the thinner the input vector), the better the 
results of the proposed method than the 
competitor method. 

 
The justification for the proposed method in 
active compressed sensing can be articulated as 
follows: 
 
Compressed sensing fundamentally relies on the 
premise that signals can be represented in a 
sparse manner, where a significant portion of 
their elements are zero. This sparsity allows for 
the reconstruction of signals from fewer 
measurements than traditionally required. 
However, the challenge arises in identifying the 
appropriate sparse representation space, which 
necessitates complete signal acquisition—a 
process that contradicts the very essence of 
compressed sensing, which aims to minimize 
data acquisition. 
 
To address this conflict, the proposed method 
employs a random matrix for signal reception. 
This approach leverages the inherent properties 
of random matrices, which have been shown to 
effectively capture the essential features of 
signals in a compact form with high probability. 
By utilizing randomness, the method circumvents 
the need for full signal reception while still 
enabling accurate reconstruction. It is important 
to note that while the proposed method incurs a 
higher computational burden due to the necessity 
of calculating the sum of the columns of the 
measurement matrix at each step—serving as an 
ambiguity criterion—this computation can be 
efficiently parallelized. Each column's 
calculations are independent, allowing for 
significant reductions in processing time through 

concurrent execution. In summary, the proposed 
active compressed sensing method effectively 
balances the need for accurate signal 
reconstruction with the constraints of data 
acquisition. By integrating random matrices and 
active learning principles, it not only enhances 
accuracy but also maintains computational 
feasibility through parallel processing, marking a 
significant advancement in the field of 
compressed sensing. 

 
5. CONCLUSION  
 
In compressed sensing, it is assumed that the 
signal to be received has a thin representation in 
a space, that is, most of its elements are zero. 
Creating and finding such a space requires a lot 
of calculations and the signal must be fully 
received first, but receiving the signal completely 
conflicts with the purpose of compressed 
sensing. As a result, a random matrix is used to 
receive the signal, which has a high probability of 
receiving the signal in a compact form. In short, 
the proposed method has applied the idea of 
active learning in the field of compressed sensing 
on the graph, and hence it can be called active 
compressed sensing. The accuracy of the 
proposed method is higher than the previous 
method. The proposed method has more 
computational burden than the previous method 
because the sum of the columns of the 
measurement matrix must be calculated in each 
step to be used as an ambiguity criterion.                       
Of course, these calculations are independent 
and can be calculated for each column in 
parallel. 
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