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1. Introduction

T hroughout the article, G is a simple undirected connected graph with vertex set V (G) and edge set
E (G). The number of vertices and edges of G is called order and size, respectively. If the vertices u and
v are adjacent, then we write u ~ v. For v € V (G), dy = dg (v) denotes the degree of vertex v in G. Denote by

P, and Kj,,_1 the path and star with n vertices, respectively.

Cheminformatics is a new interdiscipline composed of chemistry, mathematics and information science,
which contributes a major role in the field of chemical sciences by implementing graph theory to mathematical
modeling of chemical occurrence. In cheminformatics, the topological indices play a significant role in
predicting the biological activities and properties of chemical compounds due to the fact that the numerical
characteristics of topological indices reflect certain physico-chemical properties of chemical compounds, such
as boiling point, stability, strain energy etc. A large number of topological indices have been studied in the
models of Quantitative structure-activity relationships (QSAR) and structure-property relationships (QSPR),
such as Wiener index, Randi¢ index, Zagreb index, ABC index and so on.

The study on degree-based topological indices has been one of the hotspots in cheminformatics [1]. Let
K={(i,j)) e NxN:1<i<j<n-1}and m; ; = m; ; (G) be the number of edges in G joining vertices of degree i
and j. For any set of numbers {¢; j}(; jcx, the general formula of degree-based topological indices is

DTI(G)= Z mi,]'(G)q)i,j.
(i,j)eK

In particular, we obtain the first Zagreb index and the second Zagreb index when ¢; ; = i+j and ¢;; = ij,

respectively.
In 1998, the general Randi¢ index of a graph G, introduced by Bollobés and Erdés [2], is defined as

RI=R'(G)= Y (dd), teR
UinEE(G)

Clearly, we have that R? is the number of edges, R°? is the Randi¢ index [3], R! is the modified second
Zagreb index [3], R? is the reciprocal Randi¢ index [4], R? is the second Hyper-Zagreb index [4], R! is the
second Zagreb index [5], etc.
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In 2005, the first general Zagreb index of a graph G was introduced by Li and Zheng [6] and is defined as

7'=78G)= Y di= Y (ded), teR,
0;€V(G) v;0;€E(G)

It is easy to see that Z¥ is the number of vertices, Z! is twice the number of edges, Z2 is the first Zagreb index
[5], Z3 is the forgotten topological index [7], etc.
In 2010, Zhou and Trinajsti¢ [8] proposed the general sum-connectivity index of a graph G as follows:

X =x'(G)= ¥ (di+d), teR.
?}inEE(G)

It is not difficult to find that 2! is the harmonic index [9], Xf% is the sum-connectivity index [10], X% is the
reciprocal sum-connectivity index [11], etc.

The product graphs are useful in constructing many important structural models with regularities
[12], especially the following four standard product graphs which are widely used in network design [13],
multiprocessor system [14], automata theory [15] and other fields. Let G; and Gy be two graphs with disjoint
vertex sets {uq, ..., 1y} and {vy,...,v,}, respectively. The Cartesian product of G; and G, denoted by G 0 G
is the graph, where (ui,vj) ~ (uy,vs) if either (u; = u, and vj ~ U5 in Gy) or (u; ~ uy in Gy and v; = v5). The direct
product or Kronecker product of G; and G,, denoted by G; ® Gy, is the graph where (u,', vj) ~ (uy,vs) if u; ~ u,
in Gy and v; ~ vs in Gy. The strong product of Gy and G, denoted by Gy ® Gy, is graph where (us, u]-) ~ (U, Us)
if either (u; = uy and u; ~ us in Gy) or (u; ~ uy in Gy and u; = us) or (u; ~ ur in Gy and u; ~ us in Gp). The
lexicographic product of G; and G,, denoted by G1[G;], is the graph where (ui,vj) ~ (uy,vs) if either (u; ~ uy
in Gy) or (4; = uy and v ~ v in Gy).

In this paper, we give a unified approach to solve the computational problems of degree-based topological
indices of standard product graphs for the path and regular graphs, which is generalization of many specific
degree-based topological indices. As applications, the corresponding calculation formulas of the general
Randi¢ index, the first general Zagreb index and the general sum-connectivity index are obtained.

2. Cartesian product

Theorem 1. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then
DTI(Py, OPy,) =8¢a3+2(ny +13-6) @33 +2(n1+ny—4) @34+ (2111 —5n1 —5np +12) @y a
forng >mnp > 3.
Proof. By the definition of Cartesian product, we obtain the basic information on P,, 0 P;, in the Table 1.
Table 1. The basic information on Py, O Py,.

my3 \ ms33 \ m3,4 \ Myaq
8 | 2(ni+ny—6) | 2(ny+ny—4) | 2nyny —5n; —5ny +12

Thus we have

DTI(PayyOPu,)= > m;;(G)@i;=8¢3+2(n1+ny—6)p33+2 (11 +n3—4) ¢34+ (2n1ny —5n1 —5n3+12) gys.
(i, j)eK

This completes the proof. O

Corollary 1. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then

R'(Py, 0Py,) =8-6"+2-9" (ny + 1y —6) +2-12" (ny + np —4) + 16" (2nyny - 51y - 5y +12),
Z'(Pyy 0 Pyy) =827 +371) 4435 (ny + 12— 6) + 2 (g +mp —4) (37 +471) + 2.4 (2ny1m0 - 5ny - By +12)),



Open ]. Discret. Appl. Math. 2021, 4(3), 60-71 62

X' (Py,0Py,)=8-5"+2-6" (11 +ny-6) +2-7" (n +ny - 4) +8" (2n1ny - 511 — 51 + 12)

for ny>np>3.

Theorem 2. Let P, and G, be a path and a r-regular graph of order ny and ny, respectively. Then

1
DTI(Py, OGy) = rMo@ri1e1 +212@rs142 + E[rnz (11 =2) +2n1n2 — 612 @ri2,r42

for ny>np>2.

Proof. By the definition of Cartesian product, we obtain the basic information on P, O G, in the following
Table 2.

Table 2. The basic information on Py, O Gr.
Myri1,r+1 ‘ Myi1,r42 ‘ My42,r+2

rnp (1 -2)
2

rHo 2ny + 11y —3ny

Thus we have

1
DTI(Py,0Gr) = Y mi(G) @ j=1Ma@pi1e1 + 212142 + 5[7"2 (n1=2) +2n1np — 612 @ri2 r42.
(i,j)eK

This completes the proof. O

Corollary 2. Let P, and G, be a path and a r-regular graph of order ny and ny, respectively. Then

R! (P, 0G,) =rny (r+ 1)2t +2m (r+ 1) (r+2) + [1’717_(1;1—2) + 1y (1 —3)] (r+2)2t,

7' (Pyy0Gy) =2y (r+1) 7 +2ny [(r + D)+ Z)tfl] +2(r+2) [W;_z) +1y (ny - 3)] ,

X' (Poy0Gy) =2y (r+1) +2n5 (2r +3)" 42" (r +2)" [MZ(?_Z) +1y (mq —3)]

forn1 >np 2 2.

Theorem 3. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then

1
DTI(G;OPy,) = TH1Qpi1r41 + 201 Qpi1 a2 + 3 [rny (n2 —2) +2n1n2 = 6n1] @ri2,r42

forny >np > 2.

Proof. By the definition of Cartesian product, we obtain the basic information on G, 0 P, in the following
Table 3.

Table 3. The basic information on G, O Py, .
Mri1,r+1 ‘ Myy1,r42 ‘ My+2,r+2

rny (ny —2)
2

rnq 2mn

+nqny —3nq
Thus we have

1
DTI(G,OPu,) = Y mij(G)@ij=rmQrtre1 + 20 Qa1 e+ 3 [rny (n2 —2) +2n1np — 611 ] @ri242.
(K
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This completes the proof. O

Corollary 3. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then

R! (GroPy,) =rny (r+ D 1om (r+ 1) (r+2)' + [rnl(nz—Z) +nyp (ny —3)] (r+2)%,

Z'(GroPy) =2my (r+ 1)+ 2m [(r+ )T+ (r42) T v 2(r 4 2) [r”l(";_z) + 11y (na —3)],

Xt (Gr OPy,) = 2y (r+ 1) 4207 (2r +3) +2f (r+2)! [7’711(22—2) +nq (np —3)]

forng >ny > 2.
Theorem 4. Let Gy and Gy be a r1-regqular graph and a ry-regular graph with order ny and ny, respectively. Then

DTI(G,0G,) -M72(172)

2 Pri+ry,r1+12

forng >mny > 2.

Proof. By the definition of Cartesian product, we have G 0 G; is a (11 +r)-regular graph with W
edges. Thus

NNy (11 + 1
DTI(GioGy) = ). m;;(G) (Pi,j:¥
(i,j)eK

Pri+ry,ri+1rp

This completes the proof. O

Corollary 4. Let Gy and Gy be a ri-regular graph and a ro-regular graph with order ny and ny, respectively. Then

2t+1
Rt (G10Gy) = niny (712+ r2) )
Z'(G1oGy) =myny (11 +12)’,

X' (G1OGy) =2 ymy (g +72) !

forng >ny > 2.
3. Direct product
Theorem 5. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then
DTI (P, ® Puy) = 4914 + 4920 +4 (11 + 112 -6) 924 +2 (11 -3) (12 -3) @aa

forng >mny > 3.

Proof. By the definition of direct product, we obtain the basic information on P,;; ® Py, in the following Table
4.

Table 4. The basic information on Py, ® Py,.

mi,4 \ M2 \ M4 \ My4
4 | 4 [4(m+ny-6)|2(n-3)(n2-3)

Thus we have

DTI (Pnl ® Pnz) = Z mi,]' (G) qDl',]' = 4§01,4 +4g02,2 +4 (1’11 + M1y — 6) P24+ 2 (111 —3) (nz —3) Pa4.
(i,j)eK
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This completes the proof. O

Corollary 5. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then

R'(Py, ® Py,) =8-4" +2-8 (myny —ny - np - 3),
Z' (P, ® Pyy) =4[1+2" + (1 +1p - 6) (2771 +471) ] + 4" [1+ (1 - 3) (n2 - 3)],
X (Py, ® Py,) =4 [4t +5' 6" (ny + 1y - 6)] + 231 (1 =3) (np - 3)

forng >mny > 3.
Theorem 6. Let P, and G, be a path and a r-regular of order ny and ny, respectively. Then
DTI (Pnl ® Gr) :Zran)r,Zr + 11 (7’11 - 3) P2r2r

forny >np > 3.

Proof. By the definition of direct product, we obtain the basic information on P,;; ® G, in the following Table
5.

Table 5. The basic information on Py, ® Gy.

My 2y ‘ m27,2r
2rny | rnp (nq-3)

Thus we have

DTI (Pn1 ® Gy) = Z mj, i (G) Qi j = 21’7124)7,2,, + 11> (1’11 - 3) P2y 27
(i,j)eK

This completes the proof. O

Corollary 6. Let Py, and G, be a path and a r-regular of order ny and ny, respectively. Then

Rt (Pnl ® Gr) :2t+172t+1n2 + 22t72t+1n2 (711 _ 3) ,
Z'(Pyy, ® Gr) = (2+2") 'y + 2 ny (n1 - 3),
x' (P, ® Gy) =2m5 - 30+ 40, (g - 3)

fOT niy >mnp>3.
Theorem 7. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then
DTI (Gr ® Pnz) =2rny @y o + 1M (ny-3) P2y ,2r

forny >ny > 3.

Proof. By the definition of direct product, we obtain the basic information on G, ® P, in the following Table
6.

Table 6. The basic information on Gy ® Py,.

My 2y ‘ Moy 2r
2rny | rng (np-3)

Thus we have

DTI (Gr ® Pnz) = > m; i (G) @i, = 2rn1@p oy + 1111 (12 = 3) @22
(i,j)eK

This completes the proof. O
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Corollary 7. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then
Rt (Gr ® Pnz) :2t+1r2t+1nl + 22t72t+1n1 (nz _ 3) ,
Z'(Gy® Pyy) =r'ny (2+2") +2¢'ny (np - 3),
X (Gr ® PnZ) =230ty w4ty (ny-3)

forny >mny > 3.

Theorem 8. Let Gy and Gy be a r1-regqular graph and a ry-regular graph with order ny and ny, respectively. Then

r1raniny
5 Priry,riry

DTI(G1®Gy) =
fornyg >mnp > 2.

Proof. By the definition of direct product, we have Gy ® G, is a r1rp-regular graph with “271%2 edges. Thus

rironin
DTI(G1®Gy)= . m;i(G)eij= %G"rvzmz
(i,j)eK

This completes the proof. O

Corollary 8. Let Gy and Gy be a ri-regular graph and a ry-regular graph with order ny and ny, respectively. Then

2t+1
Rt (G1®G2) :nlnz (rzer) ,
ZH(G1® Gy) =mimy (r112)',

X' (G118 Gy) =2 nyny (1)
forny >mny > 2.
4. Strong product
Theorem 9. Let P, and Py, be two path graphs of order ny and ny, respectively. Then
DTI(Py, ®Py,) =835 +4pag+2 (11 + 1y —4) @55+ (611 + 613 - 32) @58+ [4nyny — 11 (ng +np) +30] s g

forny >ny > 3.

Proof. By the definition of strong product, we obtain the basic information on P, ® P, in the following Table
7.

Table 7. The basic information on Py, & Py,.

mas | mag | mMs 5 | msg | mgg
8 | 4 [2(ni+n2)-8|6(n+ny)-32 | dnyny—11(ny+ny)+30

Thus we have

DTI (Py, ® Py,)

Y. m;ii(G)gj;
(i, )eK

=8¢35+4¢38+2 (11 +ny—4) @55+ (611 + 61y — 32) @58 + [4nynp — 11 (17 + 1) +30] g .

This completes the proof. O
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Corollary 9. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then

R (Py, ®Py,) =8-15" +4-24" + 25" - [2 (11 + 1y - 4)] +40" - (611 + 615 - 32)

+ 64" [4nyny — 11 (ny +np) +30],
Z' (P, ® Py, ) =8- (371 +571) +4- (3" +871) + 4.5 (g +1mp) - 4]

+ (617 + 61y —32) - (571 +871) + 2.8 [dnyny — 11 (q + ) +30],
X' (P, ®Py,) =81 +4-11" + 10" [2 (11 +1p) - 8] + 13" - (611 + 61 - 32)

+16" - [4nyny - 11 (nq +n2) +30]

fOT ny >mnp > 3.
Theorem 10. Let Py, and G, be a path and a r-regular of order ny and ny, respectively. Then
1
DTI (Py, ®Gy) = rnp@ors1or41 + 2 (r + 1) N2 @ops1 3042 + 2 [n1n (3r+2) —2n; (47 +3)] @3r42,3r42
forny >mnp > 2.

Proof. By the definition of strong product, we obtain the basic information on P, ® G, in the following Table
8.

Table 8. The basic information on Py, ® G.

Mor41,2r+1 \ M2r41,3r+2 \ M3r+2,3r+2
rny | 2(r+1)ny | ming (3 +1) —np (4r+3)

Thus we have

DTI(Py,8Gy)= > m;(G)gj;
(i,j)eK

1
=1 Qori1,2r+1 +2 (7 + 1) 129211 3r40 + 2 [n1no (3r +2) —2n5 (4r +3)] Q3423742

This completes the proof. O
Corollary 10. Let Py, and G, be a path and a r-regular of order ny and ny, respectively. Then
R' (Pay ®Gy) =rmy (2r + 1)* 4 2my (r+1) (2r + 1) (3r+2)" + [nlnz (% + 1) —ny (4r +3)] (3r+2)%,
7' (Pay ®Gy) =2rny (2r +1) 7 4 2np (r +1) [(Zr + 1) Br+ Z)t_l] +2(3r+2)! [nmz (% + 1) —ny (4r+ 3)] ,
X! (P, ®Gy) =2rny (2r + 1)+ 2ny (r+1) (5r +3)' +2f (3r+2)' [nlnz (% + 1) -ny (4r+ 3)]
forng >mny > 2.
Theorem 11. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then
DTI (G R Py,) = 111 @ops1r41 + 2 (r + 1) 11 @opi1 3742 + % [n1na (3 +2) —2ny (47 +3)] P3r42,3r+2
forny >np > 3.

Proof. By the definition of strong product, we obtain the basic information on G, ® Py, in the following Table
9.
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Table 9. The basic information on Gy ® Py, .

Mor41,2r+1 \ M2r41,3r+2 \ M3r+2,3r+2
rny | 2(r+1)my | ming (3 +1) —ny (4r+3)

Thus we have

DTI(Gr&Py,)= Y. m;i(G)ei;
(i,j)eK

1
= 1P 12041 + 2 (7 + 1) N1 P21 3r42 + 2 [n1no (3r +2) —2nq (4r +3)] Q3423142

This completes the proof.
Corollary 11. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then
R (GrmPy,) =rnq (2r + D +2m (r+1) 2r+1) (3r+2)" + (3r+2)% [nlnz (% + 1) -ny (4r+ 3)] ,
Z' (G, Py,) =2rny (2r + 1)t_1 +2n1 (r+1) [(Zr +1)7 - Br+ 2)t_1] +2(3r+ 2)t_1 [nmz (% + 1) -ny (4r + 3)] ,
t t t toat ¢ 3r
X (G & Pyy) =2'rny (2r+1)" +2nq (r+1) (5r +3)" +2 (3r+2) [nlnz (E + 1) -m (4r+3)]
forny >np > 3.

Theorem 12. Let Gy and Gy be a r1-regqular graph and a ry-regular graph with order ny and ny, respectively. Then

nyny (r1rg + 11 +12)
DTI(G1wGy) = 5 Prira+ry+ra, 111241141

forng >ny > 2.

Proof. By the definition of strong product, we have Gy ® Gy is a (rirp+ry +12)-regular graph with
w edges. Thus

NNy (r1rr + 11 + 1
DTI(Gi®Gy)= 3 m;;(G)gij=— 2(122 1+72)
(i,j)eK

Prira+ry+ry,rirp+ry+ry-
This completes the proof. O

Corollary 12. Let Gy and Gy be a ri-regular graph and a ro-regular graph with order ny and ny, respectively. Then

2t+1
nyny (riry + 11 +12)

2 7
Z'N(G1®Gy) =myny (rra +11+12)",

Rt (G1 Gz) =

X' (Gr&Gy) =2 nymy (rry + 11 +12)"!
forny >np >2.
5. Lexicographic product
Theorem 13. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then
DTI (P, [Pn,]) = 4@uys1,mp42 + 8Pmya1 2mpa1 +4 (12 = 2) Pyt 2mps2 + 2 (12 = 3) Prysz sz + 4 (12 = 2) @Prya22m41

+2(112~2)% Puys2,omy+2 + 4 (11 = 3) Panyr1pnys1 + [2 (11 —2) +4 (11 = 3) (12~ 2) 192y 41,2y 42
+[(m=2) (n2-3) + (m1 - 3) (12 -2)* 1920022542
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forny >np > 3.

Proof. By the definition of lexicographic product, we obtain the basic information on Py, [ P,, ] in the following
Table 10.

Table 10. The basic information on Py, [Py, ].

My +1,ny42 4

My 11,219+1 8

My 41,2042 4(np-2)

My, 42,10+2 2(ny-3)

My 42 205 +1 4(np-2)

M1y 42,20 +2 2 (1 -2)°

M2y 4121541 4(n1-3)

Moy 11,21y +2 2(n-2)+4(n1-3) (n2-2)
Mamys2.0m+2 | (11 -2) (m2=3) + (my = 3) (n3-2)°

Thus we have
DTI (P, [Pn,]) = > m;ij(G) @i
(i,j)eK
=A@y +1,1y+2 + 8Puya12mp41 + 4 (12 = 2) Pyt 2042
+2(12=3) Puyi2mys2 + 4 (12 = 2) Prysz omys1 +2 (12 = 2)° Pruyi22mp42
+4(11 = 3) Pany+1,2ny41 +[2 (11 = 2) +4 (11 - 3) (12 = 2) | @2ny 41,2142
+[(m=2) (n2-3) + (11 =3) (m2 = 2)* 20,2, 20,42-

This completes the proof.
Corollary 13. Let Py, and Py, be two path graphs of order ny and ny, respectively. Then

R" (Pay [Pu,]) =4[(n2+1) (12 +2)] +8[(n2+1) (2n2 + 1)]" +4 (12 - 2) [(n2 + 1) (212 +2) ]
+2(n3-3) (ny+2)* +4(ny-2) [(n2 +2) @ny + 1]
+2(np-2)* [(n2+2) 21y +2)] +4 (11 - 3) (2np + 1)*
+[2(m -2) +4 (11 -3) (12-2)][(2m2+ 1) 22 +2) ]
+[(n1 -2) (12 -3) + (11 -3) (12— 2)*] (22 +2)*,

ZH (Pay[Puy]) =4[(m2 + 1) 4 (n2+2)' 7 48[ (ma + 1)+ 2m2 + 1))
+4(p-2) [(na+ DT+ 2ny +2) T+ 4 (2 - 3) (n +2)™!
+4(np-2)[(n2+2) ™ + @np + DT 42 (2 - 2)* [(np +2) !
+(2np + 2)t_l] +8(n1-3)(2ny + 1)t_1
+[2(n1-2) +4 (11 -3) (n2-2)][(2n2 + 1)+ 21 +2)17Y
+2(2mp+2) 7 (ny - 2) (12 - 3) + (11 - 3) (n2 - 2)%],

X' (Puy[Pry]) =4 (212 +3)" +8 (3np +2)" +8-3" - (ny - 2) (ma +1)" +2 (1 - 3) (212 +4)'
+2(np-2)2 (Bnp +4) +4 (1 -3) (4np +2)"
+[2(n1-2) +4(n1 -3) (12 -2)] (41 + 3)"
+4 (ny+1)" [(m1 - 2) (n3 = 3) + (m - 3) (m2 - 2)°]

forng >mny > 3.
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Table 12. The basic information on G;[ Py, ].

Myny+1,rny+1 ‘ Myny+1,rny+2 ‘ Myny+2,rmp+2 ,
2rm 2nq[1+7 (13 -2)] ‘ m (n2—3)+%

Theorem 14. Let Py, and G, be a path and a r-regular of order ny and ny, respectively. Then

1
DTI (Pnl [Gr]) =T Qr+ny,r+my + 2”%(Pr+n2,2n2+r + 5 [7’”2 (n1-2)+2(ny-3) n%] P2ny+r2np+r

forny >mnp > 2.

Proof. By the definition of lexicographic product, we obtain the basic information on P, [G,] in the following
Table 11.

Table 11. The basic information on Py, [Gr].
Mr+ny,r+ny ‘ Myiny 2047 ‘ Mony +r2np+r

rn (11 -2)
2

1y ‘ 2n3 +n3 (ny - 3)

Thus we have

DTI(Py, [G])= . m; i (G) i,
(i,j)eK

1
SN2 Qrang r4ny t 2n%§0r+n2,2n2+r + E [le (”l - 2) +2 (nl - 3) n%] P2ny+r,2nmp+7+
This completes the proof. O
Corollary 14. Let Py, and G, be a path and a r-regular of order ny and ny, respectively. Then

rng (nq -2)
2

zt (Pn1 [Gr]) =2rny (r+ n2)t_1 + Zn% [(r + nz)t_1 +(2ny + r)t_l] + [rnz (n1-2)+2(n1-3) n%] (2ny + r)t_1 ,

R'(Py, [G,]) =rnp (r + n2) 2+ 213 (r+my) (2ny + 1) + [ +(n1-3) n%] (2ny + 1),

rny (nq —2)

X' (Pay [Gr]) =2'rma (r +1mp)" + 203 (2r+3n2)t+2t[ 5

+(n1-3) n%] (2ny +71)!
forng >mny > 2.
Theorem 15. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then
DTI (GY[PHZ]) = 2Py Qrpy it rnp 1 + 211 [1+7 (12 = 2) ] @yt rmp+2 + % [2711 (np=3) +rny (ny - 2)2] Prigs2rigsd

forny >np > 3.

Proof. By the definition of lexicographic product, we obtain the basic information on G,[Py, ] in the following
Table 12. Thus we have

DTI(G/[Pu,]) = Y. m;j(G) i,
(i,j)eK

1
=2rny Pring+1,rmp+1 + 2y [1 +r (”2 - 2)] Pring+1,rmp+2 + E [2711 (7’12 - 3) +71r1y (le - 2)2] Prig+2,rnp+2-

This completes the proof. O
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Corollary 15. Let G, and Py, be a r-regular and a path of order ny and ny, respectively. Then

R! (Gr [Pnz]) =2rnq (rny + 1)2t +2n1 [1+r(ny-2)][(rny+1) (rny +2)]t

rny (np - 2)2
2

A (Gr [Py, ]) =4rny (rnp + 1)t_1 +2n1 [1+7(np-2)] [(rnz + 1) 4 (g + 2)t_1]

+[n1 (ny -3) + :|(rn2 +2)2t,
+ [an (np=3) +rny (ny - 2)2] (rng + Z)t_1 ,

X' (Gr[Pay]) =25 rmy (rmg + 1) + 201 [1 47 (ng - 2)] (2rmp +3)"

2
+2! [m (ny-3) + rnl(nzz—Z)] (rny +2)"

forng >mny > 3.

Theorem 16. Let G and Gy be a r1-regqular graph and a ry-regular graph with order ny and ny, respectively. Then

1
DTI(G1[Gy]) = 57’117’12 (r2 + 1112) @rynysry,ryny+ry
formny >np > 2.

Proof. By the definition of lexicographic product, we have G;[G,] is a (r1ny + r2)-regular graph. Thus
1
DTI(Gi[G2]) = ). my;(G)g;j= SN2 (12 +1112) @rimyeryringers-
(i, j)eK

This completes the proof. O

Corollary 16. Let Gy and Gy be a r1-regqular graph and a ro-regular graph with order ny and ny, respectively. Then

nyny (1o + 7’1712)2”1

2 7
7' (G1[Ga]) =myny (ra +11m2)’,

X (G1[Ga]) =2 gy (ry +1amp) ™!

R (G1[Gy]) =

forny >ny > 2.

6. Conclusion

In this paper, we give a unified approach to solve the computational problems of degree-based topological
indices of standard product graphs for the path, star and regular graphs. It is imaginable to use other graph
operations to calculate degree-based topological indices uniformly in the future.
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