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ABSTRACT 
 

Obesity and Diabetes Mellitus (DM) are defined as worldwide pandemics by the World health 
organization due to their economic burden and widespread. Although a huge amount of research is 
being done in the field of obesity and DM today, many questions remain unsolved. Tissue 
inflammation is the main factor in the development of both obesity and DM, leading towards 
irreversible changes in the tissue and formation of specific complications. One of the widespread 
cytokines, tumor necrosis factor alpha (TNF-α), was shown to be involved with inflammation in the 
development of metabolic disorders and neurodegenerative diseases. Even though the role of 
TNF-α in the pathogenesis of these two diseases remains unclear, new ways of treating and 
preventing diseases based on TNF-α antagonism attracted the attention of scientists. In this 
review, TNF-α and its receptors’ structures and properties are explored, and their role in disease 
development, including obesity and type 2 DM (DM2) will be discussed by viewing data from 
literature.  
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1. INTRODUCTION 
 
Obesity and Diabetes Mellitus (DM) are two 
worldwide pandemics, which consume a big 
amount of the medical and social budget, and 
affect nearly one tenths of the population 
Although the number of people diagnosed with 
DM is around 425 million, according to data from 
epidemiological studies, only one third of people 
with type 2 DM (DM2) have been diagnosed, 
while the other two thirds don’t even know that 
they have this disease [2-5]. It is well known that 
obesity is the future of DM2 and is viewed as the 
initial step of the disease. Due to similar 
biochemical abnormalities and clinical features, 
obesity, diabetes, ischemic heart disease, 
hypertension, and polycystic ovarian s
 

 
Fig. 1. TNF- α structure and forms (A), binding with its receptors (B) effects on insulin 

Panel A – TNF-α synthesizes from nucleus as a pro
by TACE (ADAM17) to soluble sTNF-

tmTNF- α, mTNF
 Panel B – TNF receptors type 1 (TNFR1) and type 2 (TNFR2) binds b

Panel C – TNF- α affects insulin signaling pathway though IRS1 and MAPK
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Obesity and Diabetes Mellitus (DM) are two 
worldwide pandemics, which consume a big 
amount of the medical and social budget, and 
affect nearly one tenths of the population [1]. 
Although the number of people diagnosed with 
DM is around 425 million, according to data from 
epidemiological studies, only one third of people 
with type 2 DM (DM2) have been diagnosed, 
while the other two thirds don’t even know that 

. It is well known that 
obesity is the future of DM2 and is viewed as the 
initial step of the disease. Due to similar 
biochemical abnormalities and clinical features, 
obesity, diabetes, ischemic heart disease, 
hypertension, and polycystic ovarian syndrome 

are defined as metabolic syndromes 
[6,7]. Finding new effective ways of treating 
and preventing these diseases remains a 
priority in the health care system, as well as 
among the life sciences. Although 
adipocytokines, including the tumor necrosis 
factor alpha (TNF-α), were shown to be involved 
in the pathogenesis of both obesity and DM2 
3,5,8-11], treatment based on TNF
is presented in a few studies, [12-
fully explain the mechanisms of their efficacy. In 
this review we would like to characterize TNF
describe its mechanism of action, its binding 
characteristics with its specific receptors, and 
describe how TNF-α can be involved in the 
pathogenesis of diseases, specifically obesity 
and DM2.  

α structure and forms (A), binding with its receptors (B) effects on insulin 
signaling (C) 

α synthesizes from nucleus as a pro-TNF-α, then forms trimers (tm-TNF-α), which can be cleaved 
-α and membrane bound part mTNF-α; AntiTNF-α antibody can bind with 

α, mTNF- α and sTNF- α  and inhibits its effects; 
TNF receptors type 1 (TNFR1) and type 2 (TNFR2) binds both sTNF- α and tm

α affects insulin signaling pathway though IRS1 and MAPK 
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2. TNF-Α STRUCTURE, FRACTIONS AND 
FUNCTION 

 
There are widely expressed transmembrane           
TNF superfamily proteins such as                            
cytokines, lymphotoxins, and receptor                         
ligands that contain a specific homology domain 
and commonly have a three-dimensional 
structure [17,18]. The first discovered protein in 
this family is TNF-α [18,19]. This protein is 
associated with acute inflammation and was first 
cloned in 1986 [18,19]. TNF-α is a 
transmembrane cell signaling protein that 
contains a specific homology domain which can 
be cleaved into circulation and is involved in 
producing systemic inflammation, especially in 
the acute phase reaction [20,21]. TNF-α is 
mainly located in the immune and neuronal cell 
membranes [22,23]. As shown by many authors, 
TNF-α is produced by active macrophages, 
CD4+ lymphocytes, natural killers cells, mast 
cells, eosinophils, and neuronal cells, and                 
is involved in systemic inflammation [18,19,22, 
23]. 

 
TNF-α is initially produced as a monomer                     
26kDa membrane protein (pro-TNF-α)                          
which combines in trimers and becomes                              
a mature TNF-α, tm-TNF-α (Fig. 1, Panel A).                      
The tm-TNF-α can act independently or can                         
be cleaved by the TNF-α converting                         
enzyme (TACE/ADAM17) to a membrane bound 
protein (mTNF-α) and soluble 51 kDa protein 
(sTNF-α) [23,24]. These molecules from the 
TNFs family are usually secreted from the cell 
membrane into circulation, functioning as 
cytokines triggering inflammation and apoptosis 
[13,24].  

 
TNFs as integral membrane proteins participate 
in signal transduction and regulate many cell 
functions, in which sometimes their effects may 
be controversial [24]. For example, TNF-α is a 
powerful physiological inductor of apoptosis [19, 
23]. At the same time, cytokines are endogen 
pyrogens, involved in fever, inflammation, cell 
apoptosis, cachexia, depression of tumor 
development, and inhibition of viral gene 
replication [24].  

 
Based on data from literature in the Fig. 1 we 
tried to explain schematically appearance of 
TNF-α molecule isoforms (panel A), their binding 
with receptors, signaling, crosstalk (panel B), and 
how TNF-α may affect insulin signaling and 
cause insulin resistance (panel C).  

3. TNF-Α RECEPTORS 
 
TNF-α usually realises its effects through specific 
receptors. Structurally TNF receptors are 
composed from extracellular and intracellular 
domains (Fig. 1, panel B). An extracellular 
domain contains four cysteine-rich motifs (CDRs) 
which are important for ligand binding and 
molecule assembly, known as the pre-ligand 
binding assembly domain (PLAD), which is 
necessary for further downstream signaling [25-
27].  
 
Two types of receptors were found for TNF-α: 
TNF-α receptor type 1 (TNFR1), referred to as 
p60, and TNF-α receptor type 2 (TNFR2), 
referred to as p80 [17,26]. These two receptors 
are also distinguished by their expression. 
TNFR1 is an ubiquitously expressed protein in all 
tissues. Whereas TNFR2 is mostly expressed in 
immune and endothelial cells [23,25,26]. TNF-α 
can provide its effects through its type 1 and type 
2 receptors simultaneously or separately [14,28]. 
However, stimulation of both receptors provides 
signaling for inflammatory factors and gene 
transcription, probably through the nuclear factor 
kappa beta (NF-kB) and the AP2 protein [14,23, 
29].  
 

TNFR1 can bind and act by both sTNF-α and tm-
TNF-α (Fig. 1, panel B), whereas TNFR2 can be 
induced only by tm-TNF-α. Interestingly, TNFR2 
was found to be capable of activating apoptosis 
even without the death domain (DD) [17,27]. 
When TNF-α binds to its receptor, it usually 
interacts through the specific DD with the other 
DD that contains proteins such as the TNFR1 
associated death domain protein TRADD or TNF 
receptor associated factor 2 TRAF2. This 
mobilizes apoptosis, suppressing signalling 
complexes such as the protein receptor 
interacting protein kinase 1 or RIP1, linear 
ubiquitin chain assembly complex LUBAC 
[8,17,24]. Moreover, this complex can also 
induce different signaling pathways such as NF-
kB and trigger inflammatory transcription genes 
such as IL-6, IL-8, p38, c-junk N-terminal kinase 
(JNK), and TNFs [8,17,30]. The next property of 
TNF-α signal transduction is the assembly of 
receptor DD with the Fas associated adapter 
protein towards procaspase 8, which then will be 
inhibited by RIP1 and RIP3 [31,32]. 
 

TNFR2, unlike TNFR1, does not contain the DD 
domain and provides signaling towards NFkB, 
inhibits apoptosis, and signals to 
Phosphoinositol-3 kinase (PI3K) protein kinase B 
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(PKB)/Akt and Mitogen activated protein kinase 
(MAPK) pathways, leading to protein 
transcription, synthesis and cell proliferation [24, 
33-35].  
 
Interestingly, the presence of both receptors is 
necessary for apoptosis signaling. Whereas, in 
the absence of TNFR1, but not TNFR2, the 
apoptosis signalling of TNF-α was fully 
suppressed [14,28,29].  
 
However, the intracellular domain of TNFR2, 
unlike TNFR1, contains 80 amino acid residues 
associated with cell apoptosis and is called the 
death domain (DD) because it activates 
caspases and is associated with cell death [17, 
27].  
 
Thus, the multifaceted effects of TNF-α can be 
explained by differences in its signalling through 
the TNFR1 and TNFR2 receptor properties, 
which permit the development of new treatments 
and therefore prevention of diseases [24,36,37] 
[19,33].  
 

4. SOLUBLE FRACTION OF TNFRS 
 
TNF-α’s both receptors i.e. TNFR1 and TNFR2 
are found on the cell membrane as well as in the 
circulation as soluble fractions sTNFR1 and 
sTNFR2 [23,38]. Some authors have shown the 
formation of soluble TNFR1 and TNFR2 by 
shedding their external domains by TACE (Fig. 1, 
panel B), as well as by exocytosis and migration 
towards the intracellular space and appearing in 
the circulation as soluble receptor forms [38,39]. 
The activity of TACE was also found in the blood 
serum [40,41]. In healthy volunteers, there were 
appearances of sTNFR1 and sTNFR2 in the 
circulation after a TNF-α injection [42]. 
 
The soluble fraction receptors in the blood 
stream are seen as an early predictor of disease 
and can be used in diagnostics [40]. For 
example, if soluble TNFRs and TACE are found, 
this can be used to predict that it is from small 
alterations to Alzheimer’s disease [40,43]. High 
levels of soluble TNFRs and increased TACE 
activity in the blood serum were found in 
Alzheimer’s disease [40], Parkinson’s disease 
[44], and in patients with multiple sclerosis, and 
were shown to remain high throughout the 
diseases [45].  
 
Interestingly, mTNF-α can bind with sTNFRs to 
produce a reversible signal in the cell (Fig. 1, 
panel B). This can be regulated by Transforming 

Growth Factor beta (TGF-β), that is responsible 
for cell proliferation and differentiation and also 
by p38MAPK, which regulates gene transcription, 
metabolism and cell proliferation [41]. Moreover, 
TNFR1 at low concentrations of TNF-α can bind 
with sTNFR1 to form a ligand to imitate TNF-α 
action, and produce a reverse signal [41]. 
Authors showed activation of extracellular kinase 
Erk1/2 and cellular growth of connecting axons of 
sympathetic neurones from the upper neck node 
due to reverse TNF-α signaling [41,46]. 
According to the material mentioned above, we 
can propose that the action of TNF-α inhibitors 
may depend on reverse signaling [41,46]. The 
authors also suggested to take this phenomena 
into account when interpreting the results of 
experiments [46].  
 

5. INHIBITION OF TNF-Α EFFECTS 
 
Nowadays the pharmacological inhibitors of TNF-
α and its receptors are developed (Fig. 1, Panel 
A) and used in experiments as well as in clinical 
practice [46-49]. Pharmacological TNF-α 
inhibitors Infliximab (Remicade), Adalimubab 
(Humira), Certolizumab (Cimzia) and Golimumab 
(Simponi) are antibodies designed to TNF-α, 
whereas Etanercept (Enbrel) are antibodies 
designed to TNFRs [50-52]. Interestingly, the 
activation of sphingomyelinase in sphingomyelin 
hydrolysis leads to the formation of ceramides, 
galactosylceramides, and sulphatides in 
neurodegenerative brain diseases [46,49]. 
However, treatment with the antihistaminic agent 
dimebon – 3,6-dimethyl-9-(2-methyl-pyrydyle-5)-
ethyl-1,2,3,4-tetrahydrocarboline dihydrochloride 
simultaneously with a blockade of H1 receptors 
were shown to suppress the activity of TNF-α, 
resulting in the prevention of Alzheimer’s disease 
[53,54]. Treatment with Dimebon showed 
protected sphingomyelin and lipid destruction on 
the surface of neuronal cells of mice in the 
experiment and also prevented Alzheimer’s 
disease [54]. Other authors have shown the 
neuroprotective effect of TNFR1 that occurred by 
activation of the neuronal growth factor (NGF) 
necessary for neuronal cell growth. TNFR2 
unlike TNFR1 promotes expression of 
intracellular adhesion molecules type 1 ICAM1 
and stimulates neuronal inflammation and 
neurodegeneration [10,54]. However, authors 
there mentioned the possibility of cross 
interaction between both receptor signaling 
pathways. Other authors indicate that TNF-beta 
lymphotoxin alpha can also bind with both TNF-α 
receptors and is probably involved in the 
pathogenesis of brain ischemia [30]. As shown, 
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interactions between TNFR2 and the D-receptor 
of IL-17 leads to the activation of NF-kB in 
experiments on cells from the kidney’s proximal 
tubules [37]. 
 
The complexity of multicomponent signaling 
pathways define the controversial effects of TNF-
α, TNFR1, and TNFR2, and complicates the 
development of a new therapy based on TNF-α 
antagonism. Specifically, more evidence is 
needed for explaining the mechanism of TNF-α 
and its receptors involved in systemic 
inflammation [24]. 
 

6. ROLE OF THE TNF-Α IN DISEASE 
DEVELOPMENT 

 
As noted above, the major effects of TNF-α 
involved in the development of diseases such as 
rheumatoid arthritis, and other 
neurodegenerative, vascular and metabolic 
diseases, were shown by many authors. The 
major effects of TNF-α and the major diseases 
where TNF-α is involved in their pathogenesis is 
presented in Fig. 2. 
 
Studies have shown that inhibition of TNFR1 
signaling through suppression of inflammation 
has decreased neurodegenerative changes in 
the brain and prevents Alzheimer’s disease. 
However, inhibition of TNFR2 signaling has 
shown to be beneficial in the prevention of 
Parkinson’s disease and multiple sclerosis 
[52,55]. The effects of suppressing TNF-α 
derived inflammation markers were shown in 
experiments with rheumatoid arthritis, psoriatic 
arthritis, and coeliac disease [24,55-57]. Results 
showed where suppression of TNF-α in mice 
leads to axon remyelination due to the lower 
expression of neurofilament H, which is 
responsible for axon injury [58,59].  
 

The beneficial effect of these mechanisms in the 
prevention of disease were shown in clinical 
studies with the inhibition of effects of TNF-α 
signaling by Etanercept, Adalimumab, and 
Infliximab [50,52,60,61]. Unfortunately, there are 
few studies done regarding TNF-α inhibition 
therapy and due to their wide side effects, there 
are limitations for their usage [51,62-64].  
 

It is well known that ischemia and stroke cause 
neuronal cell hypoxia and death. In response to 
ischemia, most neuronal, glial, and astrocyte 
cells increase their TNF-α secretion capability 
[65,66], which has a two-sided effect, such as 

impairing as well as protecting. Treatment                    
with Etanercept, which is an anti-TNFR2 
antibody presented a Fc-fusion fragment                           
of Immunoglobulin G (IgG), showing                         
beneficial effects in the regression of ischemia 
and inflammation [67]. Whereas other                     
authors showed impaired neuron sensitivity to 
ischemia and increasing neuronal inflammation 
after that treatment [68]. Interestingly, TNF-α pre-
treatment showed neuroprotection at                               
the ischemia site [68]. These kinds of 
controversial results are probably related to the 
type of TNFRs involved in signalling [69]. 
Moreover, authors were shown increased 
expression of TNFR1 in the early stages of 
stroke during the first 6 hours, whereas TNFR2 
expression was detected 24 hours after an 
ischemic stroke [67]. These differences in TNFRs 
expression proposed results of posttranslational 
regulation of the receptors expression, probably 
by NF-kB [70]. 
 
In some studies it was shown that the                       
ischemia site was wider in mice with the                       
TNFR1 gene suppressed in comparison to                      
mice with the TNFR2 gene suppressed or to          
their normal expression [71,72]. These results 
permit authors to conclude that TNFR1 is 
involved in preconditioning and resisting 
ischemia [73]. Moreover, it was shown that 
higher expression of TNFR1 was found to be 
responsible in the regulation of different 
neuroprotective mediators such as vascular and 
endothelial growth factors, VEGF and EGF [74]. 
Mice with TNFR1 gene suppression and human 
TNFR2 gene over expression were shown to 
have increasing TNFR2 signaling with the 
stimulation of an anti-inflammatory response in 
the brain endothelium resulting in inflammatory 
ischemia [75]. Thus, the neuroprotective effects 
of TNFR1 and the neurodegenerative 
inflammatory effects of TNFR2 were shown [24, 
74]. Unexpected results from other authors show 
that there is a decrease in neurodegeneration 
after suppression of the TNFR1 gene by retinal 
ischemia-perfusion and an increase of 
neurodegeneration after TNFR2 gene 
suppression in mice [76]. Their results suggest 
that signaling through TNFR1 increases neuronal 
damage and signaling through TNFR2 was 
neuroprotective [77]. Similar results were shown 
in mice experiments with brain ischemia after 
lipopolysaccharide treatment [78]. Authors found 
that signaling through TNFR1-JNK are 
responsible for neuroinflammation and 
neurovascular damage [78].  

 



 
Fig. 2. Major effect of TNF- α and major disease where TNF
 
As shown in the literature, the role of TNFRs in 
the development of neurodegeneration and 
neuroinflammation was controversial and 
depended on the type of ischemia, its duration, 
and character, and could not explain the process 
of alterations and neuron damage in Alzheimer’s 
or Parkinson’s diseases where TNFR1 and 
TNFR2 signaling were shown as unstable and 
variable effects of TNF-α [76,79].  
 

Interestingly, small conductance calcium
activated potassium channels type 2 (K
(KCa)2.2 were viewed as a following step in signal 
transduction through TNFR2 [70
explained that channel overstimulation lead to 
neuroprotection and decrease of their 
neuroexcitation. These channels were found to 
be responsible for plasticity of CA1 cells in the 
hippocampus and for cognition and memory 
 

In another study shown, stimulation of 
PI3K/PKB/Akt signaling by TNFR2 in primary 
astrocytes induced gene expression of 
neuropeptides, including the leukemia inhibition 
factor LIF gene [10]. The leukemia factor 
presented a neurotrophic cytokine produced by 
astrocytes [10]. Increasing this cytokine level 
showed that during oligodendrocytes maturation, 
protected primary neurons from excitotoxicity i.e. 
cell damage after overexcitation 
also protected axons from acute inflammation 
[83].  
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As shown in the literature, the role of TNFRs in 
the development of neurodegeneration and 
neuroinflammation was controversial and 
depended on the type of ischemia, its duration, 
and character, and could not explain the process 
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Interestingly, small conductance calcium-
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neuroexcitation. These channels were found to 
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hippocampus and for cognition and memory [81].  

er study shown, stimulation of 
PI3K/PKB/Akt signaling by TNFR2 in primary 
astrocytes induced gene expression of 
neuropeptides, including the leukemia inhibition 

. The leukemia factor 
presented a neurotrophic cytokine produced by 

. Increasing this cytokine level 
showed that during oligodendrocytes maturation, 
protected primary neurons from excitotoxicity i.e. 
cell damage after overexcitation [82,83]. They 
also protected axons from acute inflammation 

Another following signaling product of TNF
CXCL12, cytokine C-X-C motive 12
found to be involved in the proliferation and 
differentiation of oligodendrocyte precursor cells. 
This was found to affect brain function in areas 
such as cognition and memory [84,

 
Recent studies have shown that TNFR2 
signaling in microglia was related to the 
activation of anti-inflammatory pathways, such as 
increasing IL-10 [86]. Many authors support
the opinion that signaling through TNFR1 
especially increased factors promoting 
neurodegeneration, whereas TNFR2 signaling 
specifically increased neuroprotection 
 
The effectivity and preference of TNFR inhibition 
in disease pathogenesis, specifica
mellitus, remains unclear and continues to be 
studied intensively.  
 

7. OBESITY, INSULIN RESISTANCE AND 
TNF-Α  

 
Obesity is described as an increase of fat 
masses that leads to augmentation of 
adipocytokines as well as TNF-α secretion 
As were shown by recent studies, obesity also 
results in the loss of regulation and balance 
between energy intake and expenditure by the 
hypothalamus [14,87].  
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TNF-α gene deletion in mice protected them from 
diet-induced obesity due to increasing heat 
production [14,87]. TNF-α has shown to play a 
role in adipose tissue modification, promoting 
white adipocytes to turn beige (beigeing) in 
response to augmentation of uncoupled protein 
type 1 and type 3 (UCP1 and UCP3) gene 
expressions and showed how TNF-α could be 
involved in the pathogenesis of obesity and 
diabetes. The hormone of white adipose tissue, 
leptin, is a major regulator of body weight in the 
hypothalamus [88]. Interestingly, in mice with 
TNFR1 suppression, the resistance to leptin was 
not observed. While Janus kinase 2 (JAK2), 
signal transducer and activator transcription 3 
(STAT3), and Forehead box protein O 1 
(FOXO1) gene expression under leptin over 
stimulation remained normal in TNFR1 knockout 
mice [14]. Whereas in wild type mice with diet 
induced obesity and resistance to leptin, the 
signal transduction through JAK2/STAT3/FOXO1 
pathways were affected [88].  
 
Interestingly, in mice on high-fat high-
carbohydrate diets, obesity and type 2 DM were 
prevented by TNF-α suppression with infliximab, 
leaving mice insulin sensitive [89,90]. Moreover, 
they showed improving glycemia levels under the 
TNF-α suppression as a result of Insulin 
Receptor Substrate 1 and 2 (IRS1 and IRS2) and 
Akt phosphorylation, and also showed increasing 
levels of glucose uptake by muscle, liver and 
hypothalamus due to better insulin signaling [89]. 
However, the genetic blockade of TNFR2 did not 
show any changes in insulin sensitivity [14,89]. 
Similar decreases in body weight, fat masses, 
and size of adipocytes were shown by 
suppression of the Tole-like receptor type 4 
(TLR4) gene [31,91-93]. Thus, as was mentioned 
above, TNF-α can affect insulin sensitivity 
through TNFR1 and TNFR2. Inhibition of TNF-α 
by Anti-TNF-α or anti-TFRs antibodies showed 
better results for glycemia and insulin sensitivity 
(Fig. 1, Panel C). 
 
Interestingly, suppression of TNFR1 and TNFR2 
separately promoted the development of insulin 
resistance in ob/ob mice [90,94], whereas 
suppression of both receptors simultaneously 
prevented insulin resistance [95]. Some authors 
found that suppression of TNFR1 in the 
hypothalamus prevented insulin resistance in 
mice, and lowered blood leptin and insulin levels 
even when on a high-fat diet [14,29,95-97]. 
 
The promising results in obesity prevention were 
obtained by suppression of TNFR1 with 

infliximab directly into the hypothalamus through 
a stereotaxic canule [11,98,99]. As authors 
showed, prevention of obesity was due to 
increasing heat production and also suppressing 
of TNF-α production and TNFR1 signaling in the 
hypothalamus in high-fat diet induced obesity 
[90,94,96]. Increasing heat production was linked 
to high expression of UCP1 and UCP3 protein in 
fat and muscle without significant changes in 
cytochrome 3 and mitochondrion contents.  
 
IL-6, IL-17, and TGF-β C-reactive proteinw 
(CRP) were found to be involved in tissue 
inflammation in DM2. TNF-α was also shown to 
be involved in tissue inflammation through 
TNFRs signaling by demonstrating development 
of insulin resistance in rats, where GLUT4 
activity affected adipose tissue [100,101]. 
Interestingly, tissue inflammation was prevented 
in mice by TNF-α gene suppression [101,102]. 
Moreover, the injection of the Ig-G antibody to 
TNFRs showed improved sensitivity to insulin 
[99,101,103], but the mechanisms by which are 
not clear yet.  
 
Meta-analysis of 23 studies have showed a 
significant increase in blood serum TNF-α levels 
in people with type 2 DM, which was more 
significant in the subgroups by age, ethnicity, and 
disease duration [104]. 
 
Some authors showed the role of TNF-α in the 
development of diabetes with complications in 
experimental and clinical studies [104]. For 
example, increasing TNF-α expression in orbital 
tissues were shown in rats with experimental 
diabetes [105,106]. Injection of anti TNFRs 
antibody infliximab lowered the expression of 
TNFRs, which was associated with decreasing 
p38 and protooncogene bRAF, and suggested 
the involvement of TNFRs in the development of 
inflammation [107].  
 
TNF-α was also found to be involved in the 
development of hypertension and kidney damage 
in experiments on rats treated with Angiotensin 
II. Whereas addition to diet TNFRs inhibitor 
Etanercept, prevented elevation of blood 
pressure,  promoted lower expression of 
Monocyte chemoattractant protein type 1 (MCP1) 
and CD68+, and increased Cyp2c23 protein 
expression in the kidneys vessels [99,108]. The 
results showed the harmful effects of TNF-α in 
the development of hypertension and potential 
damage to kidney vessels structure and function 
[108,109]. 
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In clinical studies, authors showed vision 
improvement in patients with diabetic retinopathy 
and macular edema when treated with infliximab 
[107]. Similarly to retinopathy, TNF-α levels 
increased in serum as well as in urine in patients 
with nephropathy, and was correlated with 
microalbuminuria levels [105].  
 
Unfortunately, there were no more clinical 
studies on TNF-α inhibition in obesity and DM2. 
We speculate that by suppressing TNF-α, it will 
be possible to prevent obesity and the 
development of DM2 in early stages, which can 
stop epidemics, save peoples lives, and support 
the health care budget.  
 

8. CONCLUSION 
 
Obesity and DM are worldwide pandemics that 
have huge impacts on health care and the 
economy. TNF-α is shown to be involved in the 
pathogenesis of many neurodegenerative, 
vascular, and metabolic disorders like obesity 
and DM. In theory, obesity and DM could easily 
be prevented and treated by antagonizing the 
effects of TNF-α. Although studies have shown 
the role of TNF-α in the development of obesity, 
insulin resistance, and type 2 DM [100], more 
questions remain unclear, and are sometimes 
contradictory. We need more evidence about the 
safety, advantages and disadvantages of TNF-α 
inhibitors as a new prevention and treatment of 
obesity and DM. In our view, deeper 
investigations are needed for further 
development of new therapies based on the 
antagonism of TNF-α and TNFRs effects. 
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