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ABSTRACT 
 
Aim: In this study it is presented a methodology to determine the structural response of a tensegrity 
system working under the effects of wind, temperature variations and when coupled to a steel 
spatial grid applied as pedestrian bridge. This methodology is based in applying nonlinear static and 
dynamic analyzes and the base motion method. 
Place and Duration of Study: The study was carried out in the Graduate Engineering Department, 
Universidad Autonoma de Queretaro, Queretaro, Mexico. September 2017 to July 2019. 
Methodology: At first instance, it was analyzed the equilibrium configuration of a tensegrity system 
by only considering self-weight through non-linear static analyzes. In the second stage, it was 
studied the structural response and internal forces of the proposed tensegrity system under 
environmental loads as temperature variations and wind forces, which were represented as 
dynamic effects in a non-linear finite element model. Later, a spatial steel grid was analyzed for 
such environmental loads but using linear static analyzes. Finally, by applying the principle of 
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superposition to the spatial steel grid, and the base motion method to the tensegrity system, it was 
represented the coupling of both systems as a single assembly. 
Results: The structural response of a tensegrity system when working under different load 
conditions is obtained. Also, the effects produced by the coupling of both systems are determined. 
Conclusion: The study concluded that the tensegrity system shows a stable response for the 
different load combinations established. There are also denoted the increases in internal forces and 
displacements for specific loads cases, which may affect locally some components and the overall 
behavior of the assembly. 
 

 

Keywords: Tensegrity structures; static and dynamic nonlinear analysis; base motion method; 
pedestrian bridge. 

 

1. INTRODUCTION 
 

Tensegrity structures (TS) are generally 
attractive to users, they have mechanical 
characteristics that in comparison to conventional 
systems, increase their structural efficiency (load 
bearing/self-weight ratio) [1–3]. TS allow the use 
of sustainable materials and the implementation 
of efficient constructive processes, because a 
large percentage of the structure is work-shop 
made, this minimizes the building time. TS are 
pin-jointed free-standing structures, made-up by 
a continuous red of cables working under tensile 
forces, in which, isolated bar elements, that 
works under compression forces are contained 
[4]. Initially proposed by R. B. Fuller, K. Snelson 
and G. Emmerich [1], their name is a contraction 
of the words “tensional integrity”, proposed by R. 
B. Fuller. 
 
It is considered that the invention of TS was done 
in the plastic arts field [1]; however, in the 
architecture and civil engineering, many 
structural systems, partially based on the 
mechanical behavior of TS have been 
developed, such as the tensile membrane 
structures from La Plata stadium roof and the 
Georgia Dome [5]; another example is the 
Kurilpa bridge, which is claimed as the first 
hybrid TS implemented in an elevated pedestrian 
walkway [6]. 
 
In aerospace and robotics fields, TS are applied 
as folding structures and smart structures, due 
their capacity to change their shape, by 
controlling the prestress of cable elements [7]. 
The super ball-bot is one of the ultimate 
developments of these areas, it was created by 
NASA as a planetary exploration robot [8]. 
 
From a structural mechanics point of view, 
progress and knowledge about TS stand out. 
Current research proposes various techniques 
and methodologies to perform numerical models 
[9]. Behavior of TS adapted to work against 

gravitational static loads has been analyzed by 
[10,11]. [5,12] studied TS under static and 
dynamic wind forces. In addition, modal 
parameters have been characterized considering 
variations in the ambient temperature of some 
common TS [13]. 
 
However, from the literature review, it is noted 
that, in current researches, little has been studied 
about the interaction of environmental effects 
and the multiple load combinations that would act 
on a TS exposed to outdoor conditions [14]. The 
integration of these variables can be carried out 
through dynamic non-linear methods, since they 
allow to approximate, to a greater degree, the 
behavior of TS under the above-mentioned 
weather load cases. 
 
It should be noted, the null scope by the building 
codes, in regards to the analysis and design of 
tensegrity structures. This fact is one of the main 
aspects that limit the implementation of TS as 
civil structures [2,15]. In the absence of such 
regulations, researches carried out on these 
systems, define that stability is the parameter 
that allows describing the behavior of TS. 
 
Historically, research about tensegrity systems 
has focused mainly on the finding form process 
[16], due to, in assemblies with complex 
geometries or large amounts of elements, not all 
the methods converge. Other reason is that 
current methods do not allow to control the 
resulting geometric characteristics, or, to keep 
the principle of mechanical unilaterality for each 
type of element [17–20]. Although it should be 
noted that the methods developed to date, are 
convenient and can be adapted or modified to 
solve a specific system. 
 

It has been studied the characteristics and 
conditions to ensure stability of TS, considering 
self-weight and prestress of cables. Connelly [21] 
presents a criterion called “Super stability”, 
through which analyses basic prismatic systems. 
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Subsequently, [22] defines two concepts of 
stiffness for TS, that are named “Prestress 
stability” and “Second order stiffness”, by which, 
stability is provided to the TS. Similarly, Deng 
and Kwan [23] propose a general classification of 
the necessary conditions to determine the 
stability of an ET, by analyzing the tangential 
stiffness matrix and considering the variations of 
the potential energy of the second order. 
Complementing these works, Zhang and Ohsaki 
[24] formally establish the conditions required for 
an TS to be stable, which are based in                 
the fact that the tangent stiffness matrix must be 
defined and positive. Their conclusions states 
that the minimum necessary conditions are: the 
force density matrix must be positive and 
defined, in addition to having a minimum range 
deficiency equal to d+1; and, the range of the 
geometric stiffness matrix should be d (d+1)/2 
where d is the vector of non-trivial 
displacements. 
 
Subsequently, TS structural response was 
characterized under the effects of external loads 
as compression, tension and torsion. Lazopoulos 
[25] employs the bifurcation method, to study the 
conditions that generate global and local 
instabilities in a 3-plex system. Amendola [26] 
studied the behavior of the 3-plex system, 
considering compressive loads for two boundary 
conditions cases at the base nodes: with total 
restriction of movement, and, with freedom of 
movement in the horizontal plane. From case 1, 
it is shown that the structure tends to stiffen 
when the load is applied, and for the second 
case, 3-plex systems presents a softening 
behavior. 3-plex system was also studied by 
Zhang et al. [27], who identified that, when acting 
torsional loads, a new type of instabilities 
appears which were named ‘Snapping 
Instabilities’. It was observed that this behavior 
was present in the transition of equilibrium 
states, once the system was loaded. Snapping 
instability occurs when torsional load is higher 
than the allowable, which generates permanent 
deformations, even when the elements work 
within the elastic limit. Atig et al. [28] discuss the 
possible existence of dynamic instabilities in the 
3-plex system and in the Geiger dome. This 
effect was observed when systems were excited 

with white noise, and is associated to slackening 
of cables during loading cycles. 
 
The previously presented works identify that 
some systems may present instabilities caused 
by external loads. In addition, there is a lack of 
knowledge about the response of tensegrity 
systems applied in cases other than light-weight 
roofs, where the interaction of wind effects with 
temperature variations is included. Therefore, 
this work presents the study and development of 
a stable tensegrity system, under dynamic 
environmental loads. This tensegrity structure     
will be coupled to the superstructure of a 
pedestrian bridge, applying the “ground motion” 
method, in order to represent the behavior of 
whole assembly under the described external 
loads. 
 

2. MATERIALS AND METHODS  
 

2.1 Superstructure Description for the 
Proposed Pedestrian Bridge 

 
Superstructure of the pedestrian bridge is 
composed by two different systems: the main 
structure of the bridge, which consist of a single-
lattice spatial layer grid (also known as spatial 
double layer grid, SDLG), and by five identical 
tensegrity modules, which are the result of this 
research, and will be coupled to the main 
structure. 
 

SPLG is integrated by the parts indicated in Fig. 
1. It has a total length of 28.0 m, width of 2.80 m, 
and 1.50 m for height; covering a clear span of 
22.0 m. It is proposed a floor system by precast 
W-deck panels whose weight is 200 kg/m2, and 
will be mounted on a steel support system, that 
will allow their installation. Per the Mexican 
standards for bridges [29] live load will be 
considered as 400 kg/m

2
. Table 1 shows the 

mechanical properties of the structural elements 
used for this system [30,31]. 
 
Fig. 2 shows a view in the X-Y plane, at a height 
of 0.0 m. This geometric configuration allows the 
coupling of the five tensegrity modules, whose 
location corresponds to the dotted areas of green 
and blue. 

 
Table 1. Mechanical properties of the SDLG components 

 
Cross-section type Round HSS Rectangular HSS Round tubes 
ASTM Standard A500 Gr. 42 A500 Gr. 46 A53 Gr. B 
Yield Stress (Fy) 2952 kg/cm

2
 3234 kg/cm

2
 2460 kg/cm

2
 

Ultimate Stress (Fu) 4077 kg/cm2 4077 kg/cm2 4218 kg/cm2 



 

Fig. 2. View in the X
 
The tensegrity module developed in this work is 
called "X-T". Topology and connectivit
T module are described by Fig. 3. The X
system consists of 27 elements, of which 5 
elements are bar type and 22 elements are cable 
type, which converge to 10 nodes. This assembly 
was developed with the aim of establishing a 
tensegrity system, whose geometrical and 
architectural features allow pedestrian traffic, 
when implemented on a pedestrian bridge. The 
interior clearance of the X-T module (Fig. 4a and 
4b) is 2.70 m wide and 2.80 m high. The total 

 
Node  X Y 
1 0.000 0.000 
2 0.000 3.800 
3 0.200 0.000 
4 0.200 4.000 
5 1.336 2.000 
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Fig. 1. 3D view of the SDLG 

 
. 2. View in the X-Y plane of the SDLG, Z = 0.0 m 

The tensegrity module developed in this work is 
T". Topology and connectivity of the X-

T module are described by Fig. 3. The X-T 
system consists of 27 elements, of which 5 
elements are bar type and 22 elements are cable 
type, which converge to 10 nodes. This assembly 
was developed with the aim of establishing a 

whose geometrical and 
architectural features allow pedestrian traffic, 
when implemented on a pedestrian bridge. The 

T module (Fig. 4a and 
4b) is 2.70 m wide and 2.80 m high. The total 

width is 4.90 m, its length is 3.8 m and the
height is 5.45 m. 
 
The spatial configuration of the X-
obtained by applying a form finding method 
based on the double decomposition of singular 
values, initially proposed by Yuan [18]
coordinates of this system are shown in 
which were obtained from a previous work 
Additionally, in Table 3, the mechanical 
characteristics of the materials that make up this 
system are shown [33,34]. 
 

Table 2. Nodal coordinates 

Z Node  X Y 
0.000 6 2.800 2.300 
3.800 7 2.261 -0.829 
3.900 8 2.261 4.829 
0.000 9 -1.300 2.200 
5.464 10 3.613 2.200 
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width is 4.90 m, its length is 3.8 m and the total 

-T module was 
obtained by applying a form finding method 
based on the double decomposition of singular 

[18]. The nodal 
coordinates of this system are shown in Table 2, 
which were obtained from a previous work [32]. 

able 3, the mechanical 
characteristics of the materials that make up this 

Z 
0.000 
2.500 
2.500 
2.000 
3.146 



Table 3. Mechanical properties of the tensegrity components
 

Element type 
ASTM Nom. 
Modulus of elasticity kg/cm2 
Yield Stress (Fy) kg/cm

2
 

Ultimate Stress (Fu) kg/cm2 
 

Fig. 3. Perspective view and n

Fig. 4. External and internal dimensions of the X
 

2.2 Mathematical Framework 
 
Several authors have investigated and 
contributed to determine the mathematical 
models that represent the mechanical behavior 
of tensegrity structures [35,36]. Murakami 
shows in detail the basic equations for static and 
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Mechanical properties of the tensegrity components 

Bar  Cable  
Aluminum 6063 T6 A586 Class A.
710,100.3 1687,367.1 
1,757.67 10,546  
2,109.21  15,467.5  

 
 

. 3. Perspective view and node numbering of the X-T module 
 

 
. 4. External and internal dimensions of the X-T module 

Several authors have investigated and 
contributed to determine the mathematical 
models that represent the mechanical behavior 

. Murakami [10,11] 
shows in detail the basic equations for static and 

dynamic analyzes, both in Eulerian and 
Lagrangian formulations. Mechanical principles 
that must be met, refer in particular to the 
equilibrium the system, compatibility between 
displacements and deformations, and the 
relationships between internal and external 
forces. These conditions, which are actually 

 
 
 
 

; Article no.CJAST.52205 
 
 

A586 Class A. 
1687,367.1  

 

dynamic analyzes, both in Eulerian and 
Lagrangian formulations. Mechanical principles 

must be met, refer in particular to the 
equilibrium the system, compatibility between 
displacements and deformations, and the 
relationships between internal and external 
forces. These conditions, which are actually 
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general for any mechanical system, can be 
stated in tensorial expressions as follows [37]: 
 
a) Equilibrium equation 
 

����� + � =  � �̇                   
 

       (1) 
 
 

b) Strain-Displacement Relation 
 

�� =
�

�
�∇u + ∇u��                              (2) 

 
c) Strain-Stress Relation (Compatibility equation) 
 

�� = ��� = 2��� +  ���������       (3) 
 

Where: 
 

�� : Deformation tensor. Second-order tensor 
formed as:  
 

�� = � ���
�,�

 ��  ⊗ ��  (4) 

  

���: Elasticity tensor. Fourth-order tensor. 

��: Identity tensor. 

�� : Piola-Kirchhoff stress tensor. Second-order 
tensor. 

∇�: Deformation gradient 

�: Body forces field 

�: Density field 

�̇: Acceleration field 

�, �: Lame parameters 
 

2.3 Finite Element Method 
 
Tensegrity structures have a non-linear behavior 
when working under external loads, because, 
both the stiffness of the system and the loads, 
are in function of displacements and / or 
deformations, which are generally of great 
magnitude in such type of systems. On the other 
hand, prestress of cable elements generates a 
non-linear geometric effect on the system [38]. In 
this work, only the nonlinear geometric effects in 
the elastic range of the cable elements will be 
considered. 
 
Finite element method (MEF) is a numerical 
procedure used to find an approximate solution 
of partial differential equations that allow 
modeling a physical system. The discrete model 
associated to the mechanical behavior of a 
system, described in terms of the stiffness 
method is [39]: 

�� [�]�[�][�]��
�

+ � [�]�[�][�]��
�

� {�} = 

 � [�]� �

��

��

��

�
�

�� +  � {��}�[�]{��}
�

�� +  �

��

��

��

� 

(5) 

 
where [B] is the derivations shape functions 
matrix, [E] is the elastic constants matrix, [G] is 
the partial derivations shape functions matrix, [M] 
is the membrane forces matrix, {U} is the nodal 
displacement vector, [N] is the shape functions 
matrix, {bx by bz}

T
 is the body forces vector, {e0} 

is the vector of residual stresses associated with 
temperature variation and {Fx Fy Fz}

T
 is the vector 

of nodal external forces. 
 
The mathematical model of equation (5) can be 
represented in simplified form as: 
 

[��]{�} =  {[�] + [��]}{�}

=  �

��

��

��

� +  �

��

��

��

� + �

��

��

��

� 
(6) 

 
where [Kt] is the tangent stiffness matrix, [K] is 
the elastic stiffness matrix, [KG] is the       
geometrical stiffness matrix, {Wx Wy Wz}T is the 
force vector associated to the self-weight of each 
element, and {ex ey ez}

T is the vector of residual 
forces related with temperature variations [40–
42]. 
 

2.4 Static Nonlinear Analysis 
 
The solution of the TS will be carried out applying 
an iterative-incremental method for nonlinear 
structural analysis, called Newton-Raphson [43]. 
In terms of FEM, the equations system is 
expressed as: 
 

[��]∆{�}� = �

��

��

��

� + �

��

��

��

� + �

��

��

��

�  (7) 

 
where ∆ represents the variations at the “j” 
iteration in the displacement vector {U}. 
  
For bar elements, where only act axial effects, 
the stiffness matrices are structured as      
follows: 
 

[�] = �
��

�
� 

⎣
⎢
⎢
⎢
⎢
⎡
   1    0   0
   0    0    0
   0    0   0

−1    0    1
   0    0    0
   0    0    0

−1    0    0
   0    0    0
   0    0    0

   1    0   −1
   0    0    0
   0    0    0 ⎦

⎥
⎥
⎥
⎥
⎤

 (8) 
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[��] = �
�

�
� 

⎣
⎢
⎢
⎢
⎢
⎡

   1    0   0
   0    1    0
   0    0    1

−1    0    0
   0 −1    0
  0    0 −1

−1    0    0
   0 −1    0
   0    0 −1

   1    0    0
   0    1    0
   0    0    1 ⎦

⎥
⎥
⎥
⎥
⎤

 (9) 

 
where E is the modulus of elasticity of the 
material, A is the cross-sectional area of each 
element, L is the length of the element and T is 
the internal membrane force, that is naturally 
associated with prestress of the cable elements. 
 
2.5 Dynamic nonlinear analysis 
 
Nonlinear dynamic models will be used to 
represent the effects of wind and the coupling of 
tensegrity systems with the SDLG, such as 
forces and displacements as a function of time. 
The characteristic equation for the dynamic 
equilibrium problems is: 
 

[�]��̈�
���

�
+ [�]��̇�

���

�
+ [��]{�}���

�

= �(�) 
(10) 

 
with P(t) defined as: 
 

�(�) = �

��

��

��

�

���

+ �

��

��

��

�

���

+ �

��

��

��

�

���

�

 (11) 

 
where [M] is the mass matrix, {Ü} is the vector of 

acceleration, [C] is the damping matrix, {U̇} is the 
velocity vector. "n" represents the current 
incremental step and "j" represents the next 
incremental step [44]. 
 
2.5.1 Pulse-type excitation function 

 
Particularly, the force of the wind acting on the 
structure will be represented with a pulse-type 
excitation function, with the aim of idealizing a 
gust of wind that will act for an interval t = 4 s, 
and then cease. Fig. 5 shows the diagram of the 
proposed function to model the wind gust [44]. 
 

Considering the initial conditions � (0) = 0, y �̇ 
(0) = 0, with a value damping of 2.4%, the 
solution for this type of excitation is: 
 

�(�) =
��

�
�1 − ����� ����(���)

+
��

��

���(���)�� 

(12) 

2.5.2 Newmark-beta method of direct 
integration 

 
Direct integration methods are used to solve 
initial value problems by a step-by-step 
integration with respect to time [44,45]. It is 
assumed that both displacements {U} and 

velocities {U̇} are known at a given time t = 0 s. 
The solution obtained with this method is given 
through an incremental approximation process. 

 
Newmark-Beta method states that, considering 
the mean value theorem, the first derivative of 
displacement, can be solved as: 

 

�̇��� =  �̇� + ∆��̈� (13) 

 
where: 
 

�̈� = (1 − �)�̈� + ��̈��� (14) 

 
with 0<g<1. Thus: 
 

�̇��� =  �̇� + ∆�((1 − �)�̈�

+ ��̈���) 
(15) 

 
Since acceleration also varies over the time, the 
average value theorem will be used again to 
calculate the second derivative of the 
displacement. 

 

���� =  �� + ∆��̇� +
1

2
∆���̈� (16) 

 
with 0<2b<1. In this way: 

 

�̈� = (1 − 2�)�̈� + 2��̈��� (17) 

 
For this method a value of 0.5 for g and 0.25 for 
b are suggested, which gives stability to the 
method. Which is expressed as: 
 

�̇��� =  �̇� +
∆�

2
(�̈� + �̈���) (18) 

 

���� =  �� + ∆��̇� +
1 − 2�

2
∆���̈�

+ �∆���̈��� 

(19) 

 

2.5.3 Base motion method 
 

When the supports of a structural system 
produce or transmit actions to the structure, as 
manner of movement (Fig. 6), it is convenient to 
propose equation (10), in function on the relative 
displacements as follows [44,45]: 



Fig. 5. Pulse
 

Fig. 6. Representative system of the base motion method
 

[�]��̈�
���

�
+ [�]��̇ − �̇�

���

�

+ [��]{� − �}��
�

= �(�) 
 
Expressing Eq. (20) as a relative displacements 

W = U – Z,  �̇ = �̇ − �̇ y �̈ = �̈ −
 

[�]��̈�
���

�
+ [�]��̇�

���

�
+ [��]{�

= �(�) − [�]��̈

2.6 Methodology 
 
In the first instance, non-linear static analyzes of 
the tensegrity system were carried out, in the 
software SAP2000 [46], to determine the spatial 
configuration and internal axial forces associated 
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. 5. Pulse-type excitation function 

 
. 6. Representative system of the base motion method 

} ��
(20) 

Expressing Eq. (20) as a relative displacements 
̈ − �̈, results: 

]{�}���
�

] �̈�
���

�
 

(21) 

linear static analyzes of 
system were carried out, in the 

, to determine the spatial 
configuration and internal axial forces associated 

with the equilibrium of the system under 
gravitational effects. The boundary conditions of 
the support nodes are shown in Table 4.
 
It is considered that the pedestrian bridge will be 
located in Queretaro, Mexico. For this site it is 
estimated a wind speed for design of 101.8 km/hr 
and a wind pressure of 77.83 kg/m
maximum average temperature in summer is 
31°C and in winter it is 23.3°C; while the 
minimum average temperature in summer is 
15°C and in winter it is 7°C [48]. Therefore, two 
cases of thermal variation will be analyzed, an 
increase of 16°C and a decrease of 16°C.

 
Both structures were analyzed with independent 
finite element models, applying the Mexican 
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with the equilibrium of the system under 
gravitational effects. The boundary conditions of 

able 4. 

It is considered that the pedestrian bridge will be 
located in Queretaro, Mexico. For this site it is 

for design of 101.8 km/hr 
and a wind pressure of 77.83 kg/m

2
 [47]. The 

maximum average temperature in summer is 
31°C and in winter it is 23.3°C; while the 
minimum average temperature in summer is 

. Therefore, two 
cases of thermal variation will be analyzed, an 
increase of 16°C and a decrease of 16°C. 

Both structures were analyzed with independent 
finite element models, applying the Mexican 
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standards for design of pedestrian bridges [47]. 
Load combinations for the SDLG analysis are 
shown in Table 5. For service and work load 
combinations, the coefficient  is equal to 1, 
while for design combinations it will have a value 
of 1.25 for CT-2 and CT-3 cases, and, equal to 
1.40 for CT-5 y CT-6 cases. The value of  is 
equal to 1 service load combinations. On the 
other hand, for design combinations, this 
coefficient will take a value of 1.30 for FC-2 y FC-
3, and, 1.25 for FC-5 y FC-6 cases. 
 
Nomenclature of the loads shown in Table 5 is: 
DL = Dead load, LL = Live load, W = Wind force 
on the structure, WLL = Wind over the live load, 
and, T = Temperature. CM is equal to 1.0 for 
bending and pure tension elements. While, for 
elements working under bending and 
compression simultaneously, there are the 
following cases: CM = 1.0, for the condition of 
maximum axial load and minimum bending 
moment; CM = 0.75, for the condition of 
minimum axial load and maximum bending 
moment. 
 
Load combinations for the TS are shown in Table 
6. 
 
Table 4. Boundary conditions of base nodes 

 
Node Ux Uy Uz 
1 Fixed Fixed Fixed 
4 Fixed Free Fixed 
6 Fixed Free Fixed 

 
Where “Sw” refers to self-weight, “Press” to the 
prestress in cables, and W to the wind load 

acting over the structure. These load cases are 
described below: 
 

In the load comb. 1, the structure was subjected 
to dynamic wind forces and temperature was 
considered constant (T=0°C). At load 
combinations of group 2, it was first induced a 
16°C (T=+16°C) increase in temperature 
(comb. 2.a) and subsequently, the wind forces 
were applied as a dynamic function (comb. 2.b). 
Similarly, for the load combinations of group 3, it 
was considered a 16°C (T=-16°C) decrease in 
temperature (comb. 3.a), prior to the application 
of wind forces on the system (comb. 3.b). 
 

Analysis of SDLG was performed based on linear 
static models, where loads were idealized as 
constants. On the other hand, for TS, analyses 
were carried out by nonlinear static and dynamic 
models (see sections 2.4 and 2.5). 
 
Once the internal forces, reactions and maximum 
nodal displacements of each system were 
determined, the actions between both systems 
were transferred. It was identified that the TS 
transfers loads to the SDLG, through its support 
nodes, effect that was represented by the 
superposition principle. In contrast, at those 
nodes of the SDLG, which join with the base 
nodes of TS, there were observed differential 
displacements, which were modeled as a 
dynamic problem of base motion. 
 

The load cases, load combinations and the 
methodology presented throughout current 
section, were used to compute the mathematical 
models of both structural systems by means of 
SAP2000 software [46]. 

 
Table 5. Load combinations for SDLG 

 
Service and work load combinations Design load combinations 
CT-2  * (W) FC-2  * (CMDL + W) 
CT-3  * (DL + Sw + LL + 0.3W + WLL) FC-3  * (CM DL + Sw + 1.2LL + 0.3W + WLL) 
CT-5  * (DL + Sw + W + T) FC-5  * (CMDL + Sw + W + T) 
CT-6  * (DL + Sw + LL + 0.3W + WLL + T) FC-6  * (CM DL + 1.2LL + 0.3E + WLL + T) 

 
Table 6. Load combinations for the tensegrity structure 

 
Load combination 

Comb. 1  * (Sw + Press + W) 
Comb. 2.a  * (Sw + Press + D16°C) 
Comb. 2.b  * (Sw + Press + D16°C + W) 
Comb. 3.a  * (Sw + Press - D16°C) 
Comb. 3.b  * (Sw + Press - D16°C + W) 
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3. RESULTS AND DISCUSSION 
 
The spatial configuration of the X-T module and 
the initial prestress values were obtained through 
the form finding process proposed by [18], which 
are the initial parameters to perform the 
nonlinear static analysis. Using the software 
SAP2000 [46], based on the finite element 
method, the results shown below were obtained. 

 
3.1 Static Nonlinear Analysis under Self-

Weight (Sw) 
 
Static nonlinear analysis when only considering 
self-weight load case (Sw) of the X-T, module 
gives as result the spatial configuration shown in 
Table 7 (Fig. 7) and the axial forces from Table 8 
and 9, in the column “Sw”. 
 
By comparing the nodal coordinates of Table 7 
against the resulting coordinates of the search 
process so (see Table 2), it is observed that the 
higher order difference is 0.39 cm in the X axis at 
the node 7. 
 
The maximum variation of axial force for bar 
elements occurs in the element 1, with an 
increase of 47 kg, equivalent to 4.7%. In cable 
elements, the maximum increase occurs in 
element 21, with a value of 30 kg, corresponding 
to an increase of 22.6%. 
 

3.2 Structural Response and Internal 
Forces Variations of the “X-T” 
Module, due Dynamic Meteorological 
Actions 

 
To study the behavior of the X-T module under 
the load combinations defined in Table 6, 
dynamic non-linear models were performed, with 
the aim of determining if the structural system is 
stable under these working conditions. 
 
In the first instance the effects produced in some 
representative elements of the system are 
described below. For this, the axial force time-
history graphs of bar 3 (Figs. 8 and 11), cable 18 
(Figs. 9 and 12) and cable 19 (Figs. 10 and 13) 
are presented, in addition to the columns of load 
combination groups 1, 2 and 3, at Tables 8 and 
9. The initial value of the axial force of the time 
history records corresponds to the axial force 
resulting from static nonlinear analysis from 
section 3.1. From t = 0 s to t = 2 s, the system is 
in equilibrium; from t = 2 s to t = 6 s, is the 
excitation period; and t = 6 s onwards is the free 
vibration period (see Fig. 5). 
 
The results from combination 1, correspond to 
the effects of self-weight, prestressing and wind 
action. It is observed that, during the excitation 
period, the axial force on bar 3 (Fig. 8) increases 
up to 2450 kg, when the wind acts in the X  

Table 7. Resulting nodal coordinates of the X-T module from a static nonlinear analysis 
considering self-weight 

 
Node X Y Z Node X Y Z 
1 0.000 0.000 0.000 6 2.800 2.301 0.000 
2 -0.004 3.801 3.799 7 2.257 -0.828 2.499 
3 0.196 0.000 3.899 8 2.284 4.877 2.525 
4 0.200 4.001 0.000 9 -1.302 2.200 1.998 
5 1.332 2.000 5.463 10 3.610 2.200 3.146 

 
Table 8. Maximum axial compression forces of bar elements for self-weight analysis and for 

the load combination groups 1, 2 and 3 
 
 Sw. Load comb. 1 

(DT=0°C) 
Load comb. group 2 

(DT=+16°C) 
Load comb. group 3  (DT=-

16°C) 
Wind effects Thermal 

effects 
Thermal + Wind 
effects 

Thermal 
effects 

Thermal + Wind 
effects 

Bar Axial 
force (kg) 

Axial 
force(kg) 

DWD Axial 
force(kg) 

Axial 
force(kg) 

DWD Axial 
force (kg) 

Axial 
force(kg) 

DWD 

1 1047 1369 Yn 1663 2002 Yn 423 1263 X 
2 834 1044 Y 1337 1560 Y 317 969 X 
3 804 2450 X 1541 2422 X 177 2357 X 
4 639 1022 Xn 1164 1543 Xn 152 875 Xn 
5 418 1091 X 916 1110 Xn 123 1101 X 
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Fig. 7. Spatial configuration of X-T module under self-weight effects 
 

 
 

Fig. 8. Time-history record of axial force for bar 3, load combination 1 
 

direction. In the free vibration period, residual 
oscillations of axial force are observed, in a 
range of +/- 100 kg, which are the product of the 
internal equilibrium processes of the tensegrity 
system, and show a decreasing trend over time. 
 

Similar behavior is observed for cables 18 and 
19, since, during the excitation period, the axial 
force increases to 1194 kg (Fig. 9) and 1109 kg 
(Fig. 10), respectively. However, it is observed 
that, in the cable 19, when the wind acts the 
negative X direction (Xn), the axial force is 
reduced to 0 kg. Subsequently, in the period of 
free vibration, it is observed that when the 
external effects culminate, the system has the 

ability for each element to recover the axial force 
in equilibrium. For both elements, observed 
oscillations shown a decreasing tendency of axial 
force, from +/- 50 kg and +/- 70 kg, to 0 kg, 
respectively. 
 

In the load combinations 2.a and 3.a, the effects 
of self-weight, prestress and thermal variation 
are related. Overall, with the exception of cables 
26 and 27, it was recorded that, due to an 
increase in temperature, the axial force of the 
elements increases, because of volumetric 
expansion. In contrast, when temperature 
decreases, the axial force is reduced, given the 
contraction that is caused in the structural 
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elements. For cables 26 and 27, an inverse 
behavior is observed to that described 
previously, since, under an increase in 
temperature, the tension of cables 26                          
and 27 decreases, whereas, when a  
temperature decrease occurs, their axial force 
increases. 
 
The results generated by combining the thermal 
variations together with the wind action, the 
effects of the own weight and the prestressing 
(combos 2.b and 3.b) are presented below.  

 
For bar 3 (Fig. 11) corresponding to the load 
combination 2.b, it is observed that the axial 
force increases to 2422 kg, whereas, for the load 
combo 3.b, compression on bar 3 reaches a 
value of 2357 kg. In the free vibration period, it is 
observed that the oscillations of axial force are 
reduced to a range of 5 kg, for combination 2.b, 
and to 15 kg for the case 3.b, which decreases 
with time. 
 
For cables 18 and 19, in the load combination 
2.b, there are increases of the tensile forces up 
to 1163 kg and 1060 kg. While, in the load 
combo 3.b, axial forces of 1205 kg (Fig. 12) and 
1119 kg (Fig. 13) are reached, respectively. 
Within the load combo 2.b, the oscillations of 
axial forces are reduced to a range of 5 kg for 
both elements; while in the case 3.b, the range of 
oscillations is reduced to 20 kg. In both load 
combinations, the tendency of oscillations is 
decreasing. 
 

The behavior described previously, can be 
generalized for most of the components of the 
assembly, and the axial forces acting on each 
element are shown in Tables 8 and 9, in the 
columns for load combinations groups 2 and 3. 
From these results, it is highlighted that the 
maximum axial force to which each element is 
subjected, is caused by a specific wind direction, 
which will be named dominant wind direction 
(DWD). In addition, a temperature increase 
(combo 2.a) can produce a rise in axial forces up 
to 737 kg in the bar-type elements, and 398 kg in 
the cable elements; and the decrease in 
temperature (combo 3.a) produces variations of -
627 kg in the bars and -356 kg in the                    
cables. The inclusion of thermal variations 
together with the action of the wind produces 
variations of up to 851 kg in the cables and 1618 
kg in the bars for the load combination 2.b. In the 
combination 3.b, the maximum variation is 1553 
kg in the bar-type elements and 913 kg in the 
cables. 

On the other hand, the registered nodal 
displacements from the dynamic analyzes are 
shown in Table 10. It is observed that the 
greatest displacements occur in the load 
combination 3.b, with a magnitude of 6.74 cm, at 
the free node 7, and of -0.34 cm for the base 
node 4. 
 

Since node 7 has the largest displacements in 
the system, the time-history records generated 
from this node will be analyzed for the load 
combinations studied. From the time-history 
record of combo 1, it is observed that the 
greatest displacements occur during the 
excitation period in the X direction, up to 3.92 cm 
(Fig. 14); while, in the free vibration period, the 
node oscillates in a range of 0.1 cm, with a 
decreasing tendency around the equilibrium 
position. For the load combo 2.b, the 
displacement of the node is reduced to 0.43 cm, 
with oscillations around the equilibrium position 
of 0.1 cm. Whereas, the maximum recorded 
displacement occurs in the load combo 3.b, with 
a magnitude of 6.74 cm, where the vibrations 
reach a distance of 1 cm, and subsequently tend 
to decrease. The free nodes and the remaining 
support nodes, presents an analogous behavior, 
with minor displacements and vibrations (Fig. 
15). 
 

3.3 Spatial Double Layer Grid Behavior 
 
Superstructure of the pedestrian bridge (SDLG) 
was modeled as a pin-jointed spatial system (see 
section 2.1) considering the loading conditions 
described in Table 5, and, idealizing its behavior 
as a linear static system. Given these 
characteristics, the proposed system presents 
the modal behavior of Table 11. 
 
Mode 1 presents a frequency of 5.49 Hz, and a 
period of 0.182 s, corresponding to the horizontal 
direction X. Mode 2 has a frequency of 8.81 Hz 
and a period of 0.113 s, relative to the vertical 
direction Z, while the mode 11, with a frequency 
of 33.49 Hz and a period of 0.030 s, is 
associated with the horizontal direction Y. 

AASHTO
 

[49] establishes that pedestrian bridges should 
be designed with a fundamental frequency in the 
vertical direction greater than 3 Hz, and in the 
horizontal direction, the frequency must be 
higher than 1.3 Hz. Thus, structural system is 
less likely to exhibit resonance effects and it is 
provided comfort to pedestrian users. 
 
Displacements of the SDLG, for each 
combination of service loads, are shown in table 
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12. According to AASHTO (40)), vertical 
displacements must not exceed L/360, 
equivalent to 6.11 cm in the analyzed bridge, 
while, horizontal displacements should be less 
that L/220, corresponding to 10 cm. The SDLG 
presents a maximum vertical displacement of -

2.34 cm at the clear span (Fig. 16), whereas, in 
the horizontal direction, the maximum 
displacement is -0.64 cm. These values are 
within the permissible limits by service 
conditions. 
 

 

 
 

Fig. 9. Time-history record of axial force for cable 18, load combination 1 
 

Table 9. Maximum axial tension forces of cable elements for self-weight analysis and for the 
load combination groups 1, 2 and 3 

 

 Sw. Load comb. 1 
(DT=0°C) 

Load comb. group 2  
(DT=+16°C) 

Load comb. group 3   
(DT=-16°C) 

Wind effects Thermal 
effects 

Thermal + Wind 
effects 

Thermal 
effects 

Wind effects 

Cable Axial 
force(kg) 

Axial 
force(kg) 

DWD Axial 
force(kg) 

Axial 
force(kg) 

WDD Axial 
force(kg) 

Axial 
force(kg) 

DWD 

6 472 662 Y 782 963 Yn 116 354 Y 
7 501 675 X 747 937 Y 191 640 X 
8 458 624 Xn 588 774 Xn 211 359 Xn 
9 505 677 X 771 921 X 183 652 X 
10 263 594 X 445 620 X 54 544 X 
11 377 653 X 697 804 Xn 67 581 X 
12 371 629 X 677 779 Xn 64 563 X 
13 280 618 X 470 639 X 52 544 X 
14 298 566 X 566 680 Yn 96 600 X 
15 414 868 X 812 950 Yn 141 896 X 
16 121 500 X 346 489 Y 25 502 X 
17 71 365 X 346 489 Y 25 502 X 
18 292 1194 X 676 1143 X 77 1205 X 
19 221 1109 X 552 1060 X 35 1119 X 
20 164 557 Xn 309 689 Xn 61 547 Xn 
21 182 585 Xn 347 734 Xn 67 574 Xn 
22 75 282 Xn 152 348 Xn 29 283 Xn 
23 94 327 Xn 192 411 Xn 36 326 Xn 
24 149 631 X 336 614 X 35 640 X 
25 115 508 X 268 485 X 22 505 X 
26 96 253 Y 6 181 Y 175 347 Y 
27 107 201 Yn 2 200 Yn 199 261 Xn 
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Fig. 10. Time-history record of axial force for cable 19, load combination 1 
 

 
 

Fig. 11. Time-history record of axial force for bar 3, load combinations groups 2 and 3 
 

 
 

Fig. 12. Time-history record of axial force for cable 18, load combinations groups 2 and 3 
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Fig. 13. Time-history record of axial force for cable 19, load combinations groups 2 and 3 
 

Table 10. Maximum nodal displacements for the load combinations 1, 2.b and 3.b 
 
 Case 1 (DT=0°C) Case 2.b (DT=+16°C) Case 3.b (DT=-16°C) 

Wind effects Thermal + Wind effects Thermal + Wind effects 
Node DX 

(cm) 
DY 
(cm) 

DZ 
(cm) 

DWD DX 
(cm) 

DY 
(cm) 

DZ 
(cm) 

DWD DX 
(cm) 

DY 
(cm) 

DZ 
(cm) 

DWD 

2 3.23 -0.19 0.19 X 1.25 0.17 0.22 X 5.57 -0.53 0.24 X 
3 3.29 -0.13 -0.14 X 1.18 0.08 0.15 X 5.74 -0.19 -0.35 X 
4 - -0.05 - Yn - 0.18 - Y - -0.34 - Yn 
5 2.68 -0.3 0.63 X 1.07 0.2 0.43 X 4.68 -1.07 0.93 X 
6 - -0.07 - Yn - 0.13 - Xn - -0.26 - Yn 
7 3.92 -0.16 0.76 X -0.43 -0.21 0.21 X 6.74 -0.49 1.25 X 
8 3.66 -0.16 1 X 1.44 0.27 0.49 X 6.23 -0.77 1.62 X 
9 1.59 -0.08 1.19 X 0.59 0.1 0.50 X 2.75 -0.19 1.96 X 
10 1.93 -1.35 -0.4 X 0.88 -0.38 0.14 X 3.17 -2.46 -0.82 X 

 

 
 

Fig. 14. Time-history record for displacements of node 7 in the X direction, load combination 1 
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Fig. 15. Time-history record for displacements of node 7 in the X direction, load combination 
groups 2 and 3 

 

 
 

Fig. 16. SDLG vertical displacements (vertical scale 1:10) 
 

Table 11. SDLG modal behavior 
 

Mode Frequency (Hz) Period (s) 
1 5.49 0.182 
2 8.81 0.113 
3 11.21 0.089 
4 13.64 0.073 
5 17.30 0.058 
6 20.71 0.048 
11 33.49 0.030 

 
Table 13 shows the maximum internal forces of 
the SDLG. Due to the boundary conditions of pin-
jointed systems, axial forces are predominant in 
the structure. It is observed that the existence of 
components associated with shear forces and 
bending moments is caused by the application of 
wind forces on the structure, however, its 
magnitude is low. 

3.4 Coupling of Tensegrity Modules with 
the SDLG 

 
In order to analyze the overall behavior of the 
superstructure, integrated by the SDLG and five 
X-T tensegrity modules, it is proposed to model 
the interaction of these systems, with the 
methodology mentioned in section 2.6, what is 
called in this work as system coupling. The 
coupling of systems consists in transmitting from 
one system to another, and vice versa, the 
mechanical effects resulting from sections 3.1 to 
3.3, considering the boundary conditions defined 
for each structure. 
 

On the one hand, reactions of the base nodes of 
the tensegrity system (see Table 14), are 
transmitted as point forces to the receiving nodes 
of the SDLG, in accordance to the configuration 
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shown in Fig. 2. These forces are considered as 
DL, applying the load combinations from Table 5. 
The results obtained by including the effects of 
the TS on the SDLG, show increases in the 
magnitude of the displacements of the                     
system, since, in the horizontal direction, a 
displacement of -0.78 cm was registered, while in 
the vertical direction displacement reach a           
value of - 2.47 cm. However, the magnitude of 
these displacements does not suggest a              
radical change in the behavior of the SDLG, 
since the maximum increase is 0.13 cm in the Z 
direction. 
 
Table 15 shows the maximum increments of 
axial forces produced by the tensegrity systems 
in the SDLG. In the first instance, it is observed 
that an increase of 16°C in temperature can 
produce an increment up to 1180 kg (4%) in the 
axial force of the elements of the top chord of the 
SDLG. In addition, the action of the wind in the Y 
direction on the X-T modules, together with an 
increase in temperature, induces a rise of 360 kg 
(2%) in the diagonal members. Similarly, when 
integrating the wind action in the X direction with 

an increase or decrease in temperature, applied 
in the XT modules, axial force of the bottom 
chord elements is amplified to 950 kg (2%). 
Percent variations, belongs to the comparison 
against the results from Table 13. 
 
On the other hand, the effects that the SDLG 
produces in the X-T modules are displacements 
of the support nodes 1, 4 and 6, which are shown 
in table 16. The largest displacement in the X 
direction is 0.514 cm, in the Y direction is 0.361 
cm, and, in the Z direction it is -1.898 cm. This 
behavior is homogeneous in the SDLG system 
and with a similar magnitude in all load service 
combinations. 
 

By including these displacements in the support 
nodes of the X-T module, additional forces are 
induced in the system, which are distributed to 
each of the elements. To analyze how                 
the behavior of the X-T module is modified, a 
comparison between the axial forces                  
obtained in sections 3.1 and 3.2 against the 
values resulting from the coupling of the systems 
is presented. 

 
Table 12. SDLG maximum displacements 

 
Service load case DX (cm) DY (cm) DZ (cm) 

2 -0.24 -0.24 0.18 
3 -0.61 -0.62 -2.17 
5 (DT = 0°C) -0.28 -0.28 -0.93 
5 (DT = 16°C) -0.29 -0.31 -0.77 
5 (DT = -16°C) -0.29 -0.31 -1.10 
6 (DT = 0°C) -0.61 -0.62 -2.17 
6 (DT = 16°C) -0.62 -0.64 -2.00 
6 (DT = -16°C) -0.60 -0.64 -2.34 

 
Table 13. SDLG maximum internal forces 

 
Type of 
element 

Axial 
force(Ton) 

Shear force 
(Ton) 

Flexural moment 
(Ton-m) 

Location Load case 

Y Z Y Z 
Top chord 26.40 0.030 0.01 0.030 0.014 Extremes 6, T= -16°C 

-19.20 -0.03 -0.01 -0.030 -0.014 Span center 6, T= +16°C 
Diagonal 13.28 0.03 0.01 0.03 0.010 Extremes 5, T= -16°C 

-15.81 -0.04 -0.01 -0.039 -0.01 Extremes 6, T= +16°C 
Bottom 
chord 

33.66 0.034 0.01 0.034 0.012 Span center 6, T= -16°C 
-42.95 -0.03 -0.01 -0.034 -0.012 Extremes 6, T= +16°C 

 
Table 14. Maximum reactions at the base nodes of X-T module 

 
Node Fx (kg) Fy (kg) Fz (kg) 
1 422 645 460 
4 369 0 490 
6 992 0 690 
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Table 15. SDLG maximum internal forces due coupling tensegrity systems 
 

Type of element Axial force (Ton) Location Load combination Load case 
Top chord 27.58 Extremes CT-6 T= 16°C 

-19.52 Span center CT-6 T= 16°C + WY 
Diagonal 13.28 Extremes CT-5 T= -16°C 

-16.17 Extremes CT-6 T= 16°C + WYn 
Bottom chord 34.39 Span center CT-6 T= -16°C + WX 

-43.90 Extremes CT-6 T= 16°C + WX 
 

Table 16. Maximum displacements on the 
base nodes of the X-T module 

 

Node DX (cm) DY (cm) DZ (cm) 
1 0.514 0.092 -1.898 
4 0.137 0.361 -0.883 
6 -0.464 -0.147 -0.504 

 

When evaluating the behavior of the X-T module 
by only considering self-weight effects and the 
coupling of the systems, the force distribution 
shown in the Sw column of Tables 17 and 18 is 
presented. It is noted that the compression acting 
on the bar-type elements (Table 17), differs in a 
range from -4 to 0%, where the maximum 
decrement is 31 kg in bar 1. Regarding the type 
elements cable (Table 18), it is seen that, in the 
cables 7 to 25, the difference of axial forces on 
average is -1%, where the maximum variation is 
19 kg (-4%) on cable 9. Cable 6 has an increase 
of 10%, while in the cables 26 and 27, there is a 
decrease of -98% and -100%, respectively. This 
indicates that cables 26 and 27 will enter a state 
of inactivity (slack) during the periods in which 
the SDLG is deformed up to the values in Table 
16. 
 

When considering the effects of wind from load 
combination 1, over the X-T module, in 
conjunction with the displacements of the support 
nodes caused by the coupling with the SDLG, 
the axial force distribution shown in column case 
1 of Tables 17 and 18 is presented. From this 
analysis, variations from -1 to 0% in the 
compression received by the bar elements are 
observed (Table 17). In addition, the dominant 
wind direction that governs the behavior of each 
element is preserved. In the cable type elements 
(Table 18), differences from -3% to 5% in axial 
force are presented due to the coupling of the 
systems; with the exception of cable 26, where 
the variation is -29%. Cable 7 is the only element 
that shows a change in the dominant wind 
direction. 
 

The differences in axial forces in the X-T module, 
once both systems are coupled, and by 

considering a 16°C increase in temperature, are 
shown in the column Case 2, thermal effects, in 
Tables 17 and 18. For these load requirements, it 
can be observed that bar elements have higher 
order differences in the coupled case. Bar 3 is 
the most stressed element in the group, working 
under an axial force of 2,220 kg, equivalent to an 
increase of 679 kg. 
 

In the cable elements (Table 18), increases in 
axial force are also exhibited. In cable 15 there is 
an increase of 473 kg (58%), which causes a 
total load of 1285 kg. In elements 18 and 19, the 
tension force increases 559 kg (83%) and 502 kg 
(91%), so these elements are subjected to a 
force of 1,235 and 1,054 kg, respectively. In 
contrast, for cables 6, 7 and 10, considerable 
differences are not identified, since the 
percentage increase in these elements ranges 
from -5 to 7%. 
 

By integrating the temperature increases with the 
action of the wind, in the coupled system, the 
results of the case 2 column, Thermal + Wind 
effects, were obtained. Regarding the bar-
elements, the bar 5 shows an increase of 672 kg 
(61%), working under a compression of 1,782 kg. 
However, the most stressed element is bar 3, 
where an axial force of 2,736 kg acts, which is 
314 kg (13%) greater than that obtained before 
coupling the systems. Additionally, in bar 1, there 
is a change in the dominant wind direction of the 
element. 
 

These loading conditions cause an equilibrium 
state where the largest increase occurring in the 
cable 15, since the tension increases 457 kg. 
Cable 18 undergo to the maximum tension forces 
for this load case as it works to a force of 1,444 
kg. Elements 6, 7, 8, 14, 15 and 17 experience 
changes in the dominant wind direction that 
causes the maximum force in these elements. 
 
Moreover, by inducing a 16°C decrease in 
temperature, once the X-T module is coupled 
with the SDLG, the force distributions of the case 
3 column, Thermal effects, are generated. The 
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axial force of the bar elements is less than that 
generated by an increase in temperature (case 
2). However, when compared against the forces 
before coupling, notable differences are 
perceived, since forces acting on these elements 
range from 365 kg to 497 kg. The increase of this 
magnitude implies percentage variations from 17 
to 197%. 
 

Regarding cable type elements, two main 
tendencies are observed. In the cables 7 to 10, 
13, 26 and 27, the axial force is less than the 
values obtained without coupling systems. In 
elements 26 and 27 it is observed that they enter 
a period of inactivity, since the force decreases 
to 4 kg and 0 kg. The remaining cables have 
higher values compared to the point of 
comparison, where the largest increase is 200 kg 
in cable 18. 
 

The inclusion of the effects of the wind with 
temperature decreases in the coupling of the X-T 
module produces the state of equilibrium of 
forces described in the case column 3, Thermal 
+ Wind effects of Tables 17 and 18. For bar-like 
elements, it is observed that the differences in 
axial forces, originated when considering the 
effects of the coupling, are less than 117 kg, 
equivalent to -5% for bar 3. In this load condition, 
the dominant wind direction of bar 4 is modified. 
 

For cable type elements, it was identified that the 
difference of greatest consideration occurs in 
cable 26, where the axial force decreases 314 kg 
(-90%). Cables 18 and 19 are the only elements 
where occur increases in the axial force, with a 
magnitude of 98 kg and 94 kg. In the remaining 
elements, axial force variations are from an order 
of +/- 50 kg. In cables 6, 26 and 27, modifications 
in the dominant wind direction were identified.  
 

In addition to the registered axial force variations 
in the components of the X-T module, differences 

related to the direction and magnitude of the 
nodal displacements are identified. Table 19 
shows the displacements of each node, resulting 
from the coupling of the X-T module and the wind 
effects from load combinations 1, 2.b and 3.b. 
 
In the load combination 1, it is highlighted a 
displacement decrease in the X direction, with a 
value of -0.13 cm. In the Y and Z directions it is 
noted a slight increase in the magnitude of the 
displacements, equal to 0.62 cm and 0.11 cm, 
respectively. Furthermore, a change occurs in 
the wind direction that produces the largest 
displacements. 
 
The nodal movements produced by the union of 
the systems, associated to the load combination 
2.b, report displacement differences of -0.33 cm. 
For the free nodes, increases of up to 0.91 cm in 
the Y direction, and, 1.05 cm for the Z direction, 
are distinguished. In this group of nodes (with the 
exception of node 6), changes in the dominant 
wind direction occur. 
 
From the results corresponding to the coupling of 
systems with the loading conditions of case 3.b, 
it is observed that, due to the distribution of 
forces that occur in the system under these 
conditions, leads to the reduction of 
displacements of - 1.15 cm on average. In node 
7 the displacements are reduced to -1.66 cm. 
Unlike the previous cases, the dominant wind 
directions that produce maximum displacements 
are not altered. 
 
In particular, the displacements of the support 
nodes 1, 4 and 6 were evaluated, since they 
exhibit a different behavior from that of the free 
nodes. Both node 4 and node 6, have freedom of 
movement in the Y direction, therefore, in load 
combination 1, there are increases of 0.35 cm 
and 1.40 cm, respectively. For the load

 
Table 17. Maximum axial compression forces of bar elements for self-weight analysis for the 

load combination groups 1, 2 and 3, due coupling X-T modules with SDLG 
 
 Sw. Load comb. 1 

(DT=0°C) 
Load comb. group 2   

(DT=+16°C) 
Load comb. group 3    

(DT=-16°C) 
Wind effects Thermal 

effects 
Thermal + Wind 
effects 

Thermal 
effects 

Thermal + Wind 
effects 

Bar Axial 
force(kg) 

Axial 
force(kg) 

WDD Axial 
forc (kg) 

Axial 
force(kg) 

WDD Axial 
force(kg) 

Axial 
force(kg) 

WDD 

1 1024 1367 Yn 1678 2141 Xn 497 1328 X 
2 806 1030 Y 1669 1883 Y 397 1034 X 
3 773 2439 X 2220 2736 X 366 2240 X 
4 639 1008 Xn 1412 1780 Xn 209 866 Y 
5 417 1080 X 1595 1782 Xn 365 1197 X 
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Table 18. Maximum axial tension forces of cable elements for self-weight analysis for the load 
combination groups 1, 2 and 3, due coupling X-T modules with SDLG 

 
 Sw. Load comb. 1 

(DT=0°C) 
Load comb. group 2  

(DT=+16°C) 
Load comb. group 3   

(DT=-16°C) 
Wind effects Thermal 

effects 
Thermal + Wind 
effects 

Thermal 
effects 

Wind effects 

Cable Axial 
force(kg) 

Axial 
force(kg) 

WDD Axial 
force(kg) 

Axial 
force(kg) 

WDD Axial 
force(kg) 

Axial 
force(kg) 

WDD 

6 517 698 Y 837 1018 Y 209 275 X 
7 486 662 Yn 775 980 Yn 165 664 X 
8 445 608 Xn 448 658 Yn 126 303 Xn 
9 486 659 X 845 979 X 176 672 X 
10 262 597 X 422 587 X 14 386 X 
11 377 654 X 813 911 Xn 73 423 X 
12 369 631 X 779 868 Xn 65 399 X 
13 279 620 X 420 594 X 2 374 X 
14 292 560 X 861 935 Xn 192 620 X 
15 410 859 X 1285 1407 Xn 299 949 X 
16 124 496 X 723 865 Y 165 551 X 
17 71 362 X 543 649 Xn 114 405 X 
18 290 1184 X 1235 1444 X 276 1303 X 
19 216 1098 X 1054 1327 X 217 1213 X 
20 164 555 Xn 468 847 Xn 113 539 Xn 
21 182 583 Xn 533 919 Xn 128 568 Xn 
22 76 281 Xn 260 456 Xn 67 281 Xn 
23 95 327 Xn 325 544 Xn 84 323 Xn 
24 145 626 X 595 748 X 125 672 X 
25 112 502 X 479 597 X 96 535 X 
26 4 181 Y 4 181 Y 4 33 X 
27 0 200 Yn 0 201 Yn 0 86 Yn 

 
Table 19. Maximum nodal displacements for the load combinations 1, 2b and 3b, due coupling 

of systems 
 

 Case 1 (DT=0°C) Case 2.b (DT=+16°C) Case 3.b (DT=-16°C) 
Wind effects Thermal + Wind effects Thermal + Wind effects 

Node DX 
(cm) 

DY 
(cm) 

DZ 
(cm) 

DWD DX 
(cm) 

DY 
(cm) 

DZ 
(cm) 

DWD DX 
(cm) 

DY 
(cm) 

DZ 
(cm) 

DWD 

2 3.1 -0.2 0.18 X -0.75 0.06 -0.07 Xn 4.32 -0.35 0.3 X 
3 3.17 -0.13 -0.13 X -0.76 -0.08 0.02 Xn 4.35 -0.1 -0.13 X 
4 - -0.4 - Yn - -0.05 - Yn - -0.1 - Yn 
5 2.56 -0.29 0.61 X -0.77 -0.18 0.1 X 3.67 -0.38 0.9 X 
6 - -1.47 - Xn - -2.12 - Xn - -2.11 - Yn 
7 3.74 -0.78 0.87 X 0.45 -1.12 1.26 Xn 5.08 -1.29 1.21 X 
8 3.51 -0.78 0.97 X -0.81 -1.12 -1.17 Xn 4.8 -1.29 1.29 X 
9 1.51 -0.08 1.14 X -0.43 0.02 -0.29 Xn 2.09 -0.06 1.53 X 
10 1.84 -1.3 -0.38 X -0.54 -0.74 0.14 Xn 2.54 1.77 -0.56 X 
 
combination 2.b, the magnitude of the 
displacement of node 4 is decreased by -0.13 
cm. However, node 6, the maximum variation of 
1.99 cm is presented, which implies a 
displacement of 2.12 cm. Similarly, at the 
combination 3.b, in node 4 there is a decrease of 
-0.24 cm, and node 6 shows an increase of 1.85 
cm. 

4. DISCUSSION 
 
From this work, it is highlighted as a discussion 
that the results obtained show congruence and 
extend what was reported by the research of 
Ashwear and Eriksson [13], and with those of  
Lazzari et al. [5]. 
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The research of Ashwear and Eriksson [13], is 
oriented in to the study of 2D tensegrity systems 
under temperature variations, associated with 
temperature decreases of 45°C and increments 
of 26°C. It is reported that, according to the 
boundary conditions of the support nodes, and, 
the relationship between the coefficient of 
thermal expansion of the bars with that of the 
cables, the behavior of the assembly can be 
described by one of the categories shown in 
Table 20. 
 
Considering the boundary conditions of the X-T 
module, which has one articulated support (fixed 
to movement) node and two other supports with 
freedom of movement only in the Y direction; in 
addition, to a relationship of thermal expansion 

coefficients expressed as b > c, it can be 
observed that behavior of the X-T module 
matches with one the categories from Table 20. 
However, it is noted that when performing 
analysis of a 3D tensegrity system, additional 
features are identified to those reported by 
Ashwear and Eriksson [13]. 
 
Although, the overall behavior of the structural 
system is acts accordance with previously 
described work, it is observed that, at an 
increase in temperature, the axial force of some 
elements may decrease, while, under a decrease 
in temperature, the axial force of certain 
elements increases. This phenomenon occurs, 
due to the fact that the spatial position of the X-T 
module, under the thermal variations studied, 
implies that the nodes that define elements 26 
and 27 approach or move away, which causes 
increases or decreases in axial force. 
 

In the research of Lazzari et al. [5] quasi-static 
analyzes of the effects of wind on the roof of the 
La Plata stadium were performed. The wind was 
considered as random points for a time of 40 s, 
representing the stochastic nature of the wind, 
with a logarithmic behavior. From their results, it 
is emphasized that by using this methodology it 
was feasible to identify the maximum nodal 

displacements and the highest stresses for bars 
and cables. In addition, it was identified that on 
some cable elements the tensile forces are 
reduced to a null value, when wind acts in a 
specific direction. 
 
This behavior is consistent with the results 
obtained in this investigation, since, due to the 
conditions and the asymmetry of the assembly, 
each element is governed by a specific wind 
direction. The advantage of using dynamic 
models is that they allow to evaluate the behavior 
of the system when is loaded and in the free 
vibration period, which is used to determine, in a 
simple way, the stability of the assembly.  
 
The most drastic effects implied by the coupling 
of the five X-T modules with the SDLG, are the 
increases in node displacements and in the axial 
forces of the structural elements. It was recorded 
a movement of 2.12 cm for node 6, which must 
be considered when designing the base node 
connection devices. Additionally, compression 
force in bar 3 rises up to 2,736 kg, while, tension 
in cable 18 reaches a value of 1,444 kg. These 
axial forces determine the cross-section of each 
type of elements.  
 
It is important to highlight the following 
discussions about the proposed methodology for 
the coupling of the systems. SDLG is a system 
that presents a linear behavior within the elastic 
range. Therefore, it is feasible to use the 
principle of superposition, to transmit the loads 
generated by the tensegrity systems. This 
allowed to calculate the displacements and the 
forces developed in the SDLG. 
 
However, for the X-T module, although its 
components remain within the elastic range, the 
system is intrinsically non-linear and manifests 
large displacements, so that the principle of 
effect superposition is not suitable for modeling 
the coupling. Therefore, the proposed method to 
determine with greater approximation, the axial 
forces and the nodal movements,which occur in

 
Table 20. Structural behavior of 2D tensegrity systems under environment temperature 

variations (adapted from Ashwear and Eriksson [13]) 
 
Thermal expansion 
coefficient relations  

Boundary conditions of bar and cable elements’ nodes 
Fixed - Free Fixed - Fixed Fixed – Fixed (Supports) 

ab = ac No variation 
ab < ac Temp. increase  Axial force reduces Temp. increase  Axial force 

rises Temp. decrease  Axial force rises 
ab > ac Temp. increase  Axial force rises Temp. decrease  Axial force 

reduces Temp. decrease  Axial force reduces 
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the X-T module, due to the coupling, was through 
non-linear dynamic models, representing the 
maximum displacements of the SDLG, as a base 
movement dynamic problem. The limitation of 
implementing these methods is that the modal 
behavior of the complete assembly is unknown. 
 

5. CONCLUSION 
 

By means of non-linear static analyses, it was 
feasible to define the boundary conditions for the 
base node of the X-T module, which allows to 
couple the TS with the SDLG. Restricting the 
degrees of freedom in the vertical direction (Z 
direction) and in the transverse direction (X 
direction) reduces the displacements of the 
support nodes of the X-T module, thereby 
preserving the internal area designated for the 
pedestrian crossing. In addition, it allows the 
system to distribute the internal forces evenly 
and the assembly to continue working according 
to the mechanical principles of the tensegrity 
structures, that is, that the bar-like elements work 
only under compression and the cables under 
tensile forces. 
 

Through static analyzes of the SDLG, and non-
linear dynamic analyses of TS, the internal forces 
and the structural response were obtained, 
generated by the integration of wind effects and 
variations of temperature in each system. 
 

The methodology used to develop the coupling of 
the tensegrity modules with the superstructure of 
the pedestrian bridge, allowed to determine the 
effects caused by the interaction of both 
systems. As well as maximum displacements 
and internal forces in each system. Through this 
methodology, the characteristics necessary to 
generate the connection devices were defined, 
according to the idealizations made in the finite 
element models. Through this methodology the 
necessary conditions to generate the connection 
devices were defined, according to the 
idealizations made in the finite element models. 
 

From the non-linear dynamic analysis performed 
for the X-T module, it is denoted the capacity of 
this system to return to its initial equilibrium state, 
once the excitation period is over. The ability of 
the X-T module to return to the initial equilibrium 
state is highlighted, once the excitation period is 
over. This fact allows to define that the generated 
tensegrity system shows a stable behavior under 
the proposed working conditions. 
 

When determining the maximum axial force in 
each member of the module, the geometric cross 

sections were defined, which ensure a behavior 
in the elastic range of each element, and thus 
avoid exceeding the critical load that would 
cause instability in the system, as effects 
buckling in the bar elements; while, yielding and 
rupture are avoided in cables. 
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