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Abstract 
 

A multi-state k-out-of-n: G system is a multi-state system whose multi-valued success is greater than or 
equal to a certain value j (lying between 1 (the lowest non-zero output level) and M (the highest output 
level)) whenever at least km components are in state m or above for all m such that 1 ≤ m ≤ j. This paper is 
devoted to the analysis of a commodity-supply system that serves as a standard gold example of a non-
repairable multi-state k-out-of-n: G system with independent non-identical components. We express each 
instance of the multi-state system output as an explicit function of the multi-valued inputs of the system. 
The ultimate outcome of our analysis is a Multi-Valued Karnaugh Map (MVKM), which serves as a 
natural, unique, and complete representation of the multi-state system. To construct this MVKM, we use 
“binary” entities to relate each of the instances of the output to the multi-valued inputs. These binary 
entities are represented via an eight-variable Conventional Karnaugh Map (CKM) that is adapted to a 
map representing four variables that are four-valued each. Despite the relatively large size of the maps 
used, they are still very convenient, thanks to their regular structure. No attempt was made to draw loops 
on the maps or to seek minimal formulas. The maps just served as handy tools for combinatorial 
representation and for collectively implementing the operations of ANDing, ORing, and 
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complementation. The MVKM obtained serves as a means for symbolic analysis yielding results that 
agree numerically with those obtained earlier. The map is a useful tool for visualizing many system 
properties, and is a valuable resource for computing a plethora of Importance Measures for the 
components of the system. 
 

 
Keywords: System reliability; k-out-of-n system; Multi-state system; Multiple-valued logic; Eight-variable 

Karnaugh Map; Multi-Valued Karnaugh Map. 
 

1 Introduction 
 
A binary k-out-of-n: G system is uniquely defined as a dichotomous system that is successful if and only if at 
least k out of its n components are successful [1-23], By contrast, a multi-state k-out-of-n: G system does not 
possess a unique definition [24-43]. The definition adopted herein is that this system is a multi-state system 
(MSS) whose multi-valued success is greater than or equal to a certain value j (lying between 1 (the lowest 
non-zero output level) and M (the highest output level)) whenever at least km components are in state m or 
above for all m such that 1 ≤ m ≤ j [34,40-43]. 
 
In this paper, we a study a standard multi-state system, which was proposed and studied by Tian et al. [34], 
and further studied by Fadhel et al. [44], Mo et al. [40], Rushdi [41], Rushdi & Al-Amoudi [42,43]. The 
system (shown in Fig. 1) is a supply system of a certain commodity (e.g., oil, water, energy, transportation 
traffic, or communication traffic, etc.) that employs four pipelines to transport the given commodity from the 
given source to three sink nodes called stations. Both the system and each pipeline have four states, which 
are defined as shown in Table 1. The states of the system are defined according to whether the demands of 
up to a certain station can be met.  We use �{�} {0 ≤ � ≤ 3 } to denote a binary indicator that the system can 
meet the commodity demand up to the station number �, i.e., for all stations � (1 ≤ � ≤ �). The states of 
each pipeline are defined according to which station/stations can be reached by the commodity supply via 
this pipeline. Therefore, pipeline number �  is represented by a multi-valued variable �� , which has four 
values or instances ��{�}, (1 ≤ � ≤ 4 , 0 ≤ � ≤ 3) . The instance ��{�}  is a binary indicator that the 
commodity can reach up to station � through pipeline �. 

 
Table 1. Definition of the four-valued input variable ��, which determines the status of  pipeline � 

(� ≤ � ≤ �), and the four-valued output variable �, which detemines the overall system status 
 

Value of �� Meaning 
0 Pipeline  �  cannot transmit the commodity to any station. 
1 Pipeline  �  can transmit the commodity up to station 1. 
2 Pipeline  �  can transmit the commodity up to station 2. 
3 Pipeline �  can transmit the commodity up to station 3. 
Value of � Meaning 
0 The system cannot meet the commodity demand of any station. 
1 The system can meet the commodity demand of up to station 1. 
2 The system can meet the commodity demand of up to station 2. 
3 The system can meet the commodity demand of up to station 3. 

 
We have recently reported several solutions of the aforementioned problem, and our present paper offers yet 
another solution of this problem. In our earlier solutions, we employed purely-algebraic methods of multi-
valued logic, in which we handled multi-valued variables either directly [41] or through some binary 
encoding [42,43], with various map versions used occasionally for verification. In this paper, however, we 
deliberately avoid the mathematically-demanding algebraic manipulations in [41-43] by employing the 
Karnaugh map [45-50] as the sole vehicle for our manipulations. There is a long history of utilization of the 
Karnaugh map as a probability map (or reliability map) in the binary case [51-59]. There are also some 
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notable applications of the Karnaugh map as a multi-value map [60-61]. Our work herein combines the 
probability and multi-value notions by adapting the map to multi-valued reliability calculations. We modify a 
regular form of the binary eight-variable Karnaugh map (of  28 = 256 cells) [62-64] for use as a map of 256 = 
44 cells representing four variables that are four-valued each. 
 
The organization of the remainder of this paper is as follows. Section 2 retrieves from Rushdi [41] a 
mathematical description of the example multi-state k-out-of-n system. Section 3 implements a purely-map 
analysis of the system. Section 4 shows that our numerical results exactly agree with those obtained by 
earlier authors. Section 5 discusses certain advantages of using the map, while Section 6 concludes the paper.  
 

2 Mathematical Description of the Example Multi-State k-out-of-n System 
  
In this Section, we summarize from Rushdi [41] a mathematical description of the example multi-state k-out-
of-n system. We use �� {1 ≤ � ≤ 3} to depict the success of station � (the indicator that the commodity 
demand of station � is met). The successes of the three stations are given by 

�� =   ��(4; {4}; ���{0}, ���{0}, ���{0}, ���{0} ) 
=  ���{0}  ���{0}  ���{0}  ���{0},                                                              (1a) 

 
�� = ��(4; {2, 3, 4}; ��{2} ∨ ��{3}, ��{2} ∨ ��{3}, ��{2} ∨ ��{3}, ��{2} ∨ ��{3}) 

= (��{2} ∨ ��{3})(��{2} ∨ ��{3}) ∨ (��{2} ∨ ��{3})(��{2} ∨ ��{3}) ∨ (��{2} ∨ ��{3})(��{2} ∨ ��{3})
∨ (��{2} ∨ ��{3})(��{2} ∨ ��{3}) 

∨ (��{2} ∨ ��{3})(��{2} ∨ ��{3}) ∨ (��{2} ∨ ��{3})(��{2} ∨ ��{3}),      (1b)  
 

�� =   ��(4; {3, 4};  ��{3}, ��{3}, ��{3}, ��{3} ) 
=  ��{3} ��{3} ��{3}  ∨  ��{3} ��{3} ��{3} ∨ ��{3} ��{3} ��{3}  ∨  ��{3} ��{3} ��{3} .            (1c) 

 
The notation  ��(�; �; �) denotes a symmetric switching function (SSF), which is defined as [1, 4, 20, 41-
43, 46-48, 65-68]:  
 
� = ��(�; �; �) =   ��( �; {��, ��, … , ��};  ��, ��, … , ��),                                                                              (2) 

 
and is specified via its number of inputs �, its characteristic set  
 
� =  {��, ��, … , ��}  ⊆  ����  = {0, 1, 2, … , �}, {� ≤ �},                                                                          (3) 

 
and its inputs � =  [��, ��, … , ��]T. This function has the value 1 if and only if 
 
∑  �� 

�
��� = ��,                                                                                                                                                  (4)    

 
for all integers � such that 0 ≤ � ≤  �,  and has the value 0, otherwise. 
 
The four instances of the system output variable S are related to station successes by [41] 
 

  �{0}  =   S��,                                                                                                                                      (5a) 
 
  �{1}  =   �� S��,                                                                                                                                  (5b)   
              
 �{2}  =  �� �� S��,                                                                                                                                (5c) 
                
  �{3}  =   �� �� �� .                                                                                                                              (5d) 
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3 Karnaugh-map Construction and Analysis 
 
This Section describes how the current problem is solved through the construction of a series of Karnaugh maps. 
Each of Figs. 2-11 is a  Karnaugh map of four four-valued inputs ��, ��, �� and ��. This map is considerably 
large as it has  44 = 256 cells, and is simply an adaptation of a map of eight binary variables that has the same 
number of cells (28 = 256), introduced earlier in [62-64]. Each of the maps in Figs. 2-10 has binary outputs 
belonging to  {0, 1}, while the map in Fig. 11 alone has four-valued entries belonging to {0, 1, 2, 3}. In Figs. 
2-10, every 1-entry is written explicitly, while all 0-entered cells are left blank (as usual). 
 

 
 

Fig. 1. A commodity-supply system that is modeled as a multi-state k-out-of-n: G system (Adapted 
from Tian et al. (2008)) 

 

 
 

Fig. 2. A Karnaugh map (of four four-valued inputs) representing the success of station 1 
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Fig. 3. A Karnaugh map (of four four-valued inputs) representing the success of station 2 
 

 
Fig. 4. A Karnaugh map (of four four-valued inputs) representing the success of station 3. 

 
The maps in Figs. 2-4 represent the two-valued station successes ��, �� and ��, as given by equations (1). 
These maps are filled-in collectively (and not in a cell-by-cell fashion), as we explain now. Equation (1a) sets 
to 1 (positively asserts) �� unless any of the four inputs ��, ��, �� or �� is negatively asserted (equated to 0). 
Excluding {�� = 0} in Fig. 2 amounts to setting to 0 all cells in the first four columns of the map in Fig. 2, 
while avoiding {�� = 0}  assigns 0 to every cell in the first four rows of this map. Avoiding {�� = 0} 
requires that 0 be entered in every cell in the first column of every group of four consecutive columns in Fig. 
2, while rejecting {�� = 0} does the same for every cell in the first row of every group of four consecutive 
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rows in Fig. 2. For illustrative purposes, we highlight in yellow the blank (implicitly 0-entered) cells 
comprising {�� = 0} in Fig. 2. 

 

 
 

Fig. 5. A Karnaugh map (of four four-valued inputs) representing the failure of station 2, obtained by 
cell-wise complementation of the map in Fig. 3 

 

 
 

Fig. 6. A Karnaugh map (of four four-valued inputs) representing the failure of station 3, obtained by 
cell-wise complementation of the map in Fig. 4 

 

Equation (1b) sets to 1 (positively asserts) �� for six terms, the first of which is (��{2} ∨ ��{3})(��{2} ∨
��{3}). The four columns covered by this term are highlighted in yellow in Fig. 3. Equation (1c) sets to 1 
(positively asserts) �� for four terms, the first of which is ��{3} ��{3} ��{3}. The four cells covered by this 
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term are highlighted in yellow in Fig. 4.  Figs. 5-7 are obtained by collective cell-wise complementation of 
the maps in Figs. 3, 4, and 2, respectively. Figures 7-10 express the four instances of the system output � via 
equations (5). Figures 8-10 use collective cell-wise ANDing of maps in the appropriate earlier figures. Figure 
11 is a map of multi-valued entries, which represents the multi-valued output �.  This map combines the 
results of the binary-entered maps in Figs. 7-10, which represent the four binary instances �{0}, �{1}, �{2}, 
and �{3} of �. Either the  four maps in Figs. 7-10, or (equivalently) the individual map in Fig. 11 can be read 
immediately to express the expectation of each instance (its probability of being equal to 1) as follows. 
 

���{0}� = 1 −  �����{0}�  �����{0}� �����{0}� �����{0}�.                                                                            (6a) 
 

�{�{1}} =   �{��{1}}  ����{1}�  �{��{1}}   (�{��{2}}  +  �{��{3}})  + 

  ����{1}� ����{1}�  (�{��{2}} +  �{��{3}})  �{��{1}}  + 

  �{��{1}}  (E{��{2}} + �{��{3}})  �{��{1}}   �{��{1}}  +  

(�{��{2}} +  �{��{3}})  ����{1}�  �{��{1}}  �{��{1}}   +   

 ����{1}� �{��{1}}  �{��{1}}  �{��{1}}                                                                                                     (6b) 
 

�{�{3}} =   �{��{3}}  ����{3}�  �{��{3}}   (�{��{2}}  +  �{��{1}})  + 

  ����{3}� ����{3}�  (�{��{2}} +  �{��{1}})  �{��{3}}  + 

  �{��{3}}  (E{��{2}} + �{��{1}})  �{��{3}}   �{��{3}}  +  

(�{��{2}} +  �{��{1}})  ����{3}�  �{��{3}}  �{��{3}}   +   

 ����{3}� �{��{3}}  �{��{3}}  �{��{3}}.                                                                                                     (6c) 
 

���{2}� = 1 − ����{0}� + ���{1}� + ���{3}��.                                                                                                (6d) 
 

 
 

Fig. 7. A Karnaugh map for the binary indicator of instant  �{0} = S�� of system output, obtained by 
cell-wise complementation of the map in Fig. 2 

 

4 Comparisons with Previous Work 
 
The problem handled herein was solved via various techniques by Tian et al. [34], Mo. et al. [40], Rushdi 
[41], and Rushdi & Al-Amoudi [42,43]. In all cases, the results were tested by the following input matrix, in 
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which the sum of entries in each row is 1, since such entries are the probabilities of mutually exclusive and 
exhaustive events.  

   

{�{��{�}}} = �

. ���� . ����

. ���� . ����
. ���� . ����
. ���� . ����

. ���� . ����

. ���� . ����
. ���� . ����
. ���� . ����

�               (1 ≤  � ≤  4 , 0 ≤  � ≤  3)                                  (7) 

 

Table 2 compares our results for this specific input with the results of the earlier teams of authors. The six 
sets of results are essentially the same, despite the existence of minor differences in precision.  
 

 
 

Fig. 8. A Karnaugh map for the binary indicator of instant  �{1} =  �� S�� of system output, obtained by 
cell-wise ANDing of the maps in  Figs. 2 and 5 

 

 
 

Fig. 9. A Karnaugh map for the binary indicator of instant  �{2} = �� �� S�� of system output obtained 
by cell-wise ANDing of the maps in Figs. 2, 3 and 6 
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Fig. 10. A Karnaugh map for the binary indicator of instant  �{�} =  �� �� ��  of system output, 
obtained by cell-wise ANDing of the maps in Figs. 2, 3 and 4 

 

 
 

Fig. 11. A  MVKM representing the multi-valued output S, obtained by combining information from 
the four maps in Figs. 7-10 

 
Table 2. Comparison of the present results with those in earlier work 

 

 Tian  et al. 
[34] 

Mo et al. 
[40] 

Rushdi [41] Rushdi & Al-Amoudi 
[42,43] 

Present results 

E{S(0)} 0.1508 0.150838 0.150837750000 0.150837750000000 0.150837750000 
E{S(1)} 0.0023 0.002282 0.002282548128 0.002282548128000 0.002282548128 
E{S(2)} 0.0892 0.089181 0.089180866436 0.089180866435691 0.089180866436 
E{S(3)} 0.7577 0.757699 0.757698835436 0.757698835436309 0.757698835436 
Total 1.0000 1.000000 1.000000000000 1.000000000000000 1.000000000000 
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5 Discussions 
 
The ultimate outcome of our analysis is the Multi-Valued Karnaugh Map (MVKM) of Fig. 11, which serves 
as a natural, unique, and complete representation of the multi-state system. One can obtain many useful 
insights and deduce certain (not-so-obvious) facts from this map. 
 

 The map reveals the nature of the four binary instances �{0}, �{1}, �{2}, and �{3} of �, when these 
instances are viewed as individual binary reliability systems. The instance �{0} acts like a coherent 
binary failure while the instance �{3} behaves like a coherent binary success. Both �{1} and �{2} 
have a general non-coherent behavior, which somewhat mimics that of a �-to-�-out-of-�: G system 
[65, 66], or a double-threshold system [67, 68]. It is interesting to note that the instances �{0},  �{1}, 
and �{2} are non-coherent in a binary sense, though each of the station successes ��, �� and �� is 
coherent in the same sense. By contrast, the overall system output � is coherent in a multi-state 
sense. 

 The map offers a convenient pictorial mechanism for decomposing its output function into various 
sub-functions, thereby constructing a multi-valued expansion tree or decision diagram for this 
function [1-4, 19-23, 41, 65-71]. 

 The map is a tool to visualize each of the properties of causality, monotonicity, and relevancy, 
which when combined together amount to labelling the present multi-state system as a coherent one 
[43]. 

 The map demonstrates total symmetry of the system function � with respect to its four arguments 
��, ��, �� and ��. Total symmetry means that the map entries are invariant to interchanging any two 
of the four arguments [46]. 

 The map in Fig. 11 is a valuable resource for computing a plethora of Importance Measures [72-96] 
for the current multi-state system. Importance Measures are used to assess the criticality of 
individual components within the system, identify system weaknesses, and rank components so as 
to prioritize potential reliability improvements A crucial map feature in this respect is the capability 
of the map to perform “Boolean differentiation” or “Boolean differencing” through appropriate map 
folding [87-100]. 

 Tedious algebraic manipulations were needed in [41-43] to prove that 
 

�� �� ≤  �� �� ,                                                                                                                                  (8) 
 

Equation (8) is a useful result, since it facilitates the derivation of an algebraic expression for �{3}. 
However, inspection of Figs. 2-4 reveals not only (8) but also the more powerful result 
 
�� ≤  �� ,                                                                                                                                         (9) 
 
Direct inspection of Figs. 2-4 also attests that ��  is neither comparable to ��  nor comparable to ��. 
Figures 7-10 confirm that the four instances �{0}, �{1}, �{2}, and �{3} of � form an orthonormal set, 
thereby allowing a consistent construction of the MVKM in Fig. 11.  
 

6 Conclusions 
 
This paper demonstrated how MSS reliability can be handled solely via Karnaugh maps of multi-valued 
inputs, and of binary or multi-valued entries. A classical MSS problem was manually analyzed by maps that 
resemble eight-variable Karnaugh maps. Despite the relatively large size of the maps used, they were very 
convenient, indeed. No attempt was made to draw loops on the maps or to seek minimal formulas. The maps 
just served as handy tools for combinatorial representation and for collective implementation of the 
operations of ANDing, ORing, and complementation. Results obtained are satisfactory as they exactly 
replicate earlier results obtained by various automated and manual means.  
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