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Abstract

In this paper, we introduce the Hyperbolic Jacobsthal numbers and we present recurrence
relations, Binet’s formulas, generating functions and the summation formulas for these numbers.
Moreover, we investgate Lorentzian inner product for the hyperbolic Jacobsthal vectors.
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1 Introduction and Preliminaries

In this paper, we define Hyperbolic Jacobsthal numbers in the next section and give some properties
of them. First, in this section, we present some background about Hyperbolic numbers and
Jacobsthal numbers. See for example, [1], [2], [3], [4], [5], [6], [7] and [8].

Jacobsthal sequence {Jn}n≥0is defined by the second-order recurrence relation

Jn = Jn−1 + 2Jn−2 (1.1)
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with the initial values J0 = 0, J1 = 1. Jacobsthal numbers are

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ...

Binet’s formula, generating functions, Simson formula, summation formula of Jacobsthal numbers
are

Jn =
1

3
(2n − (−1)n) ,

∞∑
n=1

Jnx
n−1 =

1

1− x− 2x2
,

Jn+1Jn−1 − J2
n = (−1)n2n−1,

n∑
k=0

Jk =
1

2
(Jn+2 − 1)

respectively.

The set of hyperbolic numbers H can be described as

H = {z = x+ hy | h /∈ R, h2 = 1, x, y ∈ R}.

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are defined by

z1 ± z2 = (x1 + hy1)± (x2 + hy2) = (x1 ± x2) + h (y1 ± y2) ,

z1 × z2 = (x1 + hy1)× (x2 + hy2) = x1x2 + y1y2 + h (x1y2 + y1x2) .

and the division of two hyperbolic numbers are given by

z1
z2

=
x1 + hy1
x2 + hy2

=
(x1 + hy1) (x2 − hy2)

(x2 + hy2) (x2 − hy2)
=

x1x2 + y1y2
x2
2 − y2

2

+ h
x1y2 + y1x2

x2
2 − y2

2

.

The hyperbolic conjugation of z = x+ hy is defined by

z = z† = x− hy.

Note that z = z. Note also that for any hyperbolic numbers z1, z2, z we have

z1 + z2 = z1 + z2,

z1 × z2 = z1 × z2,

∥z∥2 = z × z = x2 − y2.

For more information on hyperbolic numbers, see for example, [9], [10], [11], [12], [13], [14] and [15].

2 Hyperbolic Jacobsthal Sequence

In [16], author defined hyperbolic Fibonacci sequence and investigated its properties. In this work we
define hyperbolic Jacobsthal sequence and investigated its properties. For dual Jacobsthal sequence
see [17 ].

The hyperbolic Jacobsthal numbers are defined by

J̃n = Jn + hJn+1 (2.1)

with initial conditions J̃0 = h, J̃1 = 1 + h where h2 = 1. Then the hyperbolic Jacobsthal numbers
are

h, 1 + h, 1 + 3h, 3 + 5h, 5 + 11h, 11 + 21h, 21 + 43h, 43 + 85h, ...

2
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It can be easily shown that
J̃n = J̃n−1 + 2J̃n−2. (2.2)

To see this, we have

J̃n = Jn + hJn+1 = Jn−1 + 2Jn−2 + h(Jn + 2Jn−1)

= (Jn−1 + hJn) + 2(Jn−2 + hJn−1) = J̃n−1 + 2J̃n−2.

Now, we start to give some results starting with the following Theorem. See [17].

Theorem 2.1. If J̃n is a hyperbolic Jacobsthal number, then

lim
n→∞

J̃n+1

J̃n

= 2.

Proof. For the Jacobsthal sequence Jn we have

lim
n→∞

Jn+1

Jn
= 2.

Then using this limit value for the hyperbolic Jacobsthal numbers J̃n, we obtain

lim
n→∞

J̃n+1

J̃n

= lim
n→∞

Jn+1 + hJn+2

Jn + hJn+1

= lim
n→∞

Jn+1 + h(Jn+1 + 2Jn)

Jn + hJn+1

= lim
n→∞

Jn+1

Jn
+ h(

Jn+1

Jn
+ 2)

1 + h
Jn+1

Jn

=
2 + h(2 + 2)

1 + 2h
=

2 + 4h

1 + 2h
= 2.

Next, we present Binet’s formula. See [17].

Theorem 2.2. The Binet’s formula for the hyperbolic Jacobsthal sequence is given as

J̃n =
1

3
((1 + 2h)2n − (1− h)(−1)n) . (2.3)

Proof. Using Binet’s formula Jn = 1
3
(2n − (−1)n) we see that

J̃n = Jn + hJn+1

=
1

3
(2n − (−1)n) + h

1

3

(
2n+1 − (−1)n+1)

=
1

3
(−1)n (h− 1) +

1

3
2n(1 + 2h)

=
1

3
((1 + 2h)2n − (1− h)(−1)n) .

It is useful to let Binet’s formula for the hyperbolic Jacobsthal sequence as follows.

Corollary 2.3. Binet’s formula for the hyperbolic Jacobsthal sequence can be given as

J̃n =
1

3
(1 + 2h) (2n + (1− h)(−1)n) . (2.4)
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Proof. Using Binet’s formula for the hyperbolic Jacobsthal sequence (2.3), we see that

J̃n =
1

3
((1 + 2h)2n − (1− h)(−1)n) =

1

3
(1 + 2h)

(
2n −

(
1− h

1 + 2h

)
(−1)n

)
=

1

3
(1 + 2h)

(
2n −

(
1− h

1− 4h2

)
(1− 2h) (−1)n

)
=

1

3
(1 + 2h)

(
2n −

(
1− 2h− h+ 2h2

−3

)
(−1)n

)
=

1

3
(1 + 2h) (2n + (1− h)(−1)n) .

Next, we present the generating function for the hyperbolic Jacobsthal numbers. For the generating
function of Jacobsthal numbers see [18], [19].

Theorem 2.4. The generating function for the hyperbolic Jacobsthal numbers is

∞∑
n=0

J̃nx
n =

h+ x

1− x− 2x2
. (2.5)

Proof. Let

g(x) =

∞∑
n=0

J̃nx
n

be generating function of hyperbolic Jacobsthal numbers. Then

(1− x− 2x2)g(x) =
∞∑

n=0

J̃nx
n − x

∞∑
n=0

J̃nx
n − 2x2

∞∑
n=0

J̃nx
n

=

∞∑
n=0

J̃nx
n −

∞∑
n=0

J̃nx
n+1 − 2

∞∑
n=0

J̃nx
n+2

=
∞∑

n=0

J̃nx
n −

∞∑
n=1

J̃n−1x
n − 2

∞∑
n=2

J̃n−2x
n

= (J̃0 + J̃1x)− J̃0x−
∞∑

n=2

(J̃n − J̃n−1 − 2J̃n−2)x
n

= J̃0 + J̃1x− J̃0x

= J̃0 + (J̃1 − J̃0)x.

Rearranging the above equation, we obtain

g(x) =
J̃0 + (J̃1 − J̃0)x

1− x− 2x2
=

h+ x

1− x− 2x2

since J̃0 = h, J̃1 = 1 + h.

Next, we give linear sum identitity of hyperbolic Jacobsthal numbers.

Theorem 2.5. For n ≥ 0, we have the following formula:

n∑
k=0

J̃k =
1

2
(J̃n+2 − (h+ 1)). (2.6)
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Proof. The proof follows from the summing formula

n∑
k=0

Jk =
1

2
(Jn+2 − 1).

We now present a few special identities for the hyperbolic Jacobsthal sequence {J̃n}.

Theorem 2.6. (Catalan’s identity) For all natural numbers n and m, the following identity holds

J̃n+mJ̃n−m − J̃2
n =

1

9
(−2)n−m ((−1)m − 2m)2 (1− h) .

Proof. We use the Binet’s formula (2.3)

J̃n =
1

3
((1 + 2h)2n − (1− h)(−1)n) .

Then we have

J̃n+mJ̃n−m − J̃2
n =

1

3

(
(1 + 2h)2n+m − (1− h)(−1)n+m) 1

3

(
(1 + 2h)2n−m − (1− h)(−1)n−m)

−1

9
((1 + 2h)2n − (1− h)(−1)n)2

= −1

9
(−2)n−m ((−1)m − 2m)2 (1 + 2h) (1− h)

= −1

9
(−2)n−m ((−1)m − 2m)2

(
−2h2 + h+ 1

)
=

1

9
(−2)n−m ((−1)m − 2m)2 (1− h) .

Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic Jacobsthal
numbers.

Corollary 2.7. (Cassini’s identity) For all natural numbers n, the following identity holds

J̃n+1J̃n−1 − J̃2
n = (−2)n−1 (1− h) .

The d’Ocagne’s, Gelin-Cesàro’s and Melham’s identities can also be obtained by using (2.3) or
(2.4) . The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’s identities of hyperbolic

Jacobsthal sequence {J̃n}.

Theorem 2.8. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

J̃m+1J̃n − J̃mJ̃n+1 =
1

3
(1− h) ((−1)n2m − (−1)m2n) ,

(b) (Gelin-Cesàro’s identity)

J̃n+2J̃n+1J̃n−1J̃n−2 − J̃4
n =

1

9
(−2)n (h− 1)

(
2n−2 + 13 (−2)n−2 + 1

)
,

(c) (Melham’s identity)

J̃n+1J̃n+2J̃n+6 − J̃3
n+3 =

1

3
(h− 1) (−2)n+2 (2n+1 − 5(−1)n

)
.

Proof.
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(a) Using J̃n = 1
3
((1 + 2h)2n − (1 − h)(−1)n) and saying (1 + 2h) = a and (1 − h) = b, we have

J̃m+1J̃n − J̃mJ̃n+1 =
1

9

[(
a2

m+1 − b(−1)
m+1

) (
a2

n − b(−1)
n)− (a2m − b(−1)

m) (
a2

n+1 − b(−1)
n+1

)]
=

1

9

[
a
2
2
m+n+1

+ b
2
(−1)

m+n+1 − ab
(
(−1)

m+1
2
n

+ 2
m+1

(−1)
n
)]

−
1

9

[
a
2
2
m+n+1

+ b
2
(−1)

m+n+1 − ab
(
(−1)

m
2
n+1

+ 2
m

(−1)
n+1

)]
=

1

9
(1 − h)

[
(−1)

m+1
2
n

+ 2
m+1

(−1)
n − (−1)

m
2
n+1 − 2

m
(−1)

n+1
]

=
1

9
(1 − h)

[
3(−1)

n
2
m − 3(−1)

m
2
n]

=
1

3
(1 − h)

[
(−1)

n
2
m − (−1)

m
2
n]

.

(b) Using J̃n = 1
3
(1 + 2h) (2n + (1 − h)(−1)n) and saying 2n = a and (1 − h)(−1)n = b, we have

J̃n+2J̃n+1J̃n−1J̃n−2 − J̃
4
n =

1

81
(1 + 2h)

4
[
(4a + b) (2a − b)

(
a

2
− b

)(
a

4
+ b

)
− (a + b)

4
]

=
1

81
(41 + 40h)

[(
8a

2 − 2ab − b
2
)(a2

8
−

ab

2
− b

2

)

−
(
a
4
+ b

4
+ 4a

3
b + 6a

2
b
2
+ 4ab

3
)]

=
1

81
(41 + 40h)

[(
7

4
a
3
b +

7

4
ab

3 −
69

8
a
2
b
2
)

−
(
4a

3
b + 6a

2
b
2
+ 4ab

3
)]

=
1

81
(41 + 40h)

[−9

4
a
3
b +

−9

4
ab

3 −
117

8
a
2
b
2
]

=
1

9
(41 + 40h) (1 − h)(−2)

n
[−1

4

(
a
2
+ b

2
)
−

13

8
ab

]
=

1

9
(1 − h)(−2)

n
[−1

4

(
2
2n

+ 2 (1 − h)
)
−

13

8
(−2)

n
(1 − h)

]
=

1

9

[−1

4

(
(−2)

3n
+ 4 (1 − h) (−2)

n
)
−

13

4
(−2)

2n
(1 − h)

]
=

1

9
(−2)

n
(h − 1)

[
2
2n−2

+ 13 (−2)
n−2

+ 1
]
.

(c) Using J̃n = 1
3
(1 + 2h) (2n + (1 − h)(−1)n) and saying 2n = a and (1 − h)(−1)n = b, we have

J̃n+1J̃n+2J̃n+6 − J̃
3
n+3 =

1

27
(1 + 2h)

3
[
(2a − b) (4a + b) (64a + b) − (8a − b)

3
]

=
1

27
(13 + 14h)

[(
8a

2 − 2ab − b
2
)
(64a + b) −

(
512a

3 − 192a
2
b + 24ab

2 − b
3
)]

=
1

27
(13 + 14h)

[(
−120a

2
b − 66ab

2
)
−
(
−192a

2
b + 24ab

2
)]

=
1

27
(13 + 14h)

[
72a

2
b − 90ab

2
]

=
1

27
(13 + 14h)(1 − h)(−2)

n [
72.2

n − 90(1 − h)(−1)
n]

=
1

3
(h − 1) (−2)

n (
8.2

n − 10 (1 − h) (−1)
n)

=
1

3
(−2)

n (
8.2

n
(h − 1) − 20 (h − 1) (−1)

n)
=

1

3
(h − 1) (−2)

n+2
(
2
n+1 − 5(−1)

n
)
.

3 Hyperbolic Jacobsthal Vectors

Suppose that −→z1 = (x1, x2, x3) and
−→z2 = (y1, y2, y3) are vectors in R3. The Lorentzian inner product

of z1 and z2 is defined as, see for example [16] and [20],

z1z2 = ⟨−→z1 ,−→z2⟩L = x1y1 + x2y2 − x3y3. (3.1)

6
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Note that for −→z = (x1, x2, x3) we have

⟨−→z ,−→z ⟩L = x2
1 + x2

2 − x2
3

and
∥−→z ∥2 = x2

1 + x2
2 − x2

3.

The vector space R3 together with the Lorentzian inner product ⟨., , ⟩L is called Lorentzian inner
product space and usually denoted by L2,1 or L3.

A hyperbolic Jacobsthal vector is defined by

−→
J̃ n =

(
J̃n, J̃n+1, J̃n+2

)
.

From equations (2.1) and (2.2) we see that

−→
J̃ n =

−→
J n + h

−→
J n+1

where
−→
J n = (Jn, Jn+1, Jn+2) and

−→
J n+1 = (Jn+1, Jn+2, Jn+3) are Jacobsthal vectors and h2 = 1.

The product of the hyperbolic Jacobsthal vector
−→
J̃ n and the scalar λ ∈ R is given by

λ
−→
J̃ n = λ

−→
J n + hλ

−→
J n+1

and
−→
J̃ n and

−→
J̃ m are equal if and only if

Jn = Jm

Jn+1 = Jm+1

Jn+2 = Jm+2.

Note that

−→
J̃ 0 =

(
J̃0, J̃1, J̃2

)
= (J0 + hJ1, J1 + hJ2, J2 + hJ3) = (h, 1 + h, 1 + 3h) ,

−→
J̃ 1 =

(
J̃1, J̃2, J̃3

)
= (J1 + hJ2, J2 + hJ3, J3 + hJ4) = (1 + h, 1 + 3h, 3 + 5h) ,

−→
J̃ 2 =

(
J̃2, J̃3, J̃4

)
= (J2 + hJ3, J3 + hJ4, J4 + hJ5) = (1 + 3h, 3 + 5h, 5 + 11h) .

Now, we give Lorentzian inner product of hyperbolic Jacobsthal vectors.

Theorem 3.1. Let
−→
J̃ n and

−→
J̃ m be two hyperbolic Jacobsthal vectors. The Lorentzian inner product

of
−→
J̃ n and

−→
J̃ m is given by⟨−→

J̃ n,
−→
J̃ m

⟩
L

= (JmJn + 2Jm+1Jn+1 − Jm+3Jn+3) (3.2)

+h(Jm+1Jn+2 + Jm+2Jn+1 − Jm+2Jn+3 − Jm+3Jn+2 + JnJm+1 + JmJn+1).

Proof. The Lorentzian inner product of
−→
J̃ n =

(
J̃n, J̃n+1, J̃n+2

)
and

−→
J̃ m =

(
J̃m, J̃m+1, J̃m+2

)
is

defined by⟨−→
J̃ n,

−→
J̃ m

⟩
L

= J̃nJ̃m + J̃n+1J̃m+1 − J̃n+2J̃m+2

=
⟨−→
J n,

−→
J m

⟩
+

⟨−→
J n+1,

−→
J m+1

⟩
+ h

[⟨−→
J n,

−→
J m+1

⟩
+

⟨−→
J n+1,

−→
J m

⟩]

7



Dikmen; ARJOM, 15(4): 1-9, 2019; Article no.ARJOM.52259

where
−→
J n = (Jn, Jn+1, Jn+2) is Jacobsthal vector. Using (3.1), we obtain⟨−→

J n,
−→
J m

⟩
= JnJm + Jn+1Jm+1 − Jn+2Jm+2,⟨−→

J n+1,
−→
J m+1

⟩
= Jn+1Jm+1 + Jn+2Jm+2 − Jn+3Jm+3,⟨−→

J n,
−→
J m+1

⟩
= JnJm+1 + Jn+1Jm+2 − Jn+2Jm+3,⟨−→

J n+1,
−→
J m

⟩
= Jn+1Jm + Jn+2Jm+1 − Jn+3Jm+2.

Using the last four equations, we have the required equation (3.2).

4 Conclusion

The hyperbolic Jacobsthal numbers are defined by

J̃n = Jn + hJn+1 (4.1)

with initial conditions J̃0 = h, J̃1 = 1 + h where h2 = 1.

We introduced the hyperbolic Jacobsthal numbers and we presented recurrence relations, Binet’s
formulas, generating functions and the summation formulas for these numbers. Moreover, we
investgated the Lorentzian inner product for the hyperbolic Jacobsthal vectors.

There are new studies on dual hyperbolic Fibonacci and Lucas numbers (see [21]), and on dual
hyperbolic generalized Fibonacci numbers (see [22]) by other authors.
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