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Abstract 
 

The article presents an extension of the Gompertz-Makeham distribution using the Lomax generator of 
probability distributions. This generalization of the Gompertz-Makeham distribution provides a more 
skewed and flexible compound model called Lomax Gompertz-Makeham distribution. The paper derives 
and discusses some Mathematical and Statistical properties of the new distribution. The unknown 
parameters of the new model are estimated via the method of maximum likelihood estimation. In 
conclusion, the new distribution is applied to two real life datasets together with two other related models 
to check its flexibility or performance and the results indicate that the proposed extension is more flexible 
compared to the other two distributions considered in the paper based on the two datasets used. 
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1 Introduction 
 
The Gompertz-Makeham distribution (GOMAD) was introduced by Makeham in 1860 [1]. It is an extension 
of the Gompertz probability distribution that was introduced by Gompertz in 1825 [2]. The GOMAD is a 
continuous probability distribution that has been widely used in survival analysis, modeling human 
mortality, constructing actuarial tables and growth models. It has been recently used in many fields of 
sciences including actuaries, biology, demography, gerontology, and computer science. 
 
A comprehensive review of the history and theory of the GOMAD can be found in Marshall and Olkin [3]. 
Golubev [4] emphasizes the practical importance of this probability distribution. Detailed information about 
the GOMAD, its mathematical and statistical properties, and its applications can be found in Johnson et al. 
[5] and Dey et al. [6].  
 

There exist a good number of families of probability distributions that are used for adding parameters to 
existing distributions while making them more flexible for modeling heavily skewed dataset. A summary of 
these families include: The beta generated family (Beta-G) by Eugene et al. [7], Transmuted family of 
distributions by Shaw and Buckley [8], Gamma-G (type 1) by Zografos and Balakrishnan [9], the 
Kumaraswamy-G by Cordeiro and de Castro [10], McDonald-G by Alexander et al. [11], Gamma-G (type 2) 
by Ristic et al. [12], Gamma-G (type 3) by Torabi and Montazari [13], Log-gamma-G by Amini et al. [14], 
Exponentiated T-X by Alzaghal et al. [15], Exponentiated-G (EG) by Hassan and Elgarhy [16], Weibull-X 
by Alzaatreh et al. [17], Weibull-G by Bourguignon et al. [18], Logistic-G by Torabi and Montazari [19], 
Gamma-X by Alzaatreh et al. [20], a Lomax-G family by Cordeiro et al. [21], a new generalized Weibull-G 
family by Cordeiro et al. [22], Beta Marshall-Olkin family of distributions by Alizadeh et al. [23], Logistic-
X by Tahir et al. [24], a new Weibull-G family by Tahir et al. [25], a Lindley-G family by Cakmakyapan and 
Ozel [26], a Gompertz-G family by Alizadeh et al. [27] and Odd Lindley-G family by Gomes-Silva et al. 
[28] and so on. 
 

Sequel to the introduction of the families of probability distribution above and the will to add skewness and 
flexibility to classical distributions particularly the Gompertz-Makeham distribution, many authors have 
proposed different extensions of this distribution and some of the recent and known studies include the the 
Kumaraswamy Gompertz-Makeham distribution by Chukwu and Ogunde [29], the transmuted Gompertz-
Makeham distribution by El-Bar [30] using the quadratic rank transmutation map by Shaw and Buckley [8], 
the Cubic Transmuted Gompertz-Makeham Distribution by Riffi and Hamdan [31] and the generalized 
transmuted Gompertz-Makeham distribution by Riffi [32].  
 

Research has revealed that using Lomax generator of probability distributions (Lomax-G family) by 
Cordeiro et al. [21] to add two parameters to a continuous distribution produces a compound distribution 
with greater skewness and flexibility for modeling real life datasets (Venegas et al. [33], Omale et al. [34], 
Ieren et al. [35], Ieren and Kuhe [36]).  
  

Therefore, motivated by the above information, the main interest in this article is to present another 
generalization of the Gompertz-Makeham distribution using the Lomax generator of probability distributions 
proposed by Cordeiro et al. [21] and which has been used recently by Venegas et al. [33], Omale et al. [34], 
Ieren and Kuhe [36] and Ieren et al. [35]. It is the hope of the researchers that it will give a better compound 
model for analyzing real life situations especially in survival analysis, human mortality modeling, 
constructing actuarial tables and growth models.  
 
The cumulative distribution function (c.d.f) and probability density function (pdf) of the Gompertz-
Makeham distribution are defined as: 
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respectively, for 0, , , 0,x      where   is the scale parameter and   and 


 are the shape 
parameters of Gompertz-Makeham distribution. 
 
This article is organized in sections as follows: definition of the new distribution with its validity and 
graphical analysis is provided in section 2. Section 3 derived some Mathematical and Statistical properties of 
the new distribution. The estimation of unknown parameters of the distribution using maximum likelihood 
estimation is provided in section 4. An application of the new model to two real life datasets is done in 
section 5 and a very useful summary as well as conclusion is offered in section 6. 
 

2 Formulation of the Lomax Gompertz-Makeham Distribution 
(LOGOMAD) 

 
2.1 Definition 
 
According to Cordeiro et al. [21], the cumulative distribution function of the proposed Lomax generator of 
distributions (also known as “Lomax-G family of distributions) is defined as 
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where 
( )G x

 is the cdf of any continuous distribution to be modified or generalized and 0a   and 0b 

are the two extra shape parameters of the Lomax-G family. 
 
Using integration by substitution in equation (3) above and evaluating the integrand in the equation yields 
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The corresponding probability density function (pdf) of the Lomax-G family is obtained from equation (4) 

by taking the derivative of the cdf, 
( )F x

 with respect to x and is given as: 
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where 
( )g x

and 
( )G x

 represent the pdf and the cdf of the continuous distribution to be modified, extended 
or generalized respectively. Also note that the major benefit of (5) is to offer more flexibility and skewness 
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to the extremes of the pdf and therefore makes it more suitable for analyzing data with high degree of 
asymmetry. 
 
Substituting equation (1) and (2) in (4) and (5) above and simplifying, we obtain the cdf and pdf of the 
LOGOMAD for a random variable X as: 
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respectively. For
0; , , , , 0x a b    

. 
 

2.2 Validity of the model f(x) 
 
Recall that for any valid continuous probability distribution, the following integral in (8) must holds, that is 
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PROOF 
 
Considering the pdf of the LOGOMAD, which is given as 
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Substituting this pdf in equation (8) above and simplifying, we have  
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Now, from equation (9), let 
 

  111 log 1 1
xx e

y b e



           

 
Such that 
 

 

  

1

1
1 1

x

x

x ex

x e

e edy

dx
b e











 
  

  

  
      

 
Which implies that 
 

  
 

1

1

1 1
x

x

x e

x ex

b e dy

dx
e e









 

  

  

    
    

 

Substituting for dx  in (9) and simplifying the resulting expression, we obtain 
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  is the cdf of the Gompertz-Makeham distribution and its limit as X approaches 

infinity, x   is equal to one (1) while its limit as X tends to zero, 0x   is equal to zero (0). 
Therefore, from equation (12), we have: 
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and hence it is that the proposed pdf of the LOGOMAD in equation (7) is a valid probability density 
function.  

 
2.3 Graphical presentation of Pdf and Cdf of LOGOMAD 
 
The pdf and cdf of the LOGOMAD using some parameter values are displayed in figure 1 and figure 2 
respectively as follows. 
 

 
 

Fig. 1. PDF of LOGOMAD 
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Fig. 2. CDF of LOGOMAD 
 

3 Mathematical and Statistical Properties of LOGOMAD 
 
This section contains derivations and discussions of some properties of the proposed distribution. These are 
presented as follows: 
 

3.1 Asymptotic behavior 
 
Here, the asymptotic properties of the LOGOMAD are being investigated, that is, the limit of the pdf and cdf 

of the LOGOMAD as X approaches infinity, x   and as X  tends to zero, 0x  . This is done as 
follows: 
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(0) and the limit of the pdf, f(x) of the LOGOMAD as X tends to zero (0), 0x   is also equal to zero (0). 
 
PROOF 
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Makeham distribution and its limit as X  approaches infinity, x   is equal to zero (0), therefore 
simplifying equation (13) above gives: 
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(ii) The limit of the pdf, f(x) of the LOGOMAD as X tends to zero (0), 0x   
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simplifying the equation (15) above gives: 
 

 

    
 

 
 lim

0 1 1

0 0 0
( ) 0

1 0

a a
x a a

f x ab ab a
bbb

  
   


                                                  (16) 

 

LEMMA 2: The limit of the cdf, F(x) of the LOGOMAD as X approaches infinity, x   is equal to one 

(1) and limit of the cdf, F(x) of the LOGOMAD as X tends to zero (0), 0x   is equal to zero (0). 
 
PROOF 
 

(i) The limit of the cdf, F(x) of LOGOMAD as X approaches infinity, x   
 

 
lim lim

1
( ) 1

log 1 1
x

a

x x
x e

b
F x

b e





 
  

  
     

    
                                                                   (17) 

 

Recall that 
 1

1
xx e

e



  

  is the cdf of the Gompertz-Makeham distribution and its limit as X approaches 

infinity, x   is equal to one (1), therefore simplifying equation (17) above gives: 
 

   
lim ( ) 1 1 1

log 1 1 log 0

a a

x

b b
F x

b b


      
       

                                                          (18) 
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(ii) The limit of the cdf, F(x) of LOGOMAD as X tends to zero (0), 0x    
 

 
lim lim

0 0
1

( ) 1

log 1 1
x

a

x x
x e

b
F x

b e





 
  

  
     

    
                                                                    (19) 

 

Recall that 
 1

1
xx e

e



  

  is the cdf of the Gompertz-Makeham distribution and its limit as X tends to 

zero (0), 0x   is equal to zero (0), therefore simplifying equation (19) above gives: 
 

   
lim

0 ( ) 1 1 1 1 1 0
log 1log 1 0

a a a

x

b b b
F x

b bb


        
             

                       (20) 
 
The lemma above and its proof show that the LOGOMAD has at least a mode and that it is a valid 
probability distribution. 
 

3.2 Moments 
 
Let X denote a continuous random variable, the nth ordinary moment or moment about the origin of X is 
given by: 
 

 '

0

( )nn
n E f x dxxX



  
                                                                                                       (21) 

 

where f(x) is considered as the pdf of LOGOMAD and is previously defined in equation (7) as: 
 

 

   

e 1

1
e 1 e 1

e e
( )

1 1 e log 1 1 e

x

x x

x
x

a

a
x x

f x ab

b



 


 

  
 

 
  


     

  
        

           
          

 

Before substitution in (21), the pdf of LOGOMAD is being simplified as follows: 
 

 

   

e 1

1
e 1 e 1

e e
( )

e log e

x

x x

x
x

a

a
x x

f x ab

b



 


 

  
 

 
  


     

  
  

  
    

 

    
 1

( ) e e 1
a

a x xf x ab b x 
  

 

    
 

 

    
 1

( ) e 1 e 1
a

x x
b b

a
f x x

b
  

 
 

    
                                                                 (22) 
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Let 
 

  
 1

1 e 1
a

x

b b
A x  



 

   
                                                        (23) 

 
Using the generalized binomial theorem on A gives: 
 

  
 

 
1

0

1
1 e 1 e 1

a k
x x

b b b b
k

a
x x

k
    

 

  



  
          

                                           (24) 
 
Making use of the result in (24) above, equation (22) becomes: 
 

   
0

1
( ) e e 1

k
x x

b b
k

aa
f x x

kb
  

 




  
        

                                                          (25) 
 
Also, using the generalized binomial theorem, we can write the last term from the above result in equation 
(25) as: 
 

   
0

e 1 e 1

lkkk l
x k x

b b
l

k
x x

l b b
  



 



                  


                                                   (26) 
 
Making use of the result in (26) above in equation (25) and simplifying the result, we obtain: 
 

    
0 0

1
( ) 1 e 1 e

lk
k ll k x x

k l

a ka
f x x

k lb b b
  

 




 

      
          

                            (27) 
 
Again making use of the generalized binomial expansion on the last term from equation (27) above, we 
have: 
 

   
0

1 e 1 e
ll mx m x

m

l

m
 



 
    

 


                                                                                                 (28) 
 
Hence, the pdf in equation (27) can again be written in its simple form as follows: 
 

   
0 0 0

1
( ) 1 e e

lk
k l l m k x m x

k l m

a k la
f x x

k l mb b b
  

 


 

  

       
           

        
 

 , ,( ) e ex k m x
k l mf x x    

                                                                                      (29) 
 

where 
 

 , ,
0 0 0

1
1

lk
k l l m

k l m
k l m

a k la

k l mb b b

 




 

  

       
          

        
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Now, using the simplified form of the pdf of the LOGOMAD in equation (29), the nth moment ordinary 
moment of the LOGOMAD is derived as follows: 
 

    '

, ,
0 0

( ) e en x k m xnn
k l mn E f x dx x x dxxX

   
 

    
 

 

   1'

, ,
0 0

e e m xn k m x n kn
k l mn E x dx x dxX

  


 
 

   
 


                              (30) 

 
Using integration by substitution method in equation (30), we have: 
 

Let 

1 1 1
1 ;

u du du
u m x x m dx

m dx m
 

 
         

 
 

 
 

 
 

2 2 2
2 1 ; 1

1 1

u du du
u m x x m dx

m dx m
 

 
           

 
 

 

Substituting for 
,x
 u and dx  in equation (30) and simplifying; we have: 

 

              

 
 

1 2'

, , 1 2
0 0

e e
1

u un k n kn
k l mn E x du x duX

m m

 


 


  

   
             


 

 

 
 

1 2

11

'

, , 1 1 2 2
0 0

1 1
e e

1

n kn k

u un k n kn
k l mn E u du u duX

m m
  

 

   
  

   
              


 
 

Recall that 

 1

0

n tt e dt n


   
and that 

 1 1

0 0

1n t n tt e dt t e dt n
 

       
 

 
Hence, we obtain the nth ordinary moment of X for the LOGOMAD as: 
 

 
   

 

 

 

  
' , ,

1 11

1 1

1 1

k l mn
n n k n kn k

n k n k
E X

m m

  


 
     

      
   
                       (31) 

The Central Moments: The nth central moment or moment about the mean of X, say n
, can be obtained as: 

 

 ' ' '
1 1

0

( 1)
nn i i

n in
i

n
E X

i
   



 
     

 


                                                                 (32) 
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The variance of X  is obtained from the central moment when 2n  , that is, variance is central moment of 

order two ( 2n  ). 
 

        
2 222 ' 2 ' '

1 2 1( )Var X E X E X E X         
                         (33) 

 

The mean (
'
1 ), variance (

2 ), coefficient of variation ( CV ), coefficient of skewness ( CS ) and 

coefficient of kurtosis ( CK ) can be calculated from the ordinary and non-central moments using some well-
known relationships as given below: 
 

 
   

 

 

 

  
' , ,

1 2 22

2 2

1 1

k l m

k kk

k k
E X

m m

  


 
  

    
   
                                       (34) 

 

 
22 ' '

2 1( )Var X     
                                                                                                       (35) 

 

 

1
2

2

2
'
1

CV




 
 

  
                                                                                                                              (36) 

 
3'

31
3( )

x
CS E



 

 
  

                                                                                                           (37) 
 

4'
1 4

4( )

x
CK E

 

 

 
  

                                                                                                         (38) 
 

Moment Generating Function: The moment generating function of a random variable X can be obtained as 
 

( ) ( )tx tx
xM t E e e f x dx





    
                                                                                               (39) 

 
Using power series expansion, we have: 
 

 
0 0! !

r r
tx r

r r

tx t
e x

r r

 

 

  
                                                                                                            (40) 

 

Using the result above and simplifying the integral in (39), therefore we have; 
 

    '

0 0 0 0 0

( ) ( ) ( ) ( )
! ! ! ! !

r r r r r
r r r r

x x r
r r r r r

t t t t t
M t x f x dx E X M t x f x dx E X

r r r r r


     

     

            
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Hence, the moment generating function of the LOGOMAD can also be expressed as:  
 

   

 

 

 

  
, ,

1 11
0

1 1
( )

! 1 1

r
k l m

x n k n kn k
r

n k n kt
M t

r m m

  

 



     


       
   
     


                                    (41) 

 
Characteristics Function: The characteristics function is very useful and has important properties that are 
beneficial in statistical theory. It is particularly useful in analysis of linear combination of independent 
random variables. 
 
A representation for the characteristics function is given by 
 

     ( ) cos( ) sin( ) cos( ) sin( )itx
x t E e E tx i tx E tx E i tx                                      (42) 

 
Recall from power series expansion that: 
 

 
 

2

2

0

1
cos( )

2 !

r r

r

r

t
tx x

r








  and 

 
 
 

2
'

2
0

1
cos( )

2 !

r r

r
r

t
E tx

r









 
 

And also that: 
 

 
 

2 1
2 1

0

1
sin( )

2 1 !

r r
r

r

t
tx x

r












  and 

 
 
 

2 1
'

2 1
0

1
sin( )

2 1 !

r r

r
r

t
E tx

r













 
 

Hence, substituting the results above gives: 
 

 
 

 
 

2 2 1
' '

2 2 1
0 0

1 1
( )

2 ! 2 1 !

r rr r

x r r
r n

t t
t i

r r
  

 


 

 
 


 

                                                                (43) 
 

where 
'
2r

 and 
'
2 1r   are obtained as ordinary moments of X  for 2n r  and 2 1n r   respectively 

and can be computed from
'
n

 in equation (31).  
 

3.3 Reliability analysis of the LOGOMAD 
 
The Survival function describes the likelihood that a system or an individual will not fail after a given time. 
Mathematically, the survival function is given by: 
 

   1S x F x 
                                                                                                               (44) 

 
Applying the cdf of the LOGOMAD in (44) and simplifying the result, the survival function for the 
LOGOMAD is obtained as: 
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   ( ) 1 1 1
a

a xS x b b x e




     
 

 

  ( ) 1
a

a xS x b b x e




   
                                                                                     (45) 

 
The figure below is a plot for the survival function of the LOGOMAD using different parameter values. 
 

 
 

Fig. 3. Survival function of LOGOMAD 
 
Hazard function is the probability that a component will fail or die for an interval of time. The hazard 
function is defined as: 
 

 
 
 

 
 1

f x f x
h x

S x F x
 


                                                                                                         (46) 

 
Meanwhile, the expression for the hazard rate of the LOGOMAD is simplified and given by: 
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                                                                                                    (47) 

 

where 
, , , , , 0x a b    

. 
 
The following figure is a plot of the hazard function for some arbitrary parameter values. 
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Fig. 4. Hazard function of LOGOMAD 
 

3.4 Quantile function, median and simulation 
 
According to Hyndman and Fan [37], the quantile function for any distribution is defined in the form 

   1Q u F u
 where 

 Q u
 is the quantile function of F(x) for 0 1u   

 
To derive the quantile function of the LOGOMAD, F(x) the cdf of the LOGOMAD is considered and 
inverting it according to the above definition will give us the quantile function of the LOGOMAD as 
follows: 
 

 1

( ) 1 log 1 1 e

a
xx e

aF x b b u



      

        
                                                              (48) 

 
Simplifying equation (48) above gives:  
 

 
1

1 e

e e
a a xb b u x

 
 

         
 

 
1

1 aa xb b u x e







     
 

 
 

 
11

1 aa xb
b u x e





  

     
 

                                                                                (49) 
 
Using the results by Jodra [38] and Riffi and Hamdan [31], the quantile function of the LOGOMAD is 
written in a simple form from equation (49) using the principle branch of the Lambert function as: 
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   
 

1

1 1

0

1 1
1 e

a a

a
b b u

ab
Q u b u W


 

    

       
 

       
  
                                    (50) 

 

where 0W
 denotes the principal branch of the Lambert W function, which is briefly described in Jodra [38]. 

The median of the LOGOMAD distribution can be obtained from the quantile function by substituting 

0.5u  in Equation (50) which gives: 
 

 
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1

1 0.5

0

1 1
0.5 e
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a
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
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  
                                   (51) 

 

Also, random numbers can be generated from the LOGOMAD by setting 
 Q u X

 and this process is 
called simulation using inverse transformation method. That means: 
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1
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0
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a
b b u
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
 
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                                          (52) 

 
The paper presents the quantile based measures of skewness and kurtosis as follows: 
 
Kennedy and Keeping [39] defined the Bowley’s measure of skewness based on quartiles as: 
 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 



                                                                                         (53) 

 
And Moors [40] presented the Moors’ kurtosis based on octiles by: 
 

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
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Q Q
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


                                                                             (54) 

 

“where 
 .Q

 is calculated by using the quantile function from equation (50). 
 

3.5 Entropy measurement 
 
The Entropy of a distribution is a function that quantifies the uncertainty or randomness in a system or 
distribution. This sub-section presents the most frequently used measure of entropy called Renyi entropy. 
The Renyi entropy of a random variable X is defined as: 
 

   
1

log
1

I X f x dx
 






 

                                                                                               (55) 
 

for 0   and 1  . 
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Now, considering the simplified pdf of the LOGOMAD in equation (29) we get: 
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                                         (56) 
 
Where  
 

and 

 , ,
0 0 0

1
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          

         
 
Therefore, solving the integral above and simplifying the result, the Ren’yi entropy of LOGOMAD is 
obtained as: 
 

 
   

  

1

, , 1
0

1 2 11
( ) log

1

k

p
k l m k

p

X
p p m

I


 



 
  

  






    
   

    


 
 

 
   

  

1

1
0 0 0 0

1 1 2 11
( ) log 1

1

l kk
k l l m p

k
k l m p

a k la
X

k l m pb b b p m
I

 




  
 

   


 


   

                                       


 

(57) 
 

3.6 Order statistics 
 

Suppose 1 2, ,....., nX X X
 is a random sample from the LOGOMAD and let 1: 2: :, ,.....,n n i nX X X

 denote 
the corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the ith order statistic can 
be obtained by: 
 

1
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                                                           (58) 
 

Using (6) and (7) and simplifying the result, the pdf of the ith order statistics��:�, can be expressed from (58) 
as: 
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Hence, the pdf of the minimum order statistic �(�) and maximum order statistic �(�) of the LOGOMAD are 

respectively given by: 
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and 
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4 Maximum Likelihood Estimation of the Unknown Parameters of the 
LOGOMAD 

 

Let nXXX .,,........., 21  be a sample of size ‘n’ independently and identically distributed random variables 

from the LOGOMAD with unknown parameters a , b ,  , 


 and   defined previously. 
 
The likelihood function of the LOGOMAD using the pdf in equation (7) is given by: 
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Let the natural logarithm of the likelihood function be,
   log | , , , ,l L X a b   

, therefore, taking 
the natural logarithm of the function above gives: 
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Differentiating 
 l 

 partially with respect to ,a  
,b
  , 


 and   respectively gives the following results: 
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Making equation (64), (65), (66), (67) and (68) equal to zero (0) and solving for the solution of the non-

linear system of equations produce the maximum likelihood estimates of parameters
,a
 

,b
  , 


 and  . 

However, these solutions cannot be obtained manually except numerically with the aid of suitable statistical 
software like R, SAS, MATHEMATICA e.t.c. 
 

5 Applications to Real Life Datasets 
 
In this section, we present two real life datasets, their summary and applications. The section fits the 
proposed distribution (LOGOMAD) together with other two models which include Gompertz-Makeham 
distribution (GOMAD) and the Gompertz distribution (GOMD) to the two datasets. The density functions of 
these distributions are given as follows; 
 

1. Lomax Gompertz-Makeham Distribution (LOGOMAD) 
 

The pdf of the LOGOMAD distribution is given as: 
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2. Gompertz-Makeham Distribution (GOMAD) 
 
The pdf of the GOMAD is given as: 
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3. Gompertz Distribution (GOMD) 
 

The pdf of the GOMD is given as: 
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In order to evaluate the performance of the models listed above, we used a model selection criterion called 
Akaike Information Criterion, AIC. The formula for this criterion is given as: 
 

2 2AIC ll k    
 

where ƖƖ denotes the log-likelihood value evaluated at the maximum likelihood estimates (MLEs) and k is the 
number of model parameters. The required computations are carried out using the R package “makLik” 
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which is freely available at URL https://www.R-project.org/ (R Core Team [41]). Our decision rule is that 
the model with the lowest values of AIC is considered as the best model to fit the data. 
 

Data set I: This dataset comprises of flood data with 20 observations obtained from Dumonceaux and Antle 
[42] and has been used by Khan et al. [43]. 
 

Table 1. Summary Statistics for dataset I 
 

n  Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

20 0.2650 0.3345 0.4070 0.4578 0.4232 0.7400 0.0157 1.0677 0.5999 
 

 
 

Fig. 5. A graphical summary of dataset I 
 

Based on the descriptive statistics in Table 1 and the histogram, box plot, density and normal Q-Q plot 
shown in Fig. 5 above, we observed that dataset I is positively skewed. 
 

Table 2. Performance of the fitted distributions using the value of AIC based on dataset I 
 

Distributions Parameter estimates  log-likelihood value AIC Rank of models  
LOGOMAD ̂ 0.69217  

̂ 
4.78422  

̂  -2.42827  

â 3.42335  

b̂  0.27432  

162.6437  -315.2873  1st  

GOMAD ̂  -77.397   

̂ 
-6.718  

̂  13.402  

135.2997  -264.5993  2nd  

GOMD ̂ 0.3041  

̂ 
6.3888  

10.33035 -16.6607  3rd   
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The following figures displayed the histogram and estimated densities with cdfs and Q-Q plots of the fitted 
models to dataset I. 
 

 
 

Fig. 6. Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset I 
 

 
 

 
 

Fig. 7. Probability plots for the fit of the LOGOMAD, GOMAD & GOMD based on dataset I 
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Dataset II: The second data set represents 66 observations of the breaking stress of carbon fibres of 50mm 
length (in GPa) given by Nicholas and Padgett [44]. This data set has been used by Cordeiro and Lemonte 
[45], Al-Aqtash et al. [46], Afify et al. [47], Oguntunde et al. [48], Ieren and Yahaya [49] and Afify et al. 
[50]. The descriptive statistics for this data are as follows: 
 

Table 3. Descriptive statistics for dataset II 
 

n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

66 0.390 2.178 2.835 3.278 2.760 4.900 0.795 -0.1285 3.2230 
  

 
 

Fig. 8. A graphical summary of Dataset II 
 

Again, the descriptive statistics in Table 3 and the histogram, box plot, density and normal Q-Q plot shown 
in Fig. 8 above reveal that the second dataset (dataset II) is approximately normal and is not considered to be 
a skewed dataset. 
 

Table 4. Performance of the fitted distributions using the value of AIC based on dataset II 
 

Distributions Parameter estimates  log-likelihood value AIC Rank of models  
LOGOMAD ̂  5.459e-02  

̂  1.392e+00  

̂  -6.341e-02  

â 2.217e+00  

b̂  4.200e+00  

-85.15788  180.3158  2st  

GOMAD ̂  -3.39869  

̂  -0.09616  

̂  3.28506  

-94.69054  195.3811  3rd  

GOMD ̂  0.03556  

̂ 
1.08414  

-88.09858 180.1972  1st 
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The figures below displayed the histogram and estimated densities with cdfs and Q-Q plots of the fitted 
models to dataset II. 
 

 
 

Fig. 9. Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset II 
 

 
 

Fig. 10. Probability plots for the fit of the LOGOMAD, GOMAD & GOMD based on dataset II. 
 
Tables 2 and 4 present the parameter estimates and the values of AIC for the LOGOMAD, GOMAD and 
GOMD using dataset I and dataset II respectively. The values of AIC in Table 2 are lower for the 
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LOGOMAD compared to the GOMAD and GOMD which is an indication that the Lomax Gompertz-
Makeham distribution (LOGOMAD) is more flexible and fits the dataset better than the Gompertz-Makeham 
distribution (GOMAD) and the conventional Gompertz distribution (GOMD). Also, the histogram with 
fitted densities and estimated cumulative distribution functions displayed in Fig. 6 for dataset I confirm that 
the LOGOMAD performs better than the GOMAD and the conventional GOMD. Similarly, the Q-Q plots in 
figure 7 for dataset I also show that the proposed distribution (LOGOMAD) is more flexible than the other 
two as shown previously in Tables 2 based on dataset I. 
 
In Table 4, the values of AIC are lower for the GOMD compared to the LOGOMAD and GOMAD which is 
attributed to the fact that the second dataset (dataset II) is not a skewed data while the proposed model is a 
skewed distribution based on the plots of the pdf and is not meant for symmetric datasets. However, 
irrespective of the fact above the histogram with fitted densities and estimated cumulative distribution 
functions displayed in Fig. 8 as well as the Q-Q plots in Fig. 10 both for dataset II confirm that the 
LOGOMAD performs better than the GOMAD and the conventional GOMD which is a proof that the 
LOGOMAD is a flexible model for different kinds of data. 
 
The results above are evidence to the fact that the Lomax generator of distributions by Cordeiro et al. [21] is 
responsible for the flexibility induced in the Gompertz-Makeham distribution. The results have also shown 
that the Lomax-G family by Cordeiro et al. [21] should be used to extend other continuous distributions 
since they are in line with the results of Venegas et al. [33], Omale et al. [34], Ieren et al. [35] as well as 
Ieren and Kuhe [36]. 
 

6 Summary and Conclusion 
 
This article introduced a new extension of the Gompertz-Makeham distribution called Lomax Gompertz-
Makeham distribution. It studied the validity and limiting behavior of the new model with some of its 
mathematical and statistical properties including graphical demonstrations. The study has derived some 
expressions for moments, moment generating function, characteristics function, quantile function for 
calculation of median and simulation, the survival function, hazard function, Rѐnyi entropy and density for 
distribution of minimum and maximum order statistics with appropriate discussions. The unknown model 
parameters have been estimated using the method of maximum likelihood estimation. Some plots of the 
distribution revealed that it is positively skewed and that its shape varies depending on the values of the 
parameters. The implications of the plots for the survival function indicate that the Lomax Gompertz-
Makeham distribution could be used to model age-dependent or time-dependent events or variables whose 
survival decreases as time grows or where survival rate decreases with increase in age or time. Also, the 
hazard rate of the Lomax Gompertz-Makeham distribution is decreasing which is useful for most real life 
situations. The results of the applications of the Lomax Gompertz-Makeham distribution to two real life 
datasets show that the proposed distribution is more flexible compared to the Gompertz-Makeham 
distribution and conventional Gompertz distribution and therefore, we are hopeful that this new extension of 
the Gompertz-Makeham distribution will be applied in modeling real life situations especially in the areas of 
survival analysis, modeling human mortality, constructing actuarial tables and development growth models. 
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