

Asian Journal of Research in Medical and Pharmaceutical Sciences

3(3): 1-10, 2018; Article no.AJRIMPS.40776 ISSN: 2457-0745

Questionable International Pediatric Studies in the United States and Russia Triggered by Regulatory Authorities

Klaus Rose^{1*} and Jane M. Grant-Kels²

¹Klausrose Consulting, Pediatric Drug Development and More, Aeussere Baselstrasse 308, 4125 Riehen, Switzerland.
²Department of Dermatology, Pathology and Pediatrics, University of Connecticut Health Center, Farmington, CT 06030-6230, USA.

Authors' contributions

First the authors discussed the paper's concept. Author KR wrote a first draft, which author JMGK modified and returned. After several rounds the manuscript was finalized, read and approved by both authors.

Article Information

DOI: 10.9734/AJRIMPS/2018/40776 <u>Editor(s):</u> (1) Raghvendra Vijay Ramdasi, Professor, Department of Neurosurgery, Jaslok Hospital & Research Centre, Mumbai, India. (2) Aurora Martinez Romero, Professor, Department of Clinical Biochemistry, Juarez University, Durango, Mexico. <u>Reviewers:</u> (1) Einar Ambjörnsson, Lund University, Sweden. (2) Tsikouras Panagiotis, Democritus University of Thrace, Greece. (3) Emeka Ejeliogu, University of Jos, Nigeria. (4) Audu Lamidi Isah, National Hospital Abuja, Nigeria. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/24371</u>

> Received 17th February 2018 Accepted 23rd April 2018 Published 28th April 2018

Original Research Article

ABSTRACT

Background: The concept of children as "therapeutic orphans" claims that children were/are denied the use of many modern drugs. Both the United States (US) and the European Union (EU) enacted laws based on this concept. Their regulatory authorities promote industry-sponsored pediatric studies. These studies recruit worldwide. We challenge their medical rationale. **Methods:** We analyzed exemplarily international industry-sponsored pediatric studies in cancer and rheumatology listed in www.clinicaltrials.gov with at least one center in the US and Russia, respectively, for their medical value.

*Corresponding author: E-mail: klaus.rose@klausrose.net;

Findings: Most studies were/are pharmacokinetic (PK) and efficacy studies in young patients with limited or no medical value. Adolescents are physiologically (vis-à-vis drug metabolism) comparable to adults; for children only PK- and dose finding studies are necessary. Only newborns'/babies' organs are physiologically so different that separate proof of efficacy is needed for drugs with a therapeutic potential in this population. The identified studies were/are justified formally, regulatorily, but are medically unnecessary and therefore unethical. Parts of pediatric academia are misled by industry funds channeled by regulatory decisions into medically questionable studies. There are resulting substantial conflicts of interest; a blind spot in today's societal perception of drug development prevents us from recognizing them. Interpretation: Pediatric studies triggered by regulatory demands constitute a worldwide systematic abuse of young patients. They are medically redundant at best, deter patients with lethal diseases participating in these studies from getting access to known effective innovative therapy, and have the potential to jeopardize public trust in science, research and authorities. Institutional Review Boards (IRBs)/ ethics committees (ECs) should become alerted. IRBs/ECs worldwide should suspend questionable pediatric studies and reject newly submitted ones. US and EU pediatric laws need revision.

Keywords: Pediatric drug development; pediatric legislation; pediatric laws; FDA pediatric written request (WR); pediatric investigation plan (PIP); absorption; distribution; metabolism; excretion (ADME) in children.

ABBREVIATIONS

- AAP : American Academy of Pediatrics
- ADME : Absorption, Distribution, Metabolism, Excretion
- ALL : Acute Lymphatic Leukemia
- AML : Acute Myelogenic Leukemia
- CNS : Central Nervous System
- EMA : European Medicines Agency
- EU : European Union
- FDA : US Food and Drug Administration
- JIA : Juvenile Idiopathic Arthritis
- NCT : Number National Clinical Trial Number
- NRSTS : Non-RMS Soft Tissue Sarcomas
- PK : Pharmacokinetics
- PIP : Pediatric Investigation Plan
- RMS : Rhabdomyosarkoma
- R/R : Relapsed/refractory
- US : United States of America
- WR : FDA pediatric Written Request

1. INTRODUCTION

The United States (US) and the European Union (EU) promote pediatric clinical research [1], but the medical value of some of these studies has been challenged [2-4]. We analyzed exemplarily international pediatric studies with at least one center in both the US and the Russian Federation in pediatric oncology and rheumatology for their medical value. We challenge the concept of children as "therapeutic orphans" in the context of pharmaceutical treatment and drug development [5], and

delineate the consequences of pediatric clinical research and pharmaceutical laws.

1.1 Background

The claim that children are discriminated against in drug development and treatment evolved after US law established in 1962 that clinical trials are the basis for regulatory approval, a principle now recognized worldwide. The same law also transferred jurisdiction over prescription drug advertising to the FDA [6]. In the 1950's, drug toxicities in newborns had been reported [7]. Drug developers thereafter included pediatric warnings into labels to avoid litigation. Due to the new FDA judicial authority, such drugs could not be advertised for children. Shirkey asserted that this denied children the use of drugs and characterized children as "therapeutic orphans" [5]. The American Academy of Pediatrics (AAP) maintained that drug prescription for children explicit FDA certification without was experimental [8] and that children required separate pharmacological evaluation of new drugs for all age groups [7]. FDA and AAP lobbying resulted in the 1997 US law that rewarded pediatric studies with voluntary "pediatric exclusivity": additional six months protection against generic competition [1,9]. The company submits a proposal; if the FDA agrees, it issues a "Written Request" (WR); upon report submission and FDA acceptance, pediatric exclusivity is granted [1,9] A second law authorized the FDA to mandate pediatric studies without reward [1].

Consequently the EU established its own pediatric law, in force since 2007 [1,3,4]. Without a PIP, new drugs cannot get adult EU-approval, unless the targeted disease is PIP-exempted. [1,3,4]. PIPs must address juvenile animal studies, formulations (liquids vs. tablets), clinical studies, & more. The EMA has so far issued >1000 PIPs.

The toxicities the AAP referred to were reported in premature *newborns* [7]. The AAP warnings "extrapolated" potential toxicities from physiologically immature newborns to all children. However, this "extrapolation" used the legal, not the physiological term of children [7]. Pediatric laws responded to the AAP's "moral imperative to formally study drugs in children" [7], which was based less on science and more on emotional appeal to protective instincts the word "child" triggers. US & EU pediatric laws define children not physiologically, but administratively: <16 (FDA)/ <18 years (EU) [1,10].

2. METHODS

We identified in www.clinicaltrial.gov international industry-sponsored pediatric studies with at least one center in both the US and the Russian Federation using the terms 'malignancy' and 'juvenile idiopathic arthritis' (JIA) in patients from birth to 17 years of age. We disregarded studies involving adolescents & adults and those involving children, adolescents & adults in an effort to focus on truly pediatric studies; however, we included studies recruiting children and young adults up to 18/19/20/21/24/30 years of age because both FDA and EMA often request participation of underage and young adult patients into "pediatric" studies. We retrieved related Food and Drug (FDA)/ European Medicines Agency (EMA) documents from the internet. Studies' medical value was analyzed in of physiology, developmental context pharmacology, and utilitarianism. EMA pediatric investigation plan (PIP) decisions and studies in www.clinicaltrials.gov are given by PIP/National Clinical Trial (NCT)-number, allowing internetretrieval.

3. RESULTS

3.1 Oncology

Table 1 lists the oncology studies with centers in both the USA and Russia.

Table 2 indicates which oncology studies correspond to PIPs/ FDA WRs (WRs:

temsirolimus [11], palonosetron [12], bendamustine [13]. We didn't find FDA/EMA documents for dalteparin (study#4 Table 1); the dalteparin study design corresponds to regulatory-demanded pediatric studies in other drugs.

3.2 Rheumatology

The celecoxib study was WR-related [14]; all other rheumatology studies correspond(ed) to PIPs (Table 3)

4. DISCUSSION

4.1 Oncology

Table 4 lists description/indication(s) of oncology drugs. The order of studies discussed below corresponds to the order in Tables 1, 2, 4.

It is unclear why a drug, as temsirolimus, that works in adults with various solid tumors should not work in adolescents or children if appropriately dose adjusted. The report from the temsirolimus study (that included some children but also adolescents and adults) suggested further studies [15].

Similarly, nivolumab has been studied, so far failed to show efficacy beyond melanoma and was not approved for various malignancies including those involving the central nervous system (CNS). There is no solid scientific rationale that nivolumab should work in young patients with brain cancer just because they are \leq 21 years old.

The tbo-filgrastim study report confirmed that tbo-filgrastim was as efficacious in children as in adults [16].

Bendamustine monotherapy clinical trials failed to be helpful in children with relapsed/refractory (R/R) acute lymphatic leukemia (ALL) or acute myelogenous leukemia; the authors suggested further studies [17], but in our opinion the availability of innovative therapy like tisagenlecleucel for R/R ALL makes this suggestion questionable.

Separate clinical trials were not needed to show that cinacalcet works in young patients. The EMA reports the PIP as completed and approved cinacalcet in children.

#	NCT#	Study Description	Sponsor	Patients/	Age	Status
			•	Centers	U	
1	NCT00106353	Two-part temsirolimus study in advanced pediatric solid tumors	Pfizer	71/30	1-21y	Completed 2005-2012
2	NCT03130959	Non-randomized nivolumab vs. nivolumab + ipilimumab study in high	BMS	170/59	6mo-	Recruiting
		grade primary CNS malignancies			21y	
3	NCT02190721	PK,PD,S&E of tbo-filgrastim in solid tumors without bone marrow	Teva	50/28	1mo-	Completed 2015-2017
		involvement.			16y	
4	NCT00952380	Dalteparin in treatment of VTE in cancer patients	Pfizer	50/67	<u><</u> 18y	Recruiting
5	NCT03204279	MC R DB PK/PD DF study of netupitant + palonosetron for prevention	Helsinn	92/16	<u><</u> 17y	Recruiting
		of CINV				
6	NCT02197416	S of dabigatran in VTE prevention	BI	100/83	<u><</u> 18y	Recruiting
7	NCT01088984	DF, S&E of bendamustine in R/R acute leukemia	Teva	43/50	1-20y	Completed 2010-2011
8	NCT02341417	Long-term cinacalcet safety extension in SHPT due to CKD	Amgen	28/33	1-17y	Completed 2015-2017
9	NCT02138838	OL R S&E cinacalcet + SoC vs. SoC alone in SHPT due to CKD	Amgen	55/60	6-17y	Terminated 2014-2016
10	NCT01277510	R DB PC S&E cinacalcet + SoC vs. SoC alone in SHPT due to CKD	Amgen	43/51	6-17y	Terminated*2011-2014
11	NCT01439867	OL S & T of cinacalcet + SoC in SHPT due to CKD	Amgen	18/42	<u><</u> 6y	Terminated 2012-2016
12	NCT00643565	OL S&E bevacizumab + SChT vs. SChT alone in RMS or non-RMS	Roche	154/60	6mo-	Active, not recruiting
		sarcoma			18y	
13	NCT01077544	Nilotinib PK in Ph+CML or ALL	Novartis	15/18	1-18y	Completed 2011-2015
14	NCT01844765	S&E of nilotinib in Ph+CML	Novartis	59/36	1-17y	Active, not recruiting
15	NCT01056341	R PC S&E of propranolol in infantile hemangioma	PFD	512/59	35-150	Completed, 2010-2014
					d	
16	NCT02703272	Ibrutinib PK (phase 1) and E of ibrutinib + RICE or ibrutinib + RVICI	Jannsen	96/99	<u><</u> 30y	Recruiting
		vs. RICE or RVICI alone (phase 2)				
17	NCT00777036	Dasatinib in newly diagnosed chronic phase CML or Ph+ Leukemias	BMS	145/82	<u><</u> 18y	Active, not recruiting
		resistant or intolerant to imatinib			-	-

Table 1. International industry-sponsored pediatric studies in malignancies with centers in USA & Russia

Abbreviations in alphabetic order: ALL acute lymphatic leukemia • BI Boehringer Ingelheim • BMS Bristol Myers Squibb • CKD chronic kidney disease • CNS central nervous system • CINV chemotherapy-induced nausea and vomiting • d day(s) • DB double-blind • DF dose finding • E efficacy • MC multicenter • OL open label • PD pharmacodynamics • PK pharmacokinetics • PFD Pierre Fabre Dermatology • Ph+ Philadelphia-positive • Ph+CML Philadelphia-positive chronic myelogenous leukemia • RICE rituximab, ifosfamide, carboplatin, etoposide • R/R relapsed or refractory • RVICI rituximab, vincristine, ifosfamide, carboplatin, idarubicin• Roche Hoffmann-La Roche • S safety • SHPT secondary hyperparathyroidism • S&E safety & efficacy • T tolerability • SoC standard of care • VTE venous thromboembolism •

Explanations: Study #10: Terminated: study was suspended in agreement between sponsor and FDA due to concerns about the study design after a fatality had occurred in the presence of hypocalcemia •

Compound	PIP#/WR
Compound	
Temsirolimus	FDA WR 2011. Final study description in Amendment 5 [11]
Nivolumab	EMEA-001407-PIP02-15
Tbo-filgrastim	EMEA-001042-PIP02-11
Dalteparin	?
Netupitant/ palonosetron	FDA WR palonosetron [12]; EMA waiver EMEA-001198-PIP01-11
Dabigatran	EMEA-000081-PIP01-07-M09
Bendamustine	FDA WR [13]
Cinalcalcet	EMEA-000078-PIP01-07-M08
Bevacizumab	EMEA-000056-PIP01-07-M02
Nilotinib	EMEA-000290-PIP01-08-M04
Propranolol	EMEA-000511-PIP01-08-M04
Ibrutinib	EMEA-001397-PIP03-14-M02
Dasatinib	EMEA-000567-PIP01-09-M04
Nilotinib	EMEA-000290-PIP01-08-M04

Table 2. Oncology PIPs/WRs

Rhabdomyosarcoma (RMS) affects predominantly patients <14 while non-RMS soft tissue sarcomas (NRSTS) impacts adolescents and young adults [18]. Bevacizumab, added to chemotherapy, appeared tolerable in metastatic RMS/NRSTS, but showed no efficacy. The EMA justifications for this study were regulatory, not science-based. The study authors suggested further studies in NRSTS subtypes, but fail to address that the NRSTS age limit for this drug was regulatory and administrative, but *medically* arbitrary [19].

Evaluating nilotinib pharacokinetics (PK) in school age patients is medically appropriate, but not in adolescents with mature absorption, distribution, metabolism and excretion (ADME) [20].

In 2008, propranolol efficacy in infantile hemangioma was reported [21]. The propranolol PIP required PK measurement (justified), and randomized double-blind placebo-controlled proof of efficacy of four propranolol regimens in babies [22]. The serendipitously found efficacy of propranolol in infantile hemangioma led to regulatory excesses. In our opinion, PK and confirmation of clinical efficacy in a small study would have sufficed.

Measuring ibrutinib PK in children is justified; separate efficacy studies are not.

4.2 Rheumatology

Table 5 contains the decription/indications of the drugs discussed in rheumatology/ juvenile idiopathic arthritis.

Numerous publications confirm unsurprisingly the efficacy of antiinflammatory drugs in minors. These studies were *regulatorily* justified, but *medically* a waste of time and money. Why should antiinflammatory compounds work differently above/below a specifc age (Tables 3, 5)? Although PK measurement in pre-adolescents is justified, safety registries would suffice. Separate efficacy trials in children \geq 1-2 years lack medical utility.

Pediatric oncology developed by systematic testing cytotoxics in children [23] with survival rates of ~90% in ALL. Although the FDA & EMA claim to promote pediatric cancer studies, they define children as <16 (FDA)/ <18 (EU) [1,10]. Adolescents are no longer children. Even schoolage children have a mature ADME [20]. In Table 1, only RMS is a truly pediatric cancer; even NRSTS is not. Many of these pediatric studies even recruit(ed) young adults. Although newborns and infants have different ADME [20]; the body matures over months and years and not at a specific age. WRs/PIPs appear to be in line with the AAP's definition of pediatric age [24], but the AAP discusses clinical care. The "therapeutic orphans" theory has led to a regulatory concept of two distinctive populations above/below 16/18 years, for which FDA/EMA demand separate efficacy studies. This has resulted in an "industry" in pediatric academia for medically unnecessary studies that are expensive and delay accessibility of medications to children.

Representatives of pediatric oncology and rheumatology publicly support pediatric legislation despite obvious conflicts of interest

#	NCT#	Study Description	Sponsor	Pts/	Age	Status	PIP#/WR
			openeer	Centers	.90		
1	NCT01844518	Abatacept PK, S&E in pJIA	BMS	187/55	2-17y	A, non recr	WR + EMEA-000118-PIP02-10-M02
2	NCT01357668	Observational abatacept registry in JIA	BMS	900/82	<u><</u> 17y	recruiting	WR + EMEA-000118-PIP02-10-M02
3	NCT02296424	Canakinumab S&E in JIA	Novartis	180/68	2-20y	recruiting	EMEA-000060-PIP02-08-M06
4	NCT00891046	OL canakinumab extension study in JIA	Novartis	270/73	2-19y	Completed 2009-2014	EMEA-000060-PIP02-08-M06
5	NCT00652925	S&E of celecoxib vs. naproxen in JIA	Celecoxib	225/58	2-18y	Completed 2002-2005	WR 14
6	NCT01550003	Certulizumab in pediatric arthritis	UCB	163/36	2-17y	A, not recr	EMEA-001071-PIP03-14
7	NCT00807846	Etanercept in 3 subtypes of pediatric arthritis	Pfizer	201/39	2.17y	Completed 2009-2012	EMEA-000299-PIP01-08-M03
8	NCT02277444	PK, S&E of golimumab in pJIA	Jannsen	130/38	2-17y	A, not recr	EMEA-000265-PIP01-08-M03
9	NCT01230827	S&E of golimumab in JIA	Jannsen	173/35	2-18y	Terminated* 2010-2014	EMEA-000265-PIP01-08-M03
10	NCT02991469	Repeated sarilumab DF in sJIA	Sanofi	36/34	1-17y	Suspended**	EMEA-001045-PIP01-10
11	NCT02776735	OL ascending repeated sarilumab DF in pJIA	Sanofi	36/41	2-17y	recruiting	EMEA-001045-PIP01-10
12	NCT03031782	Secukinumab S&E in JPsA & ERA	Novartis	80/28	2-17y	Recruiting	EMEA-000380-PIP01-08-M03
13	NCT00988221	Tocilizumab in pJIA	Roche	188/69	2-17y	Completed 2009-2013	EMEA-000309-PIP01-08-M07
14	NCT01904292	Tocilizumab in sJIA	Roche	52/42	1-17y	Completed 2013-2017	EMEA-000309-PIP01-08-M07
15	NCT01904279	Tocilizumab in pJIA	Roche	52/35	1-17y	Completed2013-2016	EMEA-000309-PIP01-08-M07
16	NCT02165345	S&E tocilizumab extension study in sJIA+ pJIA	Roche	96/31	2-18y	A, not recr	EMEA-000309-PIP01-08-M07
17	NCT01734382	Decreased dose frequency tocilizumab in sJIA	Roche	65/30	2-17y	Recruiting	EMEA-000309-PIP01-08-M07
18	NCT02592434	E of tofacitinib in pediatric JIA	Pfizer	210/101	2-17y	Recruiting	EMEA-000576-PIP01-09-M06
19	NCT01500551	Long-term safety of tofacitinib in JIA	Pfizer	340/104	2-18y	Recruiting	EMEA-000576-PIP01-09-M06

Table 3. International Industry-sponsored JIA Studies With Centers in USA & Russia

Abbreviations in alphabetic order: A active • BMS Bristol Myers Squibb • DF dose finding • E efficacy • ERA enthesitis-related arthritis • JIA juvenile idiopathic arthritis • JPsA juvenile psoriatic arthritis • OL open label • PK pharmacokinetics • pJIA poliarticular JIA • Roche Hoffmann-La Roche • S&E safety & efficacy • sJIA systemic JIA •

*Terminated: trial failed to meet primary & major secondary endpoints • **Suspended: In order to optimize the study design and procedures, sponsors have decided to amend the current protocol before initiating the patient recruitment

Compound	Description/Indications
Temsirolimus	Renal cell carcinoma.
Nivolumab	Malignant melanoma in combination with ipilimumab
Tbo-filgrastim	Neutropenia due to chemotherapy
Dalteparin	Prophylaxis/ treatment of deep vein thrombosis
Netupitant + palonosetron	Prevention of chemotherapy-induced nausea & vomiting
Dabigatran	Oral anticoagulant
Bendamustine	Cytotoxic for chemotherapy
Cinalcalcet	Seconday hyperparathyroidism in chronic kidney disease
Bevacizumab	Colon cancer, lung cancer, glioblastoma, renal-cell carcinoma
Nilotinib	tyrosine kinase inhibitor approved for imatinib-resistant CML
Propranolol	Beta blocker against high blood pressure
Ibrutinib	Mantle cell lymphoma, CLL, Waldenström's macroglobulinemia
Dasatinib	Cytotoxic for CML and ALL

Table 4. Description/Indications of discussed drugs in malignancy

Abbreviations: CML chronic myelogenous leukemia • CLL chronic lymphatic leukemia • CML chronic myelogenous leukemia • ALL acute lymphoblastic leukemia •

Table 5. Description/Indications of drugs discussed in JIA

Compound	Description/Indications
Abatacept	Fusion protein IgG1 Fc region + CTLA-4 extracellular domain; a
Canakinumab	Antiinflammatory human MAB against IL-1 beta, antiinflammatory
Celecoxib	COX-2 selective nonsteroidal anti-inflammatory drug
Etanercept	TNF inhibitor, antiinflammatory
Golimumab	Human MAB against TNF-alpha; antiinflammatory
Salimumab	Human MAG against IL-6 receptor; antiinflammatory
Secukinumab	Human IgG1κ MAB against IL-17A; antiinflammatory
Tocilicumab	Humanized MAB against IL-6 receptor; antiinflammatory
Tofacitinib	Janus kinase inhibitor, antiinflammatory

Abbreviations: CTLA-4 cytotoxic T-lymphocyte-associated protein 4 (protein receptor that works as immune checkpoint • Ig immunoglobulin • IL interleukin • MAB monoclonal antibody • TNF tumor necrosis factor •

[25,26]. Regulatory decisions have channeled industry funds into medically unnecessary "pediatric" studies [2-4]. The number of patients and study centers in Tables 1 and 3 reveal the dimension of the diverted funds. While the FDA/EMA have strengthened their position in the triangle of influence between clinical care, industry and regulators, minors and their families paid/pay the price.

4.3 General Discussion

Overall, children have profited from medical/pharmaceutical progress. Pediatric cancer was not even a footnote in medical textbooks a century ago, but is today the most frequent cause of nonviolent death in minors. Most diseases that in the past killed children can today be prevented or treated. Historically pediatric oncologists ignored drug labels and treated their patients. Shirkey noted that most pediatricians simply ignored pediatric warnings Chemotherapy combinations increased [5]. leukemia survival. Regulatory clinical trials for persons <18 became required despite the fact that confirmation by double-blind randomized placebo-controlled clinical trials was not truly needed. The demand to prove efficacy of parachutes via double-blind randomized trials mocks clinicians' and regulators' obsession for clinical studies [27]. Today's definition of "children" and "pediatric" confuses legal age and physiology [4]. Many malignancies in minors are the same or similar to adult malignancies despite the fact that minors' bodies are different and dose adjustment is required. There are also differences we still don't understand completely. such as young patients' reserves. Novartis' decision to develop tisagenlecleucel first in young patients was physiology-based, in contrast to FDA/EMA's obsession for "pediatric" trials.

The first FDA pediatric report to congress described expected clinical outcomes: "quicker recoveries from childhood illnesses, with fewer attendant hospital stays, physician visits and parental work days lost" [28]. The FDA in 2016 reported "significant progress in terms of the number, timeliness, and successful completion of studies of drugs in pediatric populations" [29]. This is an obvious shift towards a *regulatory* focus. Most FDA/EMA-triggered "pediatric" studies are justified based on regulations, but *medically* unnecessary with resultant wastage of money and delays in therapies becoming available to children.

5. CONCLUSIONS

With the exception of newborns and babies, prepubertal children need PK and dose-finding, not separate efficacy studies. Adolescents with mature ADME deserve adult treatment. Rare adverse events are rarely caught in clinical trials; registries should be used more.

Parts of pediatric academia are corrupted by industry funds, channeled voluntarily (US)/ involuntarily (EU) into medically unnecessary studies in underage (and adult) patients. Minors and young adults with serious and lethal diseases are enrolled in needless studies that are potentially the largest systematic abuse of patients in history, reminding us of past historical abuses as the Tuskegee study or the Willowbrook experiment [30].

The "therapeutic orphans" concept emerged when regulatory clinical trials entered the world of clinical medicine, drug development and drug approval. Pediatric laws intend to improve child Trial centers worldwide healthcare. that participate in pediatric studies, that in our opinion are questionable, perform good medical care on a daily basis and also participate in other valid clinical studies. Most clinicians that participate in questionable studies are not aware of the regulatory background of drug development and welcome the opportunity for international networking. The "therapeutic orphans" concept was not born with dishonest intentions. It was born in a period when drug development was still beginning, when the horror of the thalidomide tragedy was still around and when thinking about childrens' rights and wellbeing became a major issue in societal thinking. But today it is time to challenge the "therapeutic orphans" concept that has become a regulatory dogma which exposes children, adolescents and young adults to

unnecessary clinical studies worldwide, including the US and the Russian Federation.

US and EU pediatric legislation need revision. Institution Review Boards (IRBs)/ ethics committees (ECs) have failed to detect medically unwarranted studies. We recommend that IRBs/ECs suspend ongoing superfluous studies and reject new ones. Also, in our opinion, IRBs/ECs need urgent emergency training in developmental physiology to become aware of the flaws of most pediatric studies triggered by regulatory-authorities' demands.

While false prophets promise improvement of childhood diseases by medically unnecessary studies [25,26], ordered by bureaucracy, innovation against cancer and autoinflammatory diseases continues, but we could do better. Continued innovation needs the unleashed forces of science *and* the market.

CONSENT

Not applicable.

ETHICAL APPROVAL

Not applicable.

COMPETING INTERESTS

Klaus Rose has worked 20 years in pharmaceutical industry in clinical development and medical affairs. Independent since 2011, he consults on pediatric drug development, teaches, organizes conferences, edits books, and publishes. He receives annual royalties for a coedited book on pediatric formulations. He still owns shares of his former employers Roche/Genentech and Novartis. His clients are pharmaceutical companies and academic institutions. He is also the father of a daughter with a rare syndrome and is biased against empty governmental promises.

Jane Grant-Kels declares no potentially competing interests.

REFERENCES

- 1. Hirschfeld S, Saint-Raymond A. Pediatric regulatory initiatives. Handb Exp Pharmacol. 2011;205,245-68.
- 2. Rose K, Grant-Kels JM. Most adolescents' melanomas are conventional malignant

adult-type melanomas. Eur J Cancer 2018, Eur J Cancer; 2018.

- Rose K, Walson PD. Do the European Medicines Agency (EMA) Decisions Hurt Pediatric Melanoma Patients? Clin Ther 2017;39(2):253-265.
- Rose K, Walson PD. Do Pediatric Investigation Plans (PIPs) Advance Pediatric Healthcare? Pediatr Drugs. 2017; 19(6):515-522.
- 5. Shirkey H. Therapeutic orphans. J Pediatr. 1968;72(1):119-120.
- Donohue JA. History of drug advertising: The evolving roles of consumers and consumer protection. Milbank Q. 2006; 84(4):659–699.
- Guidelines for the Ethical Conduct of Studies to Evaluate Drugs in Pediatric Populations. Committee on Drugs. American Academy of Pediatrics. Pediatrics. 1995;95(2):286-94.
- American Academy of Pediatrics. Committee on Drugs. Guidelines for the Ethical Conduct of Studies to Evaluate Drugs in Pediatric Populations. Pediatrics. 1977;60(1):91-101.
- Li JS, Eisenstein EL, Grabowski HG, et al. Economic return of clinical trials performed under the pediatric exclusivity program. JAMA. 2007;297:480-8.
- 10. Karesh A. Pediatric Drug Development: Regulatory Expectations. Available:<u>https://www.fda.gov/downloads/D</u> <u>rugs/DevelopmentApprovalProcess/SmallB</u> <u>usinessAssistance/UCM466469.pdf</u>
- 11. Temsirolimus FDA Written Request final version. Available:<u>https://www.fda.gov/downloads/D</u> rugs/DevelopmentApprovalProcess/Develo pmentResources/UCM295688.pdf
- 12. Palonosetron FDA Written Request. Available:<u>https://www.fda.gov/downloads/D</u> rugs/DevelopmentApprovalProcess/Develo pmentResources/UCM396089.pdf
- 13. Bendamustine FDA Written Request. Available:<u>https://www.fda.gov/downloads/D</u> <u>rugs/DevelopmentApprovalProcess/Develo</u> <u>pmentResources/UCM307141.pdf</u>
- 14. Celecoxib FDA Written Request. Available:<u>https://www.fda.gov/downloads/D</u> rugs/DevelopmentApprovalProcess/Develo pmentResources/UCM449287.pdf
- 15. Geoerger B, Kieran MW, Grupp S, et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer. 2012;48(2):253-62.

- Federman N, Dragomir MD, Kizyma Z, et al. A Phase 2, International, Multicenter, Prospective Clinical Trial of Subcutaneous Tbo-Filgrastim in Pediatric Patients with Solid Tumors Undergoing Chemotherapy. Available:<u>https://ash.confex.com/ash/2017/ webprogram/Paper106027.html</u>
- Fraser C, Brown P, Megason G, et al. Open-label Bendamustine Monotherapy for Pediatric Patients With Relapsed or Refractory Acute Leukemia: Efficacy and Tolerability. J Pediatr Hematol Oncol. 2014;36(4):e212–8.
- Loeb DM, Thornton K, Shokek O. Pediatric soft tissue sarcomas. Surg Clin North Am. 2008;88(3):615-27.
- 19. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer. 2017;83:177-184.
- Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology - drug disposition, action, and therapy in infants and children. N Engl J Med. 2003; 349(12):1157-67.
- Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, A. Taïeb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358(24):2649-51.
- 22. Léauté-Labrèze C, Hoeger P, Mazereeuw-Hautier J, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med. 2015; 372(8):735-46.
- Adamson PC. Improving the outcome for children with cancer: Development of targeted new agents. CA Cancer J Cli. 2015;65(3):212-20.
- 24. Hardin AP, Hackell JM. Committee on practice and ambulatory medicine. Age Limit of Pediatrics. Pediatrics. 2017;140(3).
- 25. Vassal G, Rousseau R, Blanc P, et al. Creating a unique, multi-stakeholder Paediatric Oncology Platform to improve drug development for children and adolescents with cancer. Eur J Cancer. 2015;51(2):218-24.
- 26. Ruperto N, Vesely R, Saint-Raymond A, Martini A, for the Paediatric Rheumatology International Trials Organisation (PRINTO). Impact of the European

paediatric legislation in paediatric rheumatology: Past, present and future. Ann Rheum Dis. 2013;72(12):1893-6.

- Smith GC, Pell JP. Parachute use to prevent death and major trauma related to gravitational challenge: Systematic review of randomized controlled trials. BMJ. 2003; 237(7427):1459-61.
- 28. The Pediatric Exclusivity Provision. January 2001. Status Report to Congress. Available:<u>https://www.fda.gov/downloads/D</u> <u>rugs/DevelopmentApprovalProcess/Develo</u> <u>pmentResources/UCM049915.pdf</u>
- 29. Best Pharmaceuticals for Children Act and Pediatric Research Equity Act. July 2016. Status Report to Congress. Department of Health and Human Services. Food and Drug Administration. Available:<u>https://www.fda.gov/downloads/S</u> <u>cienceResearch/SpecialTopics/PediatricTh</u> <u>erapeuticsResearch/UCM509815.pdf</u>
- Rose CD. Ethical Conduct of Research in Children: Pediatricians and Their IRB (Part 1 of 2). Pediatrics. 2017;139(5).

© 2018 Rose and Grant-Kels; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history/24371