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ABSTRACT

In this paper we consider the quantization of the time-dependent harmonic oscillator and its
associated Berry phase using the invariant operator method, as well as the occupation number of
the induced quasi-particle production. Furthermore, we point out that in the literature there exist
different methods for determining the solution to the Milne-Pinney equation, which leads to different
results. By measuring the time-dependent occupation number and associated Berry phase, one
can, in principle, determine which of these methods leads to physically realized results. As a
concrete example, we consider the mesoscopic RLC circuit and derive the occupation number
and associated Berry phase for each of these different methods. We find that, the solution to the
Ermakov equations leads to a time-dependent occupation number and associated Berry phase,
while the particular solution to the Milne-Pinney equation does not.
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1 INTRODUCTION

Modern electronic material techniques has
allowed for the fabrication of small structures,
called mesoscopic systems, with resolution that
approaches the atomic scale, on the order of
micro- and nanometer. As the devices and
circuits are small enough that the inelastic
coherence of the charge carriers approaches the
Fermi wavelength, fluctuations about the average
become important and hence the quantum
effects of the device and circuit must be taken
into account. A study of a mesoscopic system is
usually done by examining an LC circuit [1], which
is a non-dissipative circuit, and its more realistic
counter part, the RLC circuit [2],[3],[4],[5], which
is a dissipative circuit. In this present paper,
we are interested in the quantization of the
mesoscopic RLC circuit without source. This
system is modeled as a damped harmonic
oscillator which is described by the Caldirola-
Kanai Hamiltonian. To quantize the mesoscopic
RLC circuit, we will make use of the quantum
invariant method to solve the Schrödingier
equation associated with this Hamiltonian. As
is well-known, this system is cyclic in angular
frequency Ω. When the system is cyclic, there
is a connection between the invariant, which is
a constant of motion, and the generalized Berry
or geometric phases. The exact solution to the
quantum invariant method, however, depends
on the solution to an auxiliary equation, known
as the Milne-Pinney equation, which is a non-
linear equation. Due to the non-linear nature
of the Milne-Pinney equation, different methods
exist for solving the equation. The methods
are: (1) Solving for a particular solution of
the Milne-Pinney equation [6]; (2) for a set of
initial conditions, one can solve the Milne-Pinney
equation numerically [7],[8],[9]; (3) the Ermakov
equations, which give a relationship between the
modulus of the damped harmonic equation for
the coordinate and the solution to the Milne-
Pinney equation [10],[11]. In general, methods
(1) and (3) lead to different results, however,
methods (2) and (3) lead to the same result.
Hence, the mesoscopic RLC circuit gives a venue
which can be used to distinguish between the
different methods. Additionally, in the Appendix,
we construct coherent and squeezed states for
the quantized RLC circuit, as well as evaluate the

quantum fluctuations of the charge and magnetic
flux, which gives the uncertainty relation.

The paper is organized as follows. In Section
2.1, we derive the invariant operator and wave
function for a time-dependent harmonic oscillator.
In addition, we note that the Ermakov equations
allow for the exact solution of the Milne-Pinney
equation. In Section 2.2, we derive the
occupation number of the induced quasi-particle
that is induced due to the time-dependent nature
of the system. In Section 2.3, we show that
the Lewis phase can be decomposed into a
generalized Berry (or geometric) phase and
derive the Berry phase for the time-dependent
harmonic oscillator. In Section 3, we quantize
the mesoscopic RLC circuit, described by the
Caldirola-Kanai Hamiltonian, by use of the
quantum invariant. Here, we consider the
particular solution to the Milne-Pinney equation
as well as the solution to the Ermakov equations.
Most importantly, we show that the solution to the
Ermakov equations leads to a time-dependent
occupation number, as well as an associated
Berry phase, while the particular solution to
the Milne-Pinney equation leads to a time-
independent occupation and no associated Berry
phase. In Section 4, we conclude the paper with a
short summary. Finally, even though these states
are not germane to the Berry phase, in Appendix
we derive the coherent states, expectation value
of the coordinate and the uncertainty of the time-
dependent harmonic oscillator for completeness.
Here, we show that the coherent states are
indeed squeezed states.

2 TIME-DEPENDENT
HARMONIC OSCILLATOR

2.1 Quantization

Before we quantize the mesoscopic RLC
circuit, we will first quantize the time-dependent
harmonic oscillator, that has both a time-
dependent mass and frequency, using the
invariant operator method. This will allow us
to obtain the wave functional and discuss the
generalized Berry phase associated with the
oscillator. Throughout the text, we will set ~ = 1.
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To consider the quantization of a time-dependent
harmonic oscillator, we will consider a general
time-dependent harmonic oscillator equation

H =
1

2M(t)
p2 +

1

2
M(t)ω2(t)q2 (2.1)

where p is the conjugate momentum to the
coordinate q, M(t) is a time-dependent mass,
and ω(t) is a time-dependent frequency.
In quantizing the time-dependent harmonic
oscillator, we will work in the Heisenberg picture.
We can diagonalize the Hamiltonian at all
moments of time by defining the new operators

a =
1√
2Mω

(p− iMωq) and a† =
1√
2Mω

(p+ iMωq) , (2.2)

which satisfy the commutation relation [a, a†] = 1, as well as the Heisenberg equation

da

dt
= − 1

2Mω

d

dt
(Mω)a† + i

[
H(a, a†), a

]
. (2.3)

Let’s first make some observations about (2.3). In (2.3), the second term is the usual time-evolution
of an operator in the Heisenberg picture, while the first term describes the moment to moment
redefinition of the notion of what the operator, and hence the quasi-particle, is for every moment t.
The ground state associated with these operators is defined by a|0⟩a = 0 and leads to the normalized
wavefunctional

⟨q|0⟩a = φ(q) =

(
Mω

π

)1/4

e−Mωq2/2 (2.4)

which is just the harmonic oscillator ground state wavefunctional.

Alternatively, one can use the invariant operator method to study the time-dependence of the quantum
system [12],[13]. In this method, one defines a Hermitian invariant operator that satisfies the operator
equation

dI

dt
=
∂I

∂t
− i[I,H] = 0,

which has real, time-independent, eigenvalues. For our purposes, the invariant operator may be
decomposed in terms of two linear invariants given as

c =
1√
2

[
ρp−M

dρ

dt
q − i

q

ρ

]
and c† =

1√
2

[
ρp−M

dρ

dt
q + i

q

ρ

]
,

which satisfy the commutation relation [c, c†] = 1, where ρ is the real solution to the auxiliary equation,
known as the Milne-Pinney equation,

d2ρ

dt2
+ σ

dρ

dt
+ ω2(t)ρ =

1

M2ρ3
, (2.5)

where
σ =

d

dt
ln(M) =

1

M

dM

dt
.

This is not the most general time-dependent harmonic oscillator equation, since the most general
equation involves terms that involve products of the conjugate momentum and the coordintate.

We could equally well work in the Interaction picture. Here the creation operator defined in (2.2)
is related to the creation operators in the Interaction picture in the usual manner

a(t) = ã(t) exp

[
−i

∫ t

t0

ω(t′)dt′
]
.
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In terms of the operators c and c†, the Hermitian quadratic invariant operator is then given by I(t) =(
c†c+ 1

2

)
. The ground state associated with these operators is defined by c|0⟩c = 0 and leads to the

normalized wavefunctional

⟨q|0⟩c = ψ0(q, t) = eiα0

(
1

πρ2

)1/4

exp

[
iM

2

(
1

ρ

dρ

dt
+

i

Mρ2

)
q2
]
, (2.6)

where α0, known as the ground state Lewis phase, is defined by

dα0

dt
= c⟨0 |i∂t −H| 0⟩c, (2.7)

Using (2.6) and (2.7), one can then easily show that the phase is given by

α0 = −1

2

∫
dt′

M(t′)ρ2(t′)
.

Using (2.6), the exact solution of the Schrödinger equation for any state is given by

ψn(q, t) = eiαn

(
1

π4n(n!)2ρ2

)1/4

exp

[
iM

2

(
ρ̇

ρ
+

i

Mρ2

)
q2
]
Hn

[
q

ρ

]
(2.8)

where Hn(x) are the Hermite polynomials and

αn =

∫ t

0

dt′c⟨n |i∂t′ −H|n⟩c = −
(
n+

1

2

)∫ t

0

dt′

M(t′)ρ2(t′)
, (2.9)

which is known as the Lewis phase.

Here, we note that the invariant operator ground state, |0⟩c, is distinct from the harmonic oscillator
ground state, |0⟩a, in that the operators a and c are related through a Bogoliubov transformation [14]

a = µ(t)c+ ν(t)c†, (2.10)

where

µ(t) =
1

2
√
Mω

(
ρMω +

1

ρ
+ iM

dρ

dt

)
, andν(t) = − 1

2
√
Mω

(
ρMω − 1

ρ
+ iM

dρ

dt

)
(2.11)

are the Bogoliubov coefficients. That is, the
transformation (2.10) is between two different
Fock space basis at equal times, not between
the same basis at different times. Here we note
that at the initial time t = t0, µ(t = t0) = 1 and
ν(t = t0) = 0 and the Bogoliubov transformation
satisfies

|µ(t)|2 − |ν(t)|2 = 1 (2.12)

for all time t. Thus, from (2.10) and (2.12), we
can also see that at the initial time, a = c and
ψ0(q, t = t0) = φ(q) so that the operators for
the two methods are equivalent and the ground
states are equivalent at the initial time and thus
there is no mixing at the initial time.

From (2.8) and (2.9), we can see that in order to
quantize the time-dependent harmonic oscillator,

one must solve for the auxiliary equation (2.5).
The non-linear nature of (2.5), on the other
hand, suggests that it must be solved numerically.
Alternatively, one can choose to consider a
particular solution of the Milne-Pinney equation
[6]. However, using the Ermakov equations [10],
the relationship between the time-dependent
amplitude q and ρ is given by q = ρe−iγ , where γ
satisfies the differential equation

dγ

dt
=

A
Mρ2

From (2.1), the time-dependent amplitude of the
coordinate satisfies the equation of motion

d2q

dt2
+ σ

dq

dt
+ ω2q = 0. (2.13)

Hence, one can instead solve the linear equation
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(2.13) and use the fact that ρ = |q|.

2.2 Occupation Number
An interesting quantity to consider is the number
of quasi-particles that are induced as a function
of time. The occupation number of quasi-
particles created during the time of oscillation

then amounts to determining the number of â
particles in the ground state |0⟩c:

N = c⟨0|â†â|0⟩c = |ν(t)|2. (2.14)

Using (2.11), it is then easy to show that
the spectrum of instantaneous excitations from
(2.14), is given by

N(ω, t) =
Mωρ2

4

[(
1− 1

Mωρ2

)2

+

(
1

ωρ

dρ

dt

)2
]
. (2.15)

2.3 Berry Phase
From the structure of the Lewis phase (2.9), we can see that the Lewis phase actually consists of two
parts

dαn

dt
= ic⟨n |∂t|n⟩c − c⟨n |H|n⟩c

≡ dαB

dt
+
dαD

dt
(2.16)

where the first term in (2.16) is the well-known generalized Berry phase in the adiabatic limit and the
second term is the dynamic phase of a time-dependent system. In general, the Berry phase is a
real quantity, which leads to physically measurable results. Using (2.8), we can determine the Berry
phase to be

dαB

dt
= ic⟨n |∂t|n⟩c = −

(
n+

1

2

)(
1

Mρ2
−Mρ2ω2 −Mρ̇2

)
.

Now, assuming that the invariant I(t) is T -periodic and that its eigenvalues are nondegenerate, then
the eigenstates of the dynamical invariant satisfy ϕ(q, T ) = ϕ(q, 0). Thus, the Berry phase for an
arbitrary state becomes

αB = −
(
n+

1

2

)∫ T

0

dt

(
1

Mρ2
−Mρ2ω2 −Mρ̇2

)
. (2.17)

3 Mesoscopic RLC Circuit

Let us now consider the quantization of the mesoscopic RLC circuit using the invariant operator
method. We will quantize the mesoscopic RLC circuit using two different choices for the solution to
the auxiliary equation: The first solution will be determined by solving the Ermakov equations and
the second solution will be to choose a particular solution to the Milne-Pinney equation. We can then
compare the two solutions and point out differences in each in terms of the instantaneous occupation
number and the Berry phase.

The classical Hamiltonian associated with the RLC circuit, which is known as the Caldirola-Kanai
Hamiltonian [15],[16], is given by

H(t) = e−Rt/LΦ2

2L
+

1

2
eRt/LLω2q2, (3.1)

Equivalently one can consider the number of ĉk particles in the ground state |0⟩a.
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where q is the charge, Φ is the magnetic flux (which is the conjugate momentum to the charge,
p = Φ = L dq

dt
), L is the inductance, R is the resistance, and ω2 = 1

LC
is the frequency (C is

the capacitance). Comparing (3.1) with (2.1), we can see that the structure of the Carirola-Kanai
Hamiltonian is that of a time-dependent harmonic oscillator with a time dependent mass, identified
as M(t) = LeRt/L, and constant frequency. From (2.13) and (3.1), we can determine the equation of
motion for the charge to be

q(t) = Be−Rt/2L sin(Ωt+ θ),

where B and θ are constants to be determined by initial conditions and Ω2 = ω2 −
(

R
2L

)2.

We can now determine the solution to the auxiliary equation ρ. From the Ermakov equations, the
auxiliary equation is then given by

ρE = |q| = Ae−Rt/2L sin(Ωt+ θ) = A

√
L

M
sin(Ωt+ θ). (3.3)

From [5], a particular solution to the Milne-Pinney equation is given by

ρP =

√
1

MΩ
. (3.4)

From (3.3) and (3.4), one can then determine the wave functional (2.8), coherent states, and the
uncertainty product for the coherent states (4.2) for each of the two cases. However, as stated above,
we are mostly interested in the occupation number and the Berry phase.

Interestingly, we can redefine the amplitude q(t) as χ =
√
Mq, so that we may rewrite (2.13) as

d2χ

dt2
+ ω̃2(t)χ = 0, (3.2)

where

ω̃2(t) = ω2 +
1

4

Ṁ2

M2
− 1

2

M̈

M

= ω2 +
1

4
σ2 − 1

2

M̈

M
.

Now, using our definition of M , we can then write the angular frequency as

ω̃2(t) = ω2 − 1

2

R2

L2
+

1

4

R2

L2

= ω2 −
(
R

2L

)2

= Ω2,

hence the angular frequency is simply equal to a constant. Of course, this is to be expected since the
general solution to (3.2) with constant angular frequency is

χ = D sin(Ωt+ θ),

since the solution is just that of a harmonic oscillator. Transforming back to q, we then have

q =
D√
M

sin(Ωt+ θ) = Ae−Rt/2L sin(Ωt+ θ),

where A = D√
L

.
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3.1 Occupation Number

Using (3.3) and (2.15), we can determine the occupation number associated with the solution to the
Ermakov equations to be

NE(ω, t) =
1

4
B2LΩsin2(Ωt+ θ)

[
(R− 2LΩcot(Ωt+ θ))2

4L2Ω2
+

(
1

B2LΩsin(Ωt+ θ)
− 1

)2
]
, (3.5)

which is an oscillatory function of time. Hence, the number of quasi-particles present varies over time,
but repeats itself from period to period, with a period of T = 2π

Ω
.

Using (3.4) and (2.15), we can determine the occupation number associated with the particular
solution to the Milne-Pinney equation to be

NP (ω) =
R2

16L2Ω2
, (3.6)

which is constant in time. That is, regardless of
the time, the number of induced quasi-particles
stays the same regardless of the time.

Therefore, if we measure the occupation number
of the induced quasi-particles that are produced
over one-period of oscillation for the RLC circuit,
we can then provide a direct insight into the time-
dependence of the harmonic oscillator and the
method to use to determine the solution for the
auxiliary equation.

3.2 Berry Phase
From (2.17), one may also determine the Berry
phase for the mesoscopic RLC circuit for each of
the two cases. Using (3.3), we can determine the
Berry phase associated with the solution to the
Ermakov equations to be

αB,E =

(
n+

1

2

)
2B2Lπω2

Ω
. (3.7)

Hence, there is an associated Berry phase with
the solution to the Ermakov equations. Moreover,
notice that in the limit the resistance goes to
zero, hence the system reduces to that of a
mesoscopic LC circuit, (3.7) reduces to

αB,E =

(
n+

1

2

)
2πωLB2

=

(
n+

1

2

)
2πB2

√
L

C
;

that is, even the mesoscopic LC circuit has an
associated Berry phase.

Using (3.4), we can then determine the Berry
phase associated with the particular solution to
the Milne-Pinney equation to be

αB,P = 0, (3.8)

hence there is no associated Berry phase since
the system is not periodic.

Thus, just like in the case of the occupation
number, we can in principle use the Berry phase
to establish the auxiliary equation for the time-
dependent system; that is, by measuring a Berry
phase one can establish if one must use the
Ermakov equations to solve for the solution to the
auxiliary equation or use the particular solution to
the Milne-Pinney equation or some other method.

3.3 Numerical Results
We can put these results into more context
by considering typical values of the resistance,
capacitance and inductance used in mesoscopic
RLC circuits [17],[18]. With inductance of 150
nH, resistance of 360 Ω, capacitance of 166 fF,
and initial amount of charge B = 1.66 pC (with
θ = 0), so that Ω = 6.22 × 109 rad/s (period of
T = 1.01 ns), we plot the occupation number
associated with the solution to the Ermakov
equation (blue curve), as well as its root-mean-
square value (green curve), and the occupation
number associated with the particular solution
to the Milne-Pinney equation (red curve) for one
period in Fig. 1.
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Fig. 1. Here we plot the occupation number (2.15) vs. time for both (3.5) (blue curve), as well
as its root-mean-square value (green curve), and (3.6) (red curve)

The Berry phase associated with the solution to
the Ermakov equation is then

αB,E = 8.23× 10−21.

4 CONCLUSION

In this paper, we investigated the quantization of
a general time-dependent harmonic oscillator
using the instantaneous diagonalization and
invariant operator methods and showed that
these two methods are related by a Bogoliubov
type transformation. We also constructed
the occupation number for the induced quasi-
particles that are produced at any moment in
time. Finally, we showed that the Lewis phase
may be decomposed into a dynamic phase and
the well-known Berry phase in the adiabatic
limit. Furthermore, if the invariant operator
is T -periodic, the Berry phase is the integral
over the period of a single oscillation, (2.9).
In order to determine the exact solution of the
Schrödinger equation and the Berry phase,
one must first determine the solution of the
auxiliary equation, which, in general, is a non-
linear differential equation. In the literature,
there are different methods for handling such
a non-linear differential equation. One such
method is to consider a particular solution of
the Milne-Pinney equation. Another is, for a
set of initial conditions, to solve the auxiliary

equation numerically. Finally, using the Ermakov
equations, one can determine the solution by
solving a much simpler equation for the time-
dependent coordinate and then use the fact
that the auxiliary solution is related to the time-
dependent coordinate by taking the modulus of
the time-dependent coordinate. Measurement
of the instantaneous occupation number and
associated Berry phase will, in principle, give
a method for determining the appropriate method
for solving the auxiliary equation.

As a concrete example, we consider the
mesoscopic RLC circuit, which is described by
the Caldirola-Kanai Hamiltonian. The Caldirola-
Kanai Hamiltonian has a time-dependent “mass”
term, represented as an exponentially increasing
inductance, and a constant angular frequency.
First, we showed that the solution to the Ermakov
equations leads to a time-dependent quasi-
particle occupation number (3.5), while the
particular solution to the Milne-Pinney solution
leads to a time-independent quasi-particle
occupation number (3.6). Next, we showed that
the solution to the Ermakov equations leads to
an associated Berry phase, (3.7), however, the
particular solution to the Milne-Pinney solution
leads to no associated Berry phase, (3.8).

Let’s compare these two results further. The
occupation numbers for the solution to the
Ermakov equation (3.5) and the particular

8
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solution to the Milne-Pinney equation (3.6) are
both consequences of the auxiliary equations
(3.3) and (3.4). By virtue of the fact that
(3.3) is an oscillatory solution, this leads to
the oscillatory nature of the (3.5). Moreover,
we can see that both (3.3) and (3.4) are
exponentially decreasing function of time, thus
we would expect that both (3.5) and (3.6) are
exponentially decreasing functions. However this
exponential decrease is canceled out by
the exponentially increasing function of time in
(2.15), since (2.15) is multiplied by M . For (3.6),
this results in a constant occupation number.

Furthermore, the Berry phase associated with
(3.3) illustrates the damped nature of the
mesoscopic RLC circuit. As discussed in the
previous paragraph, even though the occupation
number contains an exponentially decreasing
term, M , this term is canceled due to the
presence of the inverse term in the auxiliary
equation, ρ2 ∝ M−1. Thus, the occupation
number doesn’t lead to the damped nature
of the mesoscopic RLC circuit. However, the
associated Berry phase illustrates that the after
each cycle, the mesoscopic RLC circuit is indeed
damped. This term does not arise for the
particular solution, since, as in the previous
case, the exponential terms cancel leaving a
constant occupation number. However, since
the associated Berry phase is zero, (3.8), there is
no sign of the damped nature of the mesoscopic
RLC circuit. Thus, the solution to the Ermakov
equation leads to more physically reasonable
results.

Therefore, measurements of the occupation
number and associated Berry phase, can, in
principle, lead to a direct method for determining
the appropriate method for determining the
solution to the auxiliary equation.
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APPENDIX

Even though the coherent and squeezed states are not necessary for our purposes of deriving the
generalized Berry phase for the time-dependent harmonic oscillator, and hence the mesoscopic RLC
circuit, they are germane to quantization of the time-dependent harmonic oscillator. Therefore here,
we construct coherent states for the quantized time-dependent harmonic oscillator for completeness.
Let us define the annihilation and creation operators of the time-dependent harmonic oscillator
as

b =

√
1

2

[
ρp− i

q

ρ

]
, b† =

√
1

2

[
ρp+ i

q

ρ

]
,

where [b, b†] = 1, so that the invariant operator may be written as I ′ =
(
b†b+ 1

2

)
. The coherent states

associated with I ′ are then

φβ(σ, t) = e−|β|2/2
∑
n

βn

√
n!
eiαn(t)φn(σ),

where β is an arbitrary complex number. The coherent states for the time-dependent harmonic
oscillator are given
by

ϕβ(q, t) =
1
√
ρ
exp

[
iMρ̇

2ρ
q2
]
φβ(σ, t).

These states must satisfy the eigenvalue equation

cϕβ(q, t) = α(t)ϕβ(q, t), (4.1)

where c and b are related by

c = U†bU .

Thus, the invariant operator takes the form I =
(
c†c+ 1

2

)
as above.

We can now consider the expectation value of the coordinate q in the state ϕβ(q, t). Here, we find
that the expectation value of the coordinate is given by

⟨q⟩ =
√

2|β|2ρ sin(α0t+ δ)

where δ is the argument of β. The uncertainty product is given by,

(∆q)(∆p) =
1

2

√
1 +M2ρ2ρ̇2. (4.2)

From (4.1), (2.11) and (2.12), we can see the states ϕβ(q, t) are in fact the well-known squeezed
states. In terms of the Bogoliubov coefficients, the quantum fluctuations in q and p in the squeezed
states may be written as,
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(∆q)2 =
1

2Mω
|µ− ν|2, (∆p)2 =

Mω

2
|µ+ ν|2,

,
and hence the uncertainty product takes the form

(∆q)(∆p) =
1

2
|µ− ν||µ+ ν|,

which is the same as in (4.2).
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