
British Journal of Mathematics & Computer Science

22(4): 1-19, 2017; Article no.BJMCS.33704

ISSN: 2231-0851

Asymptotics of Solution of a Boundary Value Problem
for Quasilinear Non-Classical Type Differential

Equation of Arbitrary Odd Order

Mahir M. Sabzaliev1∗ and Ilhama M. Sabzalieva1

1Azerbaijan State Oil and Industrial University, Az 1026, 20, Azadliq Ave, Baku, Azerbaijan.

Authors’ contributions

This work was carried out in collaboration between both authors. Author MMS introduced the
original problem. Author IMS carried out the iteration process and estimated the remainder term.
The formulation of the main result was conducted by Mahir M. Sabzaliev. Both authors read and

approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2017/33704
Editor(s):

(1) Nikolaos Dimitriou Bagis, Department of Informatics and Mathematics, Aristotelian
University of Thessaloniki, Greece.

Reviewers:
(1) Guldem Yildiz, Omer Halisdemir University, Turkey.

(2) Suleyman Cengizci, Middle East Technical University, Turkey.
Complete Peer review History: http://www.sciencedomain.org/review-history/19309

Received: 26th April 2017

Accepted: 24th May 2017

Original Research Article Published: 2nd June 2017

Abstract

In a rectangle domain, a boundary value problem is considered for a singularly perturbed
quasilinear non-classical type equation of arbitrary odd order, degenerating into a hyperbolic
equation. Asymptotic expansion of the generalized solution of the problem under consideration is
constructed to within any positive degree of a small parameter, and the residual term is estimated.

Keywords: Asymptotics; boundary layer function; remainder term.

2010 Mathematics Subject Classification: 35J62, 35J25, 65N99.

*Corresponding author: E-mail: sabzalievm@mail.ru;

http://www.sciencedomain.org/review-history/19309


Sabzaliev and Sabzalieva; BJMCS, 22(4): 1-19, 2017; Article no.BJMCS.33704

1 Introduction and Problem Statement

When studying numerical phenomena where there are nonuniform transitions from one physical
characteristics to another ones, it is necessary to study singularly perturbed boundary value problems
(see e.g. [1]-[4]). Singularly perturbed problems were first studied from different positions by A.N.
Tikhonov [5], L.S. Pontryagin [6], I. Vishik and Lusternik [7], [8], Vazov [9], S.A. Lomov [10], A.M.
Ilin [11], and other scientists.

Theory of singularly perturbed boundary value problems for linear partial equations was significantly
developed in M.I. Vishik’s and L.A. Lusternik’s papers [7, 8]. After appear ance of these papers,
this method was generalized both by the followers of M.I. Vishik and A.A. Lusternik, and by other
researchers. However, all of studied boundary value problems were related to one of three classical
types.

In [7, §8] M.I. Vishik and L.A. Lusternik introduced the so called one-characteristic linear equations
that are not classical equations. They called the 2k+1 odd order equation of the form A1 (A2ku)+
B2ku = f one-characteristic if A1 is a first order operator, A2k is an elliptic operator of order 2k,
while B2k is any differential operator of order at most 2k. In the paper [7], they studied
mutual degenerations of one-characteristic and elliptic equations. In this paper, in
D = {(x, y) |0 ≤ x ≤ 1, 0 ≤ y ≤ 1} they considered the boundary value problem

ε2
∂

∂x
(∆u)− ε∆u+

∂u

∂x
+
∂u

∂y
+ u = f (x, y) , (1.1)

u|Γ = 0,
∂u

∂x

∣∣∣∣
x=1

= 0, (1.2)

where ε > 0 is a small parameter, ∆ ≡ ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, f (x, y) is the given

function, Γ is the boundary of the domain D. Assuming that f (x, y) for x = y together with its
derivatives of appropriate order vanishes, they constructed only the first terms of the asymptotic
solution of boundary value problem (1.1), (1.2).

In the paper [12], M.G. Javadov and M.M. Sabzaliev rejecting from the condition of vanishing of
the function f (x, y) for x = y constructed first members of the asymptotic solution of boundary
value problem (1.1), (1.2) allowing for inner layers arising near x = y. In this paper, the complete
asymptotics of the solution of a boundary value problem for equation (1.1) in the infinite strip
Π = { (x, y)| 0 ≤ x ≤ 1,−∞ < y < +∞} was also constructed. Complete asymptotics of the solution
of boundary value problem (1.1), (1.2) was constructed by Sabzaliev M.M. in [13].

Degeneration of an one-characteristic equation into an elliptic one was studied in the paper [7] on
the following boundary value problem on a rectangle D:

∂

∂x
(∆u)−∆u = f (x, y) , u|Γ = 0,

∂u

∂x

∣∣∣∣
x=1

= 0.

Complete asymptotics in a small parameter of the solution of a boundary value problem in the
infinite strip Π = { (x, y)| 0 ≤ x ≤ 1,−∞ < y < +∞} for the equation

ε
∂

∂x
(∆u)−∆u+ au = f (x, y) , (a = const > 0)

was constructed by M.M. Sabzaliev in [14]. M.M. Sabzaliev and M.E. Kerimova studied degeneration
of one-characteristic equation into parabolic one. In the paper [15], in a rectangle
D = { (t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1} they considered the following boundary value problem

ε2
∂

∂x
(∆u)− ε

∂2u

∂t2
+
∂u

∂t
− ∂2u

∂x2
+ au = f (t, x) , (1.3)
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u|t=0 = 0, u|t=T = 0,
∂u

∂t

∣∣∣∣
t=T

= 0, (0 ≤ x ≤ 1) (1.4)

u|x=0 = u|x=1 = 0, (0 ≤ t ≤ T ) (1.5)

where ∆ ≡ ∂2

∂t2
+ ∂2

∂x2 , a = const > 0. Complete asymptotics of the solution of boundary value
problem (1.3)-(1.5) was constructed. In the paper [16] a boundary value problem was studied for
equation (1.3) in the semi-infinite strip
Π+ = { (t, x)| 0 ≤ t ≤ 1, 0 ≤ x < +∞}. In this case boundary conditions (1.4) remain and instead
of conditions in (1.5), the followings are considered: u|x=0 = 0, lim

x→+∞
u = 0. A boundary value

problem in the infinite strip

Π = { (t, x)| 0 ≤ t ≤ 1,−∞ < x < +∞}

for equation (1.3) was considered in [17]. Here, instead of condition (1.5) the boundary conditions
lim

|x|→+∞
u = 0 are taken.

Some singularly perturbed linear equations of non-classical type were researched by Ya. Sh. Salimov
and I.M. Sabzalieva in the papers [18]-[22].

The all above-mentioned studies are related to linear differential equations of non-classical type.
The Vishik-Lusternik technique for constructing asymptotics in a small parameter of solutions of
boundary value problems for linear and differential equations are taken to some classes of nonlinear
differential equations as well. However, study of nonlinear singularly perturbed boundary value
problems by this technique is accompanied by bulky calculations. In the paper [23], M.I. Vishik
and L.A. Lusternik illustrated the technique for constructing nonlinear differential equations on the
following boundary value problem:

εy′′ + φ (x, y) y′ − ψ (x, y) , y (0) = A, y (1) = B.

Asymptotic of the solution of this problem in powers of parameters A was studied by V. Vazov.

In [24] Su Yui Chen constructed asymptotics in small parameter of the solution of a mixed problem
for the quasilinear hyperbolic equation

ε

(
∂2u

∂t2
− ∂2u

∂x2

)
− φ (t, x, u)

∂u

∂t
+ ψ (t, x, u) = 0.

In [25], Trenogin set up asymptotics in a small parameter of the solution of the boundary value
problem

∂u

∂t
− εb (x, t)

∂2u

∂x2
+ c (x, t, u) = 0, u (x, 0) = φ (x) , u (0, t) = u (l, t) = 0.

In [26], V.Yu. Lunin constructed complete asymptotics of the solution of the Dirichlet problem for
the nonlinear elliptic equation

−ε4
n∑

i=1

∂

∂xi

(
∂u

∂xi

)3

− ε2
n∑

i=1

∂2u

∂x2i
+ F (x, u) = 0.

We also note the papers [27]-[32] that were devoted to construction of asymptotics of solutions of
different boundary value problems for singularly perturbed nonlinear differential equations.
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The carried out analysis represents the following characteristics of the studied singularly perturbed
nonlinear boundary value problems. In the first place, a great majority of singularly perturbed
nonlinear equations degenerate for ε = 0 either into functional or ordinary differential equations.
In the studied equations the derivatives of the sought-for function enter into the equation linearly,
and only the sought-for function itself enters non-linearly into the equation. The domains under
consideration are bounded and have no viscous adjoint boundaries (under viscous boundary we
understand a boundary in the vicinity of which there arises a boundary layer). Finally, all studied
singularly perturbed nonlinear partial differential equations relate to one three classical types.

Note some papers [33]-[38] of the first author of this paper, where singularly perturbed quasilinear
elliptic and hyperbolic equations are studied in bounded and in unbounded domains, and under
degeneration we get partial equations and the derivatives of the sought-for function enter into the
equation non-linearly.

In the present paper we consider a boundary value problem for a non-classical type singularly
perturbed quasilinear equation of arbitrary odd order degenerating into a hyperbolic equation. The
domains where this boundary value problem is studied, has three adjoining viscous boundaries.

In D = { (t, x)| 0 ≤ t ≤ 1, 0 ≤ x ≤ 1} we consider the following boundary value problem

Lεu ≡ (−1)m ε2m
∂2m+1u

∂t2m+1
− εp

∂

∂x

(
∂u

∂x

)p

− ε
∂2u

∂x2
+

+
∂u

∂t
+
∂u

∂x
+ a (t, x)u− f (t, x) = 0, (1.6)

u|t=0 =
∂u

∂t

∣∣∣∣
t=0

= ... =
∂mu

∂tm

∣∣∣∣
t=0

= 0, (0 ≤ x ≤ 1) (1.7)

∂m+1u

∂tm+1

∣∣∣∣
t=1

=
∂m+2u

∂tm+2

∣∣∣∣
t=1

= ... =
∂2mu

∂t2m

∣∣∣∣
t=1

= 0, (0 ≤ x ≤ 1) (1.8)

u|x=0 = 0, u|x=1 = 0, (0 ≤ t ≤ 1) (1.9)

where p = 2k + 1, k and m are arbitrary natural numbers, a (t, x) ≥ γ2 > 0 and f (t, x) are the
smooth functions given in D.

In this paper, our goal is to construct asymptotic expansion of the solution of boundary value
problem (1.6)-(1.9). When constructing asymptotics we are guided by the Vishik-Lusternik technique.
It should be noted that it is not succeeded to construct asymptotics of the solution of the problem
under consideration by traditional way. In this connection, here the first iterative process and
the iterative process that helps to construct boundary layer type functions, are embedded one to
another. Furthermore, the notion “satisfaction of boundary condition approximately to within any
positive degree of a small parameter” was introduced. In what follows, this notion is used when
estimating the residual term. Note that earlier such an approach was used by the first author of
this paper in the papers [35], [36].

2 Carrying Out Iterative Processes

In the first iterative process, the approximate solution of equation (1.6) is sought in the form

W =W0 (t, x) + εW1 (t, x) + ...+ εnWn (t, x) , (2.1)

and the functions Wi (t, x); i = 0, 1, ..., n will be chosen so that

LεW = 0(εn+1). (2.2)
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Substituting (2.1) in (2.2), expanding the nonlinear term in powers of ε and grouping the terms with
identical powers of ε, for determining Wi; i = 0, 1, ..., n we get the following recurrently connected
equations

∂W0

∂t
+
∂W0

∂x
+ aW0 = f(t, x), (2.3)

∂Wi

∂t
+
∂Wi

∂x
+ aWi = fi (t, x) , (2.4)

where fi (t, x) are the known functions dependent on W0,W1, ...,Wi−1; i = 1, 2, ..., n and their

derivatives. Here we give formulas only for f1 (t, x): f1 (t, x) =
∂2W0
∂x2 .

For equations (2.3), (2.4) with respect to x we should use the first condition from (1.9), i.e.

W i|x=0 = 0, i = 0, 1, ..., n. (2.5)

Boundary conditions with respect to t for equations (2.3), (2.4) is given below. Now we note that
with respect to t we will use the first condition from (1.8) for t = 0. Under such a choice of boundary
conditions for equations (2.3), (2.4) on the boundary S1 = { (t, x)| t = 0, 0 ≤ x ≤ 1}, m conditions
from m + 1 boundary conditions of (1.7), on the boundary S2 = { (t, x)| t = 1, 0 ≤ x ≤ 1} all m
conditions of (1.8), and on the boundary S3 = { (t, x)| 0 ≤ t ≤ 1, x = 1} the second condition of
(1.9) will be lost. For compensating the lost boundary conditions we should construct boundary
layer functions near the boundaries S1, S2, S3.

If as usually for all functions Wi entering into expansion W =
n∑

i=0

εiWi we use the condition

Wi|t=0 = 0 and carry out first iterative process and then construct the boundary layer type function

V =
n1∑
j=0

ε1+jVj near the boundary S1, for compensating the lost conditions ∂k

∂tk
(W + V )

∣∣∣
t=0

= 0;

k = 1, 2, ...,m, then the sum W + V does not satisfy the boundary condition (W + V )|t=0 = 0
which the function W satisfied. To overcome these difficulties, the first iterative process by means
of which the functions Wi are constructed, and the iterative process that helps to construct the
boundary layer type function Vj near the boundary S1, are embedded one to another. Therefore
before finding boundary conditions with respect to t, for equations (2.3), (2.4) at first it is necessary
to obtain the equations whose solutions will be boundary layer functions near S1.

We should look for the boundary layer function V near the boundary S1, in the form

V = ε (V0 + εV1 + ...+ εn1Vn1) , (2.6)

as the solution of the equation

Lε,1 (W + V )− Lε,1W = 0
(
εn1+1) , (2.7)

where Lε,1 is a new decomposition of the operator Lε near the boundary S1 in the coordinates (ξ, x),
where ξ = t

ε
. The exact value of n1 will be determined later. Now we only note that n1 ≥ n+ 1.

From (2.6) and (2.7) we get the following recurrently connected equations for determining the
functions Vj ; j = 0, 1, ..., n1:

(−1)m
∂2m+1V0

∂ξ2m+1
+
∂V0

∂ξ
= 0, (2.8)

(−1)m
∂2m+1Vj

∂ξ2m+1
+
∂Vj

∂ξ
= hj ; j = 1, 2, ..., n1, (2.9)

where hj are the known functions dependent on V0, V1, ..., Vj−1 and their derivatives. We give a
formula for h1 (ξ, x) = − ∂V0

∂x
− a (0, x)V0 (ξ, x).
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The boundary conditions for equations (2.8), (2.9) whose solutions will be the functions V0, V1, ..., Vn1 ,
are obtained from the requirement that the sum W + V for t = 0 should satisfy conditions of (1.7)
except the first condition, i.e.

∂

∂t
(W + V )|t=0 =

∂2

∂t2
(W + V )|t=0 = ... =

∂m

∂tm
(W + V )|t=0 = 0. (2.10)

Note that (2.10) yields that the number n1, in (2.6) should be taken equal to n+m− 1. In other
words, it is necessary to look for the function V in the form

V = ε
(
V0 + εV1 + ε2V2 + ...+ εn+m−1Vn+m−1

)
. (2.11)

Now we find boundary conditions with respect to t for equations (2.3), (2.4). For that we substitute
the expressions (2.1), (2.11) for W,V in the equality

(W + V )|t=0 = 0 (2.12)

and equate to zero the coefficients for ε whose powers are less than n+ 1. Then we have

W0|t=0 = 0, Wi|t=0 = −Vi−1|ξ=0 ; i = 1, 2, ..., n. (2.13)

It should be noted that if the functions Wi; i = 0, 1, ..., n satisfy condition (2.13), then for the sum
W + V boundary condition (2.12) will be satisfied not exactly but approximately, to within εn+1,
i.e.

(W + V )|t=0 = εn+1φε (x) . (2.14)

Here the function φε (x) is determined by the formula

φε (x) =
(
Vn + εVn+1 + ...+ εm−1Vn+m−1

)∣∣
ξ=0

. (2.15)

Having substituted the expressions for W and V , respectively from (2.1), (2.11) in (2.10), and
comparing the terms at identical powers of ε, we get the following boundary conditions for equations
(2.8), (2.9)

∂V0

∂ξ

∣∣∣∣
ξ=0

= − ∂W0

∂t

∣∣∣∣
t=0

,
∂2V0

∂ξ2

∣∣∣∣
ξ=0

= 0,
∂3V0

∂ξ3

∣∣∣∣
ξ=0

= 0, ...,
∂mV0

∂ξm

∣∣∣∣
ξ=0

= 0, (2.160)

∂V1

∂ξ

∣∣∣∣
ξ=0

= − ∂W1

∂t

∣∣∣∣
t=0

,
∂2V1

∂ξ2

∣∣∣∣
ξ=0

=
∂2W0

∂t2

∣∣∣∣
t=0

,

∂3V1

∂ξ3

∣∣∣∣
ξ=0

= 0, ...,
∂mV1

∂ξm

∣∣∣∣
ξ=0

= 0, (2.161)

. . . . . . . . . . . . . . . . . . ,

∂Vn+m−1

∂ξ

∣∣∣∣
ξ=0

= 0,
∂2Vn+m−1

∂ξ2

∣∣∣∣
ξ=0

= 0, ...,
∂m−1Vn+m−1

∂ξm−1

∣∣∣∣
ξ=0

= 0,

∂mVn+m−1

∂ξm

∣∣∣∣
ξ=0

= − ∂mWn

∂tm

∣∣∣∣
t=0

. (2.16n+m−1)

From (2.13) and (2.160)-(2.16n+m−1) it is seen that the functions Wi and Vj will be constructed
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in turn in the sequence W0, V0,W1, V1, ...,Wn, Vn, Vn+1, ..., Vn+m−1. Now construct the functions
W0,W1,Wn, ...,Wn and V0, V1, ..., Vn+m−1. From (2.3), (2.5) for i = 0 and (2.13) we have that W0

is the solution of the following boundary value problem

∂W0

∂t
+
∂W0

∂x
+ a (t, x)W0 = f (t, x) ; W

∣∣∣∣
t=0

= 0, W0|x=0 = 0. (2.17)

Boundary value problem (2.17) is called a degenerated problem corresponding to problem (1.6)-
(1.9). It should be noted that here the solution of the degenerated problem has breaks on the
bisectrix t = x of the first quadrant.

The following statement is valid.

Lemma 2.1. Let f (t, x) ∈ C2n+2m+2 (D), a (t, x) ∈ C2n+2m+2 (D), the function f (t, x) satisfy the
condition

∂if (t, x)

∂ti1∂xi2

∣∣∣∣
t=x

= 0, i = i1 + i2; i = 0, 1, ..., 2n+ 2m+ 2. (2.18)

Then problem (2.17) has a unique solution, W0 (t, x) ∈ C2n+2m+2 (D) and

∂iW0 (t, x)

∂ti1∂xi2

∣∣∣∣
t=x

= 0, i = i1 + i2; i = 0, 1, ..., 2n+ 2m+ 2. (2.19)

Proof.The characteristical line of the equation in problem (2.17) passing through the origin of
coordinates, divides the rectangle D into two parts
D1 = { (t, x) ∈ D|x ≤ t} and D2 = { (t, x) ∈ D|x ≥ t}. The solution of problem (2.17) may be
sought in the form

W0 (t, x) =

{
W

(1)
0 (t, x) for (t, x) ∈ D1,

W
(2)
0 (t, x) for (t, x) ∈ D2,

(2.20)

the functions W
(1)
0 and W

(2)
0 are the solutions of the following boundary value problem

∂W
(1)
0

∂t
+
∂W

(1)
0

∂x
+ a (t, x)W

(1)
0 = f (t, x) ; (t, x) ∈ D1;

W
(1)
0

∣∣∣
x=0

= 0, (0 ≤ t ≤ 1) , (2.21)

∂W
(2)
0

∂t
+
∂W

(2)
0

∂x
+ a (t, x)W

(2)
0 = f (t, x) ; (t, x) ∈ D2;

W
(2)
0

∣∣∣
t=0

= 0, (0 ≤ x ≤ 1) . (2.22)

The solutions of problem (2.21), (2.22) are represented by the following formula:

W
(1)
0 (t, x) =

x∫
0

f (t− x+ τ, τ) exp

− x∫
τ

a (t− x+ ξ, ξ) dξ

 dτ, (2.23)

W
(2)
0 (t, x) =

t∫
0

f (τ, τ + x− t) exp

− t∫
τ

a (ξ, ξ + x− t) dξ

 dτ. (2.24)

Obviously, if a (t, x) and f (t, x) are rather smooth functions in D, then the functionsW
(1)
0 (t, x) and

W
(2)
0 (t, x) determined by formula (2.23), (2.24) are also smooth functions inD1 andD2 respectively.

Therefore, smoothness of the functionW0 (t, x) represented by formula (2.20) in D for x ̸= t doesn’t

7
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give rise to doubts. But the values of the functions W
(1)
0 (t, x) and W

(2)
0 (t, x) do not coincide on

the line x = t. Consequently, the function W0 (t, x) have breaks for x = t.

Using the explicit form (2.23), (2.24) of functions W
(1)
0 (t, x) and W

(2)
0 (t, x) it is easy to see that

when f (t, x) satisfies condition (2.18), all derivativesW
(1)
0 (t, x) andW

(2)
0 (t, x) to the (2n+ 2m+ 2)-

th order inclusively vanish for t = x. Therefore, from (2.20) it follows that

∂iW0 (t, x)

∂ti1∂xi2

∣∣∣∣
x−t=−0

=
∂iW

(1)
0 (t, x)

∂ti1∂xi2

∣∣∣∣∣
t=x

=

=
∂iW

(2)
0 (t, x)

∂ti1∂xi2

∣∣∣∣∣
t=x

=
∂iW0 (t, x)

∂ti1∂xi2

∣∣∣∣
x−t=+0

= 0.

Consequently, the functions
∂iW0(t,x)

∂ti1∂xi2
; i = 1, 2, ..., 2n+2m+2 are continuous and vanish for t = x,

i.e. condition (2.19) is fulfilled. Lemma 2.1 is proved.

From (2.13) for i = 0 it follows that before constructing the functionW1 it is necessary to determine
V0. The function V0 is the boundary layer type solution of equation (2.8) satisfying boundary
conditions (2.160). The characteristical equation corresponding to ordinary differential equation
(2.8) has m roots with negative real parts. Denote them by λ1, λ2, ..., λm. It should be noted
that the amount of lost boundary conditions on S1 also equals m. Therefore, problem (1.6)-(1.9)
regularly degenerates on S1. It is easy to show that the boundary layer type solution of problem
(2.8), (2.160) is of the form

V0 (ξ, x) =

= −∂W0 (0, x)

∂t
[C01 exp (λ1ξ) + C02 exp (λ2ξ) + ...+ C0m exp (λmξ)] , (2.25)

where C0i are the known numbers.

As the functions W0, V0 are known, then we can already determine the function W1 from problem
(2.4), (2.5), (2.13) for i = 1. The solution of this problem may be sought in the form W1 =

W
(1)
1 +W

(2)
1 , where W

(1)
1 and W

(2)
1 are the solutions of the following boundary value problems:

∂W
(1)
1

∂t
+
∂W

(2)
1

∂t
+ a (t, x)W

(1)
1 =

∂2W0

∂x2
; W

(1)
1

∣∣∣
t=0

= 0, W
(1)
1

∣∣∣
x=0

= 0, (2.26)

∂W
(2)
1

∂t
+
∂W

(2)
1

∂t
+ a (t, x)W

(2)
1 = 0, W

(2)
1

∣∣∣
t=0

= φ1 (x) , W
(2)
1

∣∣∣
x=0

= 0. (2.27)

Here φ1 (x) is determined by the formula

φ1 (x) = −V0 (0, x) = −

(
m∑
i=1

C0i

)
∂W0 (0, x)

∂t
. (2.28)

The first part of the equation for W
(1)
1 satisfies condition (2.18) in lemma 2.1 for

i = 0, 1, ..., 2n + 2m. Therefore, by the same lemma, problem (2.26) has a unique solution,

W 1
1 (t, x) ∈ C2n+2m (D) and the function W

(1)
1 (t, x) satisfies the condition

∂iW
(1)
1 (t, x)

∂ti1∂xi2

∣∣∣∣∣
t=x

= 0; i = i1 + i2; i = 0, 1, ..., 2n+ 2m. (2.29)

8
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The solution of problem (2.27) is represented by the formula

W
(2)
1 (t, x) =


0 for 0 ≤ x < t ≤ 1,

φ1 (t− x) exp

[
−

t∫
0

a (τ, x− t+ τ) dτ

]
for 0 ≤ t < x ≤ 1.

(2.30)

By lemma 2.1, from (2.28) it follows that φ1 (x) ∈ C2n+2m+1 [0, 1]. Therefore, smoothness in D for

t ̸= x, of the function W
(2)
1 (t, x) determined by formula (2.30) is obvious. From (2.19) and (2.28)

we get
φ

(k)
1 (0) = 0; k = 0, 1, ..., 2n+ 2m+ 1. (2.31)

Taking into account (2.31), the smoothness of the functionW
(2)
1 (t, x) and vanishing of all derivatives

for t = x is obtained directly from (2.30). Hence and from (2.29) it follows that the functionW1 (t, x)

being the sum of W
(1)
1 ,W

(2)
1 belongs to the space C2n+2m (D) and satisfies the condition

∂iW1 (t, x)

∂ti1∂xi2

∣∣∣∣
t=0

= 0; i = i1 + i2; i = 0, 1, ..., 2n+ 2m. (2.32)

The remaining functionsW2,W3, ...,Wn entering into the right hand side of (2.1) are constructed by
the reasonings similar to ones carried out for W1. Therefore we will not stop on their construction.

By constructing the functions V0, V1, ..., Vn+m−1 the following statement is used.

Lemma 2.2. The functions Vj being the boundary layer type solutions of equation (2.9), satisfying
appropriate boundary conditions from (2.161)− (2.16n+m−1) are determined by the formula

Vj (ξ, x) =

m∑
i=1

[
C

(i)
j0 (x) + C

(i)
j1 (x) ξ + ...+ C

(i)
jj (x) ξj

]
exp (λ, ξ) ,

j = 1, 2, ..., n+m− 1, (2.33)

and the coefficients C
(i)
js (x) are uniformly expressed by the function

∂kWr (0, x)

∂tk1+1∂xk2
; k = k1 + k2 + 1; r = 0, 1, ..., j; k1 = 0, 1, ...,m− 1; k1 + k2 + r = j. (2.34)

Proof. At first determine the function V1. The function V1 is the boundary layer type solution of
equation (2.9) for j = 1, satisfying boundary condition (2.161). Taking into account explicit form
(2.25) of the function V0 (ξ, x), we represent the right hand side of equation (2.9) for j = 1 in the
form

h1 (ξ, x) = θ (x)

[
m∑
i=1

C0i exp (λiξ)

]
, (2.35)

and θ (x) is determined by the formula

θ (x) =
∂2W0 (0, x)

∂t∂x
+ a (0, x)

∂W0 (0, x)

∂t
. (2.36)

Obviously, the function

V
(1)
1 (ξ, x) = θ (x) ξ

[
m∑
i=1

b0i exp (λiξ)

]
(2.37)

9
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is a boundary layer type particular solution of equation (2.9), where b0i are known numbers.

Represent V1 in the form V1 = V
(1)
1 + V

(2)
1 . Then V

(2)
1 will be a boundary layer type solution

of the following boundary value problem

(−1)m
∂2m+1V

(2)
1

∂ξ2m+1
+
∂V

(2)
1

∂ξ
= 0, (2.38)

∂V1

∂ξ

∣∣∣∣
ξ=0

= d1 (x) ,
∂2V

(2)
1

∂ξ2

∣∣∣∣∣
ξ=0

= d2 (x) , ...,
∂mV

(2)
1

∂ξm

∣∣∣∣∣
ξ=0

= dm (x) . (2.39)

Here the following denotation are used:

d1 (x) = −∂W1

∂t

∣∣∣∣
t=0

+ p1θ (x) , d2 (x) = −∂
2W1

∂t2

∣∣∣∣
t=0

+ p2θ (x) ,

dj (x) = pjθ (x) ; j = 3, 4, ...,m;

ps = −s
m∑
i=1

b0iλ
s−1
i ; s = 1, 2, ...,m.

It is easy to see that the boundary layer type solution of problem (2.38), (2.39) is of the form:

V
(2)
1 (ξ, x) = C1 (x) exp (λ1ξ) + C2 (x) exp (λ2ξ) + ...+ Cm (x) exp (λmξ) . (2.40)

Here the functions Ci (x) are represented by the following formula:

Ci (x) = C
(1)
i

∂W1 (0, x)

∂t
+ C

(2)
i

∂2W0 (0, x)

∂t2
+ C

(3)
i

∂2W0 (0, x)

∂t∂x
+

+C
(4)
i a (0, x)

∂W0 (0, x)

∂t
, (2.41)

where C
(1)
i , C

(2)
i , C

(3)
i , C

(4)
i ; i = 1, 2, ...,m are known numbers.

From (2.37) and (2.40) we get that the function V1 being the sum of V
(1)
1 and V

(2)
1 is determined

by the formula:

V1 (ξ, x) =
n∑

i=1

[Ci (x) + b0iθ (x) ξ] exp (λiξ) . (2.42)

Introducing the denotation

C
(i)
10 (x) = Ci (x) , C

(i)
11 (x) = b0iθ (x) ; i = 1, 2, ...,m, (2.43)

we can write formula (2.42) as

V1 (ξ, x) =

m∑
i=1

[
C

(i)
10 (x) + C

(i)
11 (x) ξ

]
exp (λiξ) . (2.44)

From (2.36), (2.41), (2.43), (2.44) it follows that the statement of lemma 2.2 is valid for j = 1.

Assuming that the statement of lemma 2.2 is valid for j ≤ r − 1, (r < n+m− 1), and repeating
the reasonings carried out when determining the function V1, we can prove that it is valid for j = r
as well.

10
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Lemma 2.2 is proved.

Multiply all Vj , by smoothing functions and denote the obtained new functions again by Vj ; j =
0, 1, ..., , n+m+ 1.

It is known that the functions Wi (t, x) ; i = 0, 1, ..., n together will all their derivatives vanish for
x = t and in particular for x = t = 0. Consequently, from (2.25), (2.33), (2.34) we get that all
functions Vj (ξ, x); j = 0, 1, ..., n +m − 1 vanish for x = 0. Hence and from (2.1), (2.5), (2.11) it
follows that the sum W + V in addition to (2.10), (2.14) satisfies the boundary condition

(W + V )|x=0 = 0 (2.45)

as well. The constructed sum W + V generally speaking, doesn’t satisfy boundary conditions (1.9)
on S2. In this connection, it is necessary to construct a boundary layer type function near the
boundary S2.

Construction of boundary layer functions near the boundary S2 is performed similar to construction
of boundary layer functions near the boundary S1. Therefore, we will not stop in detail on
construction of boundary layer functions near the boundary S2. We note only some moments.

Here, change of variables is made by the formulas: 1 − t = εy, x = x. The boundary layer type
function η near the boundary S2 should be sought in the form:

η = εm+1 (η0 + εη1 + ...+ εn+m−1ηn+m−1

)
, (2.46)

as the solution of the equation

Lε,2 (W + V + η)− Lε,2 (W + V ) = O
(
εn+2m+1) , (2.47)

where Lε,2 is a new decomposition of the operator Lε near the boundary S2 in coordinates (y, x).

The equations for η0, η1, ..., ηn+m−1 have the same form as the equations for
V0, V1, ..., Vn+m−1. The right hand sides of equations for η1, η2, ..., ηn+m−1 differ from the right
hand sides of appropriate equations for V1, V2, ..., Vn+m−1 only by opposite signs.

The boundary conditions for equations whose solutions will be the functions
η0, η1, ..., ηn+m−1 are found from the requirement that the sum W + V + η should satisfy the
following boundary conditions:

∂m+1

∂tm+1
(W + V + η)

∣∣∣∣
t=1

=

=
∂m+2

∂tm+2
(W + V + η)

∣∣∣∣
t=1

= ... =
∂2m

∂t2m
(W + V + η)

∣∣∣∣
t=1

= 0. (2.48)

The following statement is proved similar to the proof of lemma 2.2.

Lemma 2.3. The boundary layer type functions near the boundary S2 are determined by the formula

ηj (y, x) =

m∑
i=1

[
d
(i)
j0 (x) + d

(i)
j1 (x) y + ...+ d

(i)
jj (x) yj

]
exp (λiy) ;

j = 0, 1, ..., n+m− 1. (2.49)

Here the coefficients d
(i)
js (x) are expressed by the function

∂m+1+kWr (1, x)

∂tm+1+k1∂xk2
;

k = k1 + k2; k1 = 0, 1, ...,m− 1; r = 0, 1, ..., j; k1 + k2 + r = j. (2.50)

11
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Multiply all functions ηj by the smoothing function and for the obtained new functions leave the
previous denotation ηj ; j = 0, 1, ..., n+m− 1.

As the function η vanishes at the expense of the smoothing function for t = 0, then from (2.10)
and (2.14) if follows that the sum W + V + η along with conditions (2.48) satisfies the following
boundary conditions as well:

(W + V + η)|t=0 = εn+1φε (x) ,
∂

∂t
(W + V + η)

∣∣∣∣
t=0

=

=
∂2

∂t2
(W + V + η)

∣∣∣∣
t=0

= 0, ...,
∂m

∂tm
(W + V + η)

∣∣∣∣
t=0

= 0, (2.51)

where φε (x) is determined by formula (2.15).

Following (2.45) and (2.46), we have that if all functions ηj vanish for x = 0, i.e.

ηj |x=0 = 0; j = 0, 1, ..., n+m− 1, (2.52)

then the sum W + V + η in addition to (2.48), (2.51) will satisfy the boundary condition

(W + V + η)|x=0 = 0, (2.53)

as well.

If follows from (2.49), (2.50) that for fulfilment of conditions (2.52) it is suffices that the functions
Wi satisfy the conditions

∂m+1+kWi (1, 0)

∂tm+1+k1∂xk2
= 0;

k = k1 + k2; i = 0, 1, ..., n; k1 + k2 + r = 0, 1, ..., n+m− 1. (2.54)

Assume that the function f (t, x) satisfies the condition

∂kf (1, 0)

∂tk1∂xk2
= 0; k = k1 + k2; k = 0, 1, ..., n+m− 1. (2.55)

Then conditions (2.54) and consequently (2.52), (2.53) will be satisfied.

Thus, the constructed sum W + V + η satisfies boundary conditions (2.48), (2.51), (2.53). But this
sum do not satisfy boundary conditions of the second boundary condition from (1.9) for x = 1.
Therefore we should construct a boundary layer type function ψ near the boundary S3 so that ψ
could ensure fulfilment of the boundary condition

(W + V + η + ψ)|x=1 = 0. (2.56)

By constructing the function ψ we should care that the equality

Lε,3 (W + V + η + ψ)− Lε,3 (W + V + η) = O
(
εn+1) (2.57)

be fulfilled. Here Lε,3 denotes a new decomposition of the operator Lε near the boundary S3 in
coordinates (t, τ), where τ = 1−x

ε
. We should look for the boundary layer function ψ in the form

ψ = ψ0 (t, τ) + εψ1 (t, τ) + ...+ εn+1ψn+1 (t, τ) . (2.58)

12
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Having substituted expression (2.58) of the function ψ and new expansions in a small parameter
of already constructed functionsW,V, η in coordinates (t, τ) in (2.57) we get the following equations
whose solutions are the functions
ψ0, ψ1, ..., ψn+1:

∂

∂τ

(
∂ψ0

∂τ

)p

+
∂2ψ0

∂τ2
+
∂ψ0

∂τ
= 0, (2.59)

∂

∂τ

{[
p

(
∂ψ0

∂τ

)p−1

+ 1

]
∂ψj

∂τ

}
+
∂ψj

∂τ
= Φj ; j = 1, 2, ..., n+ 1. (2.60)

Here Φj are known functions polynomially depending on the first and second derivatives of the
functions V0, V1, ..., Vj−1.

We now find boundary conditions for equations (2.59), (2.60). As is known, all functions Wi (t, x);
i = 0, 1, ..., n vanish for t = x, in particular for t = x = 1. Taking this fact into account, from (2.49)
and (2.50) we get that all functions ηj ; j = 0, 1, ..., n +m − 1 vanish for x = 1, whence we have
η|x=1 = 0. Hence it follows that we can write equality (2.56) in the form

(W + V + ψ)|x=1 = 0 (2.61)

Assume that the function f(t, x) satisfies the condition

∂kf (0, 1)

∂tk1∂xk2
= 0; k = k1 + k2; k = 0, 1, ..., n+m− 1. (2.62)

Then from (2.33), (2.34) it follows that all functions Vj ; j = 0, 1, ..., n+m−1 will vanish for x = 1,
hence we have V |x=1 = 0. Therefore, equality (2.61) takes the form

(W + ψ)|x=1 = 0. (2.63)

Having substituted expressions (2.1), (2.58) forW,ψ in (2.63), and taking into account the fact that
all functions ψj ; j = 0, 1, ..., n+ 1, should be boundary layer type functions from (2.63) we get the
following conditions for equations (2.59), (2.60):

ψj |τ=0 = φj (t) , lim
τ→+∞

ψj = 0, (2.64)

where φj (t) = −Wj (t, 1), for j = 0, 1, ..., n and φn+1 ≡ 0.

The following statement is valid.

Lemma 2.4. For every t ∈ [0, 1] problem (2.59), (2.64) for j = 0 has a unique solution, and the
function ψ0 (t, τ) to τ with respect to τ is continuously differentiable with respect to t, has continuous
derivatives to 2 (n+m+ 1)-th order, inclusively. The following estimation is valid:∣∣∣∣∂iψ0 (t, τ)

∂ti1∂τ i2

∣∣∣∣ ≤ Gi1i2

(
|φ0 (t)| ,

∣∣∣φ′
0 (t)

∣∣∣ , ..., ∣∣∣φ(i1)
0 (t)

∣∣∣) exp (−τ) , (2.65)

where i = i1 + i2; i = 0, 1, ..., 2n + m + 2; Gi1i2 (t1, t2, ..., ti1+1) are some known polynomials of
their own arguments with non-negative coefficients, free terms of these polynomials equal zero, and
at least one of other coefficients is non zero.

The proof of lemma 2.4 is in [34, theorem 2], (see also [39, theorem 2]).

Construction of remaining functions ψ1, ψ2, ..., ψn+1 as the solutions of linear problems (2.60), (2.64)
for j = 1, 2, ..., n+ 1 is based on the following statement, whose prove is given in [34, Theorem 3].
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Lemma 2.5. Problems (2.60), (2.64) for j = 1, 2, ..., n + 1 have unique solutions, the functions
ψj (t, τ) ; j = 1, 2, ..., n+1 have continuous derivatives to the 2 (n+m+ 1− j)-th order, inclusively.
The following estimations are valid:∣∣∣∣∂iψj (t, τ)

∂ti1∂τ i2

∣∣∣∣ ≤ i1+j+1∑
s=0

|ajs (t)| τs exp (−τ) , (2.66)

where i = i1 + i2; i = 0, 1, ..., 2n + 2m + 2 − j; ajs (t) are known functions expressed by the
functions φ0 (t) , φ1 (t) , ..., φj (t) and their derivatives in the form of polynomials without free
terms j = 1, 2, ..., n+ 1.

Multiply all functions ψj ; j = 0, 1, ..., n + 1 by the smoothing cofactor and for the obtained new
functions leave the previous denotation.

So, we constructed the sum

ũ =

n∑
i=0

εiWi +

n+m−1∑
s=0

ε1+sVs +

n+m−1∑
s=0

ε1+m+sηs +

n+1∑
j=0

εiψj , (2.67)

that following (2.56) satisfies the boundary condition

ũ|x=1 = 0. (2.68)

As the function ψ vanishes for x = 0 at the expense of the smoothing cofactor, it follows from (2.53)
that in addition to condition (2.68), ũ satisfies the boundary condition

ũ|x=0 = 0, (2.69)

as well.

From (2.62) it follows that the functions φj (t) = −Wj (t, 1); j = 0, 1, ..., n satisfy the following
conditions

φ
(k)
j (0) = 0; k = 0, 1, ...,m; j = 0, 1, ..., n. (2.70)

Then from estimations (2.65), (2.66) and from (2.70) we have

∂kψj (t, τ)

∂tk

∣∣∣∣
t=0

= 0; k = 0, 1, ...,m; j = 0, 1, ..., n+ 1. (2.71)

From (2.58) and (2.71) we get

ψ|t=0 =
∂ψ

∂t

∣∣∣∣
t=0

= ... =
∂mψ

∂tm

∣∣∣∣
t=0

= 0. (2.72)

Taking into account (2.51), (2.72) we have that the sum ũ =W+V +η+φ alongside with conditions
(2.68), (2.69) satisfies the following boundary conditions as well

ũ|t=0 = εn+1φε (x) ,
∂ũ

∂t

∣∣∣∣
t=0

=
∂2ũ

∂t2

∣∣∣∣
t=0

= ... =
∂mũ

∂tm

∣∣∣∣
t=0

= 0. (2.73)

It is known that all functions Wi (t, x) ; i = 0, 1, ..., n together with their own derivatives vanish at
t = x, in particular for t = x = 1. Hence it follows that the function φj (t) = −Wj (t, 1) satisfies
the conditions:

φ
(k)
j (1) = 0; k = 0, 1, ..., 2m. (2.74)
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From estimations (2.65), (2.66) and (2.74) we get that

∂m+kψj (t, τ)

∂tm+1

∣∣∣∣
i=1

= 0; k = 1, 2, ...,m; j = 0, 1, ..., n+ 1. (2.75)

From (2.58) and (2.75) it follows that

∂m+1ψ

∂tm+1

∣∣∣∣
t=1

=
∂m+2ψ

∂tm+2

∣∣∣∣
t=1

= ... =
∂2mψ

∂t2m

∣∣∣∣
t=1

= 0. (2.76)

Following (2.48), (2.76) we get that the function ũ in addition to conditions (2.68), (2.69), (2.73),
satisfies the following boundary conditions as well:

∂m+1ũ

∂tm+1

∣∣∣∣
t=1

=
∂m+2ũ

∂tm+2

∣∣∣∣
t=1

= ... =
∂2mũ

∂t2m

∣∣∣∣
t=1

= 0. (2.77)

Introduce the denotation
u− ũ = z (2.78)

and call the function z a remainder term, where u is the solution of problem (1.6)-(1.9). Then
(2.67), (2.78) yields the following asymptotic expansion in a small parameter of the solution of
problem (1.6)-(1.9):

u =

n∑
i=0

εiWi +

n+m−1∑
s=0

ε1+sVs +

n+m−1∑
s=0

ε1+m+sηs +

n+1∑
j=0

εjψj + z. (2.79)

Now we should estimate the remainder term.

3 Estimating the Remainder Term, and Formulation of
the Main Result

The following lemma is valid.

Lemma 3.1. For the remainder term z in (2.79) the following estimation is valid

ε2m
1∫

0

(
∂mz

∂tm

∣∣∣∣
t=1

)2

dx+ εp
∫
D

∫ (
∂z

∂x

)p+1

dtdx+ ε

∫
D

∫ (
∂z

∂x

)2

dtdx+

+ C1

∫
D

∫
z2dtdx ≤ C2ε

2(n+1), (3.1)

where C1 > 0, C2 > 0 are constants independent of ε.

Proof. Putting together (2.2), (2.7), (2.47), (2.57), we have that the function ũ satisfies the
equation

Lεũ = O
(
εn+1) . (3.2)
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Subtracting (3.2) from (1.6), we get

(−1)m ε2m
∂2m+1z

∂t2m+1
− εp

∂

∂x

[(
∂u

∂x

)p

−
(
∂ũ

∂x

)p]
− ε2

∂2z

∂x2
+

+
∂z

∂t
+ az = O

(
εn+1) . (3.3)

From (1.7)-(1.9), (2.68), (2.69), (2.73), (2.77) it follows that z satisfies the following boundary
conditions

z|t=0 = −εn+1φε (x) ,
∂kz

∂tk

∣∣∣∣
t=0

= 0;
∂m+kz

∂tm+k

∣∣∣∣
t=1

= 0; k = 1, 2, ...,m, (3.4)

z|x=0 = z|x=1 = 0. (3.5)

Here the function φε (x) is determined by formula (2.15) and satisfies the conditions

φε (0) = φε (1) = 0. (3.6)

Let us consider the auxiliary function

z1 = εn+1 [tm+1 (1− t)2m+1 x (1− x)− φε (x)
]
. (3.7)

It is easy to see that the function z1 determined by formula (3.7), satisfies boundary conditions
(3.4), (3.5) as well.

Represent the remainder term z in the form

z = z1 + z2. (3.8)

Obviously, the function z2 satisfies the following boundary conditions

∂kz2
∂tk

∣∣∣∣
t=0

= 0; k = 0, 1, ...,m;
∂m+kz2
∂tm+k

∣∣∣∣
t=0

= 0; k = 1, 2, ...,m, (3.9)

z2|x=0 = z2|x=1 = 0. (3.10)

Having substituted the expression of z from (3.8) in (3.3) and taking into account (3.7), after some
transformations we get the equation

(−1)m ε2m
∂2m+1z2
∂t2m+1

− εp
∂

∂x

{[
∂ (z2 + ũ+ z1)

∂x

]p
−
[
∂ (ũ+ z1)

∂x

]p}
−

− εp
∂

∂x

{[
∂ (ũ+ z1)

∂x

]p
−
(
∂ũ

∂x

)p}
− ε

∂2z2
∂x2

+
∂z2
∂x

+
∂z2
∂t

+ az2 = O
(
εn+1) . (3.11)

Taking into account (3.7), we can show that the term ∂
∂x

{[
∂(ũ+z1)

∂x

]p
−
(
∂ũ
∂x

)p}
has order of
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smallness O
(
εn+1

)
with respect to ε. Taking this term to the right hand side of (3.11) we get

the following equation

(−1)m ε2m
∂2m+1z2
∂t2m+1

− εp
∂

∂x

{[
∂ (z2 + ũ+ z1)

∂x

]p
−
[
∂ (ũ+ z1)

∂x

]p}
−

− ε
∂2z2
∂x2

+
∂z2
∂x

+
∂z2
∂t

+ az2 = O
(
εn+1) . (3.12)

Multiplying both hand sides of (3.12) by z2, integrating by parts the obtained expressions on
domain D, allowing for conditions (3.9), (3.10) after certain transformations we get the validity of
estimation (3.1) for the function z2. From (3.7), (3.8) and from the estimation for z2 we get validity
of estimation (3.1) for z.

Lemma 3.1 is proved.

4 Conclusion

Summarizing the obtained results, we arrive at the following statement.

Theorem 4.1. Assume that the function f (t, x) ∈ C2n+2m+2 (D) and satisfies conditions (2.18),
(2.55), (2.62). Then for the solution of boundary value problem (1.6)-(1.9) the asymptotic representation
(2.79) is valid, where the functions Wj are determined by the first iterative process, Vs, ηs, ψj are
boundary layer type functions near the boundaries t = 0, t = 1 and x = 1 and also are determined
by appropriate iterative processes, z is a remainder term and estimation (3.1) is valid for it.
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