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Abstract 
 

The concept of Pregroups was introduced by Stallings in 1971.  Subsequently the concept of Pregroups 
was developed by many other researchers. Stallings originally defined a set with a binary operation 
satisfying five axioms, namely, P1, P2, P3, P4, and P5. It has been proved later that P3 is a consequence 
of the other axioms. Stallings has also linked this construction of a Pregroup to Free Product of Groups. 
This construction is developed to include a new axiom called P6, which enabled to define a length 
function on the universal group of Pregroups. Applications of Pregroups with length functions led to 
direct proof of many other problems in combinatorial group theory. 
 

 
Keywords: Archimedean elements; defined product of elements; length functions; pregroup; universal 

group. 
 

1 Introduction 
 
Stallings [1], in 1971 introduced the concept of a pregroup. Subsequent work is done by Hoare [2], Nesayef 
[3], Chiswell [4], and many others. Five axioms are originally introduced by Stallings [1], namely P1, P2, 
P3, P4, and P5. It is proved in [3] that P3 is a consequence of the other axioms.  Stallings extended his 
construction to link Pregroups to free products of groups in [5]. 
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On the other hand Lyndon [6] defined a length function on the elements of a group in 1963. Lyndon defined 
a set of axioms to be satisfied in order to assign a real valued length to each element of the given group.  As 
a result of this development many other well-known theorems and properties of groups were proved directly 
by applying the length function.  These were developed by many other researchers, such as Chiswell [3], 
Hoare [2], Wilkens [7] and many others.  Nesayef [3] focussed on the applications of length functions on the 
universal group of pregroups.  Further applications were carried out by Hoare [8] in 1988. Pregroups were 
also generalised further by Hoare [9] in 1992. 
 
This paper considers imposing a new axiom called P6 and the pregroup satisfying P6 called P* and defining 
a length function on the universal group of P*.  This result was also tackled independently by Chiswell [4].  
Then combinatorial properties of groups with length functions are modified in this paper to include 
pregroups P*. As a result many new constructions are established and the nature of their elements are 
identified by the means of length functions.   
 
In section one of this paper, we introduce the concept of length function and list all the axioms of length 
function which are needed in the latter sections. We also introduce the definition and some important 
properties of pregroups.  In section two, we introduce the new axiom P6 and prove that some axioms are 
equivalent to the other ones.  
 
Finally we show that the universal group of a Pregroup, U(P*)  has a length function given by Lyndon [6] 
and prove some consequence results as a result of imposing P6.   
 

2 Length Function  
 
Definition 2.1: A length function |  | on a group G, is a function giving each element x of G, a real number 
|�|, such that for all � , � , � ∈ �, the following axioms are satisfied.    
 

	1′  |�| = 0 ,  where � is the identity elements of G.  
	2   |���| = |�| 
	4   ���, �� <  ���, �� ⟹ ���, �� = ���, ��, where ���, �� =  �

�
 � |�| + |�| − |����| 

 
Lyndon showed that A4 is equivalent to:  ���, �� ≥ min  � ���, ��, ���, ���  and to 
 

���, ��, ���, �� ≥  ⟹ ���, �� ≥   . 
	1′, 	2 and 	4 imply |�| ≥ ���, �� = ���, �� ≥ 0 

 
Assuming, A2 and A4 only, it is easy to show that:  
 

i. ���, �� ≥ |�|, where e is the identity element of G. 
ii.  |�|  ≥ |�| 

iii.   ���, �� ≤ |�| − �

�
 |�|   

 
	3 State that ���, �� ≥ 0,  is deductible from 	1′, 	2  and 	1′ is a weaker version of the following axiom:  
 

	1 |�| = 0, if and only if � = 1 in G. 
 
The following results are introduced by Lyndon [6]. 
 

(1) ����, �� + ���, ���� = |�| 
(2) ���, ���� + ���, ���� ≤ |�| Implies |� � �| ≤ |�| − |�| + |�| 
(3) ���, ���� + ���, ���� ≤ |�| Implies ����, ���� = ���, ���� 
(4) ���, �� + �����, ���� ≥ |�| = |�| Implies |�������| ≤ |����|� 
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It follows from (2), that for any �, � ∈ �, � ��, �� = |�| − � �� ���, ���� ≤  |�| by A3. 
 
Since ���, �� = � �� , �� , we get � �� , �� ≤ min�|�| , |�|� , as stated that  � �� , �� +  � ���� , ���� >
 |�| = |�|  ⇒ � = � 
 
The following definitions are introduced in [7]. 
 
Definition 2.2: A non-trivial element g of a group G is called non-Archimedean if  |%�| ≤  |%|. 
 
Definition 2.3: Let G be a group with length function. An element � ≠ 1 in g is called Archimedean if 
|�|  ≤  |��| . 
 
The following Axioms and results were added by Lyndon and others  
 

	0    � ≠ 1   ⟹  |�|  <  |��| 
(0  ��� , � � is always an integer 
(1   � ≠ 1  , |��|  ≤  |�| ) *+)�,  |�| is odd 
(2   -./  0.  � ), |��| = |�| + 1 
(3   )1 |�| ), .�� 2ℎ�0 |��| ≥  |�|  
(1′  )1 |�| ), �4�0 50� |�| ≠ 0 , 2ℎ�0 |��| > |�|  
60  |��| ≤ |�| ) *+)�, �� = 1  ), � = ��� 
61∗ � ), %�0�/5+ 8� �� ∈ � ∶  |�| ≤ 1� 

 
The following two constructions are also added by Lyndon [6], where the set of all Non-Archimedean 
elements in G is denoted by N:        
       

 6 = �� ∈ � ∶  |��| ≤ |�| �                                                                                                   (1) 
     
: = � �� ∈ � ∶ |��| +  |��| < 2|�| = 2 |�| �                                                                                 (2) 

 
Lyndon showed that : ⊆ 6. However, the nature of the elements of M and N is investigated in [10]. 
 

3 Pregroups 
 
Definition 3.1. A Pregroup is a set P containing an element called the identity element of P, denoted by 1, a 
subset D of PXP and a mapping D → P, where ( x , y ) → x y,  together with a map i : P → P where i (x) =     
x-1, satisfying the following axioms: 
 
We say that x y is defined if (x , y) ∈ D, i.e. x y ∈ P.  
 

P1. For all x ∈ P, 1x and x1 are defined and 1x = x1 = x.  
P2. For all x ∈ P, x-1 x = x x-1 = 1. 
P3. For all x ,y ∈P, if x y is defined , then y-1 x is defined and (x y )-1 = y x. 
P4. Suppose that x, y, z ∈ P. If x y and y z are defined, then x (y z) is defined, is which case  
       x ( y z ) = (x y) z.  
P5. If w, x, y, z ∈P, and if w x, x y, y z, are all defined the either w (x y) or (x y) z is defined.  

 
3.1 The axiom P6 
 
In this section we restrict our attention to a special type of pregroups, which satisfy a certain condition, 
namely P6.  To do this we introduce the following theorems, which are given in [3]. 
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Theorem  3.1: The following two statements are equivalent in P. 
 

P6(1):   If ��� , ��� is reduced and ��5 , 5���� are both defined, then 5 ∈ 	=   
P6(2):   If ��� , ��� is reduced and � 5��� �� is  defined for  5 ∈  >  then   5�� ∈  	=. 

 
Proof:  Suppose ��� , ��� is reduced and let � 5��� �� is defined for some 5 ∈ >. 
 
��� 5����� , � 5��� �� are both defined so   5��   ∈  	=  , and P6 (1) → P6(2). 
 
Conversely, suppose ��� , ��� is reduced and ��5 , 5���� are both defined for some 5 ∈ >.  
 
Since ��� , ��� is reduced, then (��5 , 5���� ) is reduced. 
 
Since ��

�� ���5� is defined and equals to a, and ���
�� ���5�� 5���� is defined and equals to ��, then by P6 

(2) ��
�� ���5� ∈ 	=,   i. e.  5 ∈  	=  . 

 
Therefore P6 (1) ⇔ P6 (2) 
 
We denote the equivalent statements P6(1) and P6(2) in theorem 3.1, by P6  and the pregroup which satisfies 
P6, by P* . The following construction is introduced in [11]. 
 
Definition 3.2: Let P* be a pregroup satisfying P6.  The Universal group, U (P*) is the set of all equivalence 
classes of reduced words in P*. 
 
We define now a length function on @ �>∗�.  Before we achieve this, we introduce the following result, 
which generalizes the condition P6 (2). 
 
Theorem 3.2: Let 5A��  , … , 5�  be any sequence, and �� , … , �A  be reduced, both on >∗ .  If 
5A��  , … , 5��� , … , �A is defined, then 5A��  , … , 5��� , … , �A ∈  	= , 0 ≥ 2. 
 
Proof:  The only way in which 5A��  , … , 5��� , … , �A  is defied is by C5A��  , … , 5��� , … , �AD�A  being 
defined. 
 
Then also by theorem 2.1 either C�5A��  , … , 5��� , … , �A����A�� D�A  is defied, so by P6(2), 
�5A��  , … , 5��� , … , �A����A��   ∈  	=, or C 5A�� � 5A�� … 5���   …  �A���D�A is defined, where �= = 1. 
 
Since �5A��  , … , 5��� , … , �A����A  is not defined by theorem 2.1, then by P6(2)  
5A�� �5A��    …  5���    …  �A���  ∈  	= 
 
Theorem 3.3: Let @ �>∗� be the universal group of a pergroup >∗ and left %, ℎ ∈ �>∗�.  Let  
 
% = �� … �A  , ℎ = ��  … �E ,  , 0 ≥ 2   be in reduced forms.  Let 5F = �A�FG� … . ��A�E

��� … �E�FG�
��  be 

defined for 1 ≤ ) ≤ , for some , <   , , ≤ 0. 
 
If 5H  �E�H

��  is defined then 5F ∈  	= for all ) ≤ ,.  Hence by symmetry if , < 0 and �A�H5H is defined, then 
5F ∈ 	=. 
 
Proof:       5F = �A�FG� 5F�� �E�FG�

��  ,  for 1 ≤ ) < ,, where 5= = 1.  Then by theorem 2.1 either  
 

 �A�FG�
��  �5F��  �E�FG�

�� � is defined                                                                                                      (1) 
 
or  � �A�FG� 

�� 5F�� � �E�FG�
��  is defined                                                                                                 (2) 
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If (1) holds, then C �A�FG� 
�� �5F��  �E�FG�

�� �D �E�F 
��  is defined  

 
Then  5F��  �E�FG�

��  ,  �E�F 
��  is reduced.  So by P6 (2)  C �A�FG�

  �5F��  �E�FG�
�� �D = 5F   ∈  	= 

 
If (2) holds, then C � �A�FG�

 5F�� � �E�FG�
�� D �E�F 

�� is defined. 
 
Since   �E�FG�

��  ,  �E�F 
��   is reduced, then by P6 (2), � �A�FG�

 5F�� �  �E�FG�
�� =  5F ∈ 	= 

 
Corollary 3.1: In theorem 3.3,   �A�H 5H ( 5H �E�H

�� � is defined if and only if ( �A�H 5H� 5H �E�H
��   is defined.  

 
Proof: By theorem 2.3,   5H ∈  	= in either case. Then �A�H 5H and  5H �E�H

��  are defined. by P4. Then the 
result follows. 
 
From Theorems 2.2 and 2.3 and Corollary 2.1, with the same notations, we have shown that: 
 
Corollary 3.2: %ℎ�� = �� … . �A�H5H �E�H

��  … . �E�H
��  is reduced, if and only if 5H ∉  	=. 

 
The proof of this Corollary is similar to the main theorem in [12]. 
 
3.2 P* pregroups and length function 
 
Theorem 3.4:    |   | ∶ @�>∗�  → ℝ   given in definition 3.2 is a length function on @�>∗� 
 
Proof:  	1′ , 	2 are clearly satisfied, so we prove A4 is also satisfied. 
 
Let  % , ℎ , K ∈ @�>∗�. The result is trivial if any one of |%| , |ℎ| , |K| is zero.  So let % = �� … . �A , 0 ≥ 1, 
ℎ = �� … . �E ,   ≥ 1 and  � = �� … . � , � ≥ 1, be reduced where �� , �� and  ��  ∉  	= , 
 i.e. |  % | = 0 , |ℎ| =   50�  |  K | = ℓ . 
 
Clearly � �% , ℎ �  ≥ 0.   Suppose � �% , ℎ � , � �ℎ , K � ≥ , 
 
Case 1: s is an integer  
 
There exists 5H, such that,  %ℎ�� =  ��  … �A�H  5H �E�H

��   … ��
��, where 

 
 5H = �A�HG� … �A �E�H

�� … �E�HG�
 ,   and , 5H ∈ 	=  

 
Similarly ℎK�� =  ��  … �E�H 8H  �ℓ�H

��   … ��
��  and 8H ∈ 	= 8H =  �E�HG�  … �E  �ℓ 

��   … �ℓ�HG�
��   

%ℎ�� =  ��  … �A �ℓ 
��   … ��

��    =  ��  … �A �E 
��   … �E�HG�

��  �E�HG�
�� … �E  �ℓ 

�� … . ��
�� 

                            =  ��  … �A�H   5H  8H �ℓ�H
��   … ��

�� 
 
Since  5H 8H ∈ 	=, then � � % , K� ≥ , 
 
Case 2: s is not an integer  
 

Let � � % , K� , � � ℎ , K� ≥ / − �

�
= , , / ≥ 1 

 
Then   %ℎ�� =  ��  … �A�N  5N   �E�H

��   … ��
�� , where  5N =  �A�NG�

��  …  �A �E 
��   … �E�NG�

��  
ℎK�� =  ��  … �E�N  8N  �ℓ�H

��   … ��
�� , where  8N =  �E�NG�

  …  �E 
 
�ℓ 

�� … �ℓ�NG�
��  and 5N  ,  8N are not necessarily in 	=, moreover  5F is defined for all ) ≤ /. 
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%ℎ�� =  ��   .    .     .   �A   �ℓ
��   … ��

��  =  ��   .    .     .   �A  �E�NG�
��  

 
 �E�NG� .     .    . �E   �ℓ

��   … ��
�� 

 =  ��   .    .     .   �A�N 5N  8N   �ℓ�N
��   … ��

��   
 
Let (5N  , 8N) be reduced.  By theorem 2.3,  5N��  ∈  	O . 
 
Therefore �A�NG�  5N�� is defined and,  �A�NG�  5N�� = ���A�NG�  5N����E�NG�

�� ��E�NG� = 5N  �E�NG� . 
 
Similarly �E�NG�

��  8N is defined, Then by 6�1�,  �E�NG� ∈  	O, so a contradiction. 
 

Hence 5N  8N  is defined, thus  |%K��| ≤ 0 − / + ℓ− / + 1, i.e. ��%, K� ≥ / − �

�
= , 

 
Therefore A4 is satisfied, and so |      |  is a length function. 
 
3.3 Applications of P* pregroups 
 
Let > = � ∪  ��   2F    ��  ∪  R�   2S    �T and suppose that the product xy of two elements x and y of P is 
defined if and only if at least one of �� , � , ��� is in G. Thus  � � ∈ 	= , provided we exclude the case when    
            

�∗ = < U , 2 |/�+ UV ,  2U2�� = W �U� , 2� =  U′  ∈ ( >,  in which case 	= =  �∗ 
 
The axioms P1, P2 and P3 are clearly satisfied.  For P4, let �, �, � ∈  >  , and suppose xy, yz are defined, and 
x ( y z ) is also defined.  If ( x y ) z is not defined, then 
 

 �� ∉ � , � ∉ � and ���� � ∉ �                                                                                                       (1) 
 
Thus 
 

xy is defined ⇒ either x or � ∈ �                                                                                         (2) 
 

If yz is defined then either y or �� ∈ �                                                                                           (3) 
 
If X(yz) is defined then either x or �� ./  ����� ∈ �                                                         (4) 

 
Since ����� ∉ � and the products x(yz) and (xy)z  are equal in �∗, therefore ����� ∉ � 
 
Case 1: If � ∈ �, then  �� ∉ � , so � ∈ � by (3), and hence �� ∈   �, so a contradiction. 
 
Case 2: If � ∉ �, then �� ∈ �, so � ∈ �, by (2), and �� ∈ � by (4). Therefore,  � ∈ � also a contradiction. 
 
Hence (x y) z is defined, i.e  P4 is satisfied.  
 
For P5, let X, �, � � ∈ > and let w x , x y, y z   be defined and suppose neither w(xy) nor (xy)z is defined. 
Then  X ∉ �  , �� ∉ �  and X ����  ∉ � since xy is defined.  Then either � ./ � ∈ �. 
 
Case 1: If � ∈ �  then x (yz) is defined, so by P4 (xy)z is also defined and x(yz) = (xy)z 
 
Case 2: If  � ∈ �  then (wx)y is defined , so by P4 w(xy)  is defined hence P5 is satisfied. 
 
For P6 suppose (x, y) is reduced, i.e non of the terms, x , y ,xy is in G, and suppose that �5 , 5�� � are both 
defined.  Suppose also that 5 ∉ �, since � ∉ �, then �5 ∈ �, and similarly  5��� ∈ �. 
 

Hence  ��5��5���� ∈ �, so �� ∈ � that is xy is defined, so a contradiction. 
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Therefore  5 ∈ �, and P6 is satisfied. 
 
Note:  The following cases are given in [10].  
 
If Y = ∅  and 6 ≠ ∅, then we get an H.N.N extension, in which case 6 ∩  >∗ = � and : ∩  	= = : ∩ � = 
all elements of the associated subgroups.  
 
If  Y = ∅ , then we get a qusai- H.N.N. extension, (excluding |Y| = 1 , \ = ∅ ), we have . 
 
6 ∩  >∗ = � ∪  R% ]2S (S^T%��  ∶ %  ∈  �  , _ ∈ Y and  : ∩  	= =  R�S  , 	F  , F̀T . 
 
Theorem 3.5: If  ∪  �>∗�  is the universal group of a pergroup >∗ then N consists of conjugates of elements 
of >∗ ∩ 6 .  i.e.     % ∈ 6 ⇔ % = � 5 ��� , � ∈ ∪ �>∗�  and, 5 ∈ >∗ ∩  6 .  Moreover if |%|  is even than 

5 ∈ 	=  and |�| =
|a|

�
 and |�| =

|a|��

�
,  if |%| is odd. 

 
Proof:  Suppose  % ∈ 6, and let  % =  ��  … �A be reduced, then |%| = 0  or % = 0 if 0 = 1 and �� ∈ 	= . 
 
The result is trivial if 0 = 0 ./ 1,  so let 0 > 1. 
 

Case 1:  If n is even, then put n = 2s,  , ≥ 1, %� =  �� … �H �HG� … �A �� … �H�HG� … �A 
 

Since   |%�|  ≤  |%|, then  %� =  �� … �H �HG� … �A  Xℎ�/�  5H = �HG� … �A �� … �H   ∈′  	= 
 
By theorem 2.3, and since |�H 5H �HG�| ≤ 2, then 
 

% = �� … �H �HG� … �A �� … �H ���  … �H��� =  ���  … �H�  5H ���  … �H��� 
 = a conjugate of an element of  	=.  Moreover, 5H

� ∈ 	= ,   ). �.  |5H
�| = 0 =  |5H| , so 5H

 ∈ 6 . 
 
Case 2:  If n is odd, then let   =  2/ + 1 , / ≥ 1 . 
 

%� = �� .     .     .  �N �NG�  .    .    . �A ��.     .     .  �N �NG�  �NG�  .    .    . �A   
 
Since     |%�|  ≤  |%| , then  
 

%� = �� .     .     .  �N ��NG�  5N  �NG�  ��NG�  .    .    . �A,    where 5N�NG�  .     .     .  �A ��  .    .    . �N  and 
|�NG�  5N  �NG�  | ≤ 1. 

 
 By Theorem 2.2 , 5N ∈ 	O.  
 

% = �� .     .     .  �N �NG�  �NG�  .    .    . �A ��.     .     .  �N  � ��.    .    . �N ��� 
% = ��� .     .     .  �N ���NG�  5N�� ��  .    .    . �A���, �NG� 5N = 8  ∈  > ∗\  	O .   

 
Since |�NG�  5N  �NG�  | ≤ 1 and since 5N ∈  	O  , then  8� = �NG�  5N  �NG�  5N  and |8�| ≤ 1 ,  i.e. |8�| ≤ |8|.          
Hence b ∈  > ∗ ∩ 6. 
 
Conversely, suppose,  g = � ��  .    .    . �H�5� ��  .    .    . �H��� , where 5 ∈ > ∗ ∩ 6   
 
If �H  5  �H

��  is defined, then put  �H  5  �H
�� = 5� ,  so 5 ∈  	O  ,  by theorem 2.3. 

 
If |5�| = . , then |5�

�| = . , so 5�   ∈  > ∗ ∩ 6 . 
 
Let  |5�| = 1.   5�

� = �H 5� �H
��,  where  5� ∈  	O .  

 
Suppose ��H 5� �H

��� is reduced, i.e. |5�
�| = 2.   Apply P6(1)  on ��H 5� �H

��� . 
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Since ��H 5���5���H
��� and ��H 5� �H

��� are both defined, then �H  5 ∈  	O  , so a contradiction.  
 
Thus �H 5� �H

�� is defined, i.e. |5�
�| ≤ |5�| , so 5� ∈  > ∗ ∩ 6 . 

 
If  �H�� 5� �H��

��    is also defined, then we apply the same argument and so on until we have  
 
% = ��� .     .     .  �N � 8 ��� .     .     .  �N ���, where  8 ∈ > ∗ ∩ 6 , and  �N 8 �N

�� is not defined. 
 
If 8 ∈  	O  , then |%| = 2/ , 8� ∈ 	O   and  |%�| = |���  … �H�  8� ���  … �H���|  ≤ 2/ , so % ∈ 6. 
 
If 8 ∉   	O  , and �N  8 and 8 �N

�� 
  are not defined then |%| = 2/ + 1.   

 
Since  |8�| ≤ 1 , then |%�| = |���  … �H�  8� ���  … �H���| ≤ 2/ + 1 = |%|,  so % ∈ 6. 
 
Finally, if 8 ∉ 	c and either �N8 or 8�N

�� is defined, then |%| = 2/.  
 
Since 8 ∈ 6 then |8�|  ≤ |8 | ,  so 8� is defined. 
 
Consider %� = ���  … �H�  8� ���  … �H��� , and suppose �N , 8� , �N

��  is reduced. Then: 
 
Either (i)  8�N

�� is defined, then apply P6 (2) on  �8� , �N
���.    

 
Since �8�� , 8�  ��N

�� = 8 �N
�� is defined, then 8�� ∈  	= , so 8 ∈  	= and so a contradiction. 

 
Or (ii) �N8  is defined, and this is similar to (i)  
 
Therefore  �N  , 8� , �N

�� is not reduced, i.e. |�N   8�  �N
��|  ≤ 2, and so ,  |%� |  ≤ 2/ =  |%| , ). � . % d 6. 

 
Theorem 3.6: The equivalent elements of N in @�>∗� are the same conjugates of >∗ i.e.  
 

|%| = |ℎ|, then % ~ ℎ ⇔ % = �5���  , ℎ =  �8��� and  ~ 8 , where 5, 8 ∈ >∗ , � ∈ @ �>∗�  
 
Proof: Suppose % ~ ℎ in N, then |%ℎ��| ≤  |%| = |ℎ| 
 
Let % =  �� … �A , ℎ =  �� … �A be reduced. 
 
Case 1:  The result is trivial if  |%| = |ℎ| = 0, 1 
 
Case 2:   If n is even, then put 0 = 2, , , ≥ 1 
 
Then,  % =  ��� … �H� 5H  ��� … �H��� , 5H ∈ 	= and ℎ =  ��� … �H� 8H ��� … �H��� , 8H ∈  	=. 
 

%ℎ�� =   ��� … �H��� ��H 5H� ��� … �H��� ��� … �H� �8H
��  �H

��� ��� … �H�����   
 
Since |%ℎ��|  ≤ 0 = 2, , then by theorem 2.3,  ��� … �H��� ��H … �H� = 5H ∈ 	=, and 
�� … �H = ��� … �H� 5 
 
Thus  ℎ = ��� … �H�  58H 5�� ��� … �H���, where 58H  5�� = 8 ∈ 	= 
 
Hence g, h are the same conjugates, moreover, | 5H 8��| = 0 , for  5H , 8�� ∈ 	= 
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Case 3:  If n is odd and 0 = 2/ + 1 where / ≥ 1, then we have: 
 

% =   ��� … �N� ��NG� 5N� ��� … �N��� , 5N   ∈  	=   , �NG� 5N   ∈  >∗  ∖  	=  
 
Also  ℎ =   ��� … �N� ��NG� 8N� ��� … �N��� , Xℎ�/�  8N   ∈  	=   , �NG� 8N   ∈  >∗  ∖  	=  
 
Since |%ℎ��| ≤ 2 / + 1 then |��NG� 5N� ��� … �N������ … �N� ��NG� 8N��� | ≤ 1. 
 
Since ��NG� 5N� ��� … �N��� and ��� … �N� ��NG� 8N��� are reduced, it follows that: 
 
��� … �N������ … �N�  is defined and by theorem 2.3 we have,  ��� … �N������ … �N� = 8 ∈ 	= 
 
Thus ��� … �N� = ��� … �N� 8. 
 
So ℎ = ��� … �N� 8 ��NG� 8N� 8����� … �N��� where b ��NG� 8N� 8��   ∈  >∗  ∖  	=. 
 
Hence g and h are conjugates of elements of >∗ ∖ 	= determined by the same element of  �>∗�. Moreover 
  �NG�  5N  ~ 8 ��NG� 8N� 8�� , since |�NG� 5N8 ��NG� 8N� 8�� | ≤ 1 and |8| = 0 
 
Conversely, suppose  % =  ��� … �N� 5 ��� … �N��� , 5  ∈  >∗  ∩ 6 , ℎ =  ��� … �N� 8 ��� … �N��� , 5 ∈
>∗  ∩ 6 , where 5 ~ 8.  
 

Similar arguments show that:  �N 5 �N
�� is defined where / =

|a|

�
  if |%| is even, and / =

|a|��

�
   if g is odd.                                                                                

 
Since  5 ~ 8  , either  5 , 8  ∈   	= or 5 , 8 ∉   	=.  So we consider the possible cases. 
 
Case 1:  If 5 , 8 ∈  	= then  58�� ∈  	= and  |%| =  |ℎ| = 2 /. 
 

|%ℎ��| = |��� … �N� 8 ��� … �N���| ≤   2/  , so % ~ℎ. 
 
Case 2: If 5 , 8 ∉  	= and both �N , 8 , �N

�� are reduced, then |%| = |ℎ| = 2/ + 1 and  |5| =  |8| = 1 
 
Since |58��| ≤  |5| = |8| = 1 by assumption, then  |%ℎ��| = |��� … �N�58�� ��� … �N���| ≤   2/ + 1  , so 
% ~ℎ  
 
Case 3: If 5 , 8 ∉  	= and either �N5  is defined                                                                                             (1) 
 

Or 5�N
�� is defined                                                                                                                             (2) 

 
i.e. |%| = 2/  and either �N8  is defined                                                                                            (3) 
 
Or 8�N

�� is defined                                                                                                                             (4) 
 

i.e. |%| = 2/ 
 
Suppose 5�N

�� is defined, and ��N , 5� is reduced, since ∈ 6 , then |5�| ≤ 1 and then �N
  5�� and 5� are both 

defined.   So applying P6(1) to ��N
  5��, 55�, then 5 ∈ 	= so contradiction.  

 
Hence  �N

  5  and 5 �N
�� are both defined. Similarly �N

  8  and 8 �N
�� are both defined 

 
So |%ℎ��| = |��� … �N5� ��� … �N8���| ≤   2/ .  Therefore % ~ℎ. 
 

Theorem 3.7. If @�>∗� is the universal group of a pregroup >∗  ≠  	=, then the elements of M are conjugates 
of elements of length zero in @�>∗�,  i.e. ℎ  ∈  : ⟹ %ℎ = �5� ��, where � ∈ @�>∗� and  5 ∈ 	=  
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Proof: Let % =  �� … �A , ℎ =  �� … �A be reduced, and suppose |%ℎ| +  |ℎ%| <  2 |ℎ| ,   2ℎ�0 |%| , |ℎ| ≥ 1. 
 
Case 1:  If n = 1, then % = ��  ∉  	= and ℎ = ℎ�  ∉  	=,   since      |����| +  |����| < 2 |��| = 2 |��| = 2,  
 
Then at least one of |����| or |����| is zero 
 
Suppose |����| = 0 , i.e. ����   ∈  	= , then %ℎ = ��������

�� = ����������
��  = conjugate of ���� ∈ 	=.  

 
Similarly, if  |����| = 0 , then hg is a conjugate of ����. 
 
Case 2: If 0 ≥ 2, then let s be the maximum such that 
 

%ℎ = �� … �A�H 5H �HG� … �A                                                                                                          (1) 
 
, ≤ 0 . Then either (1) is reduced in which case 
 

|%ℎ| = 20 − 2, + 1                                                                                                                          (2) 
 
Or 5H  ∈  	= and �A�H 5H �HG� is not defined in which case 
 

|%ℎ| = 20 − 2,, where 5H =  �A�HG� … �A�� … �H                                                                         (3) 
 
Similarly, let r be the maximum such that  
 

%ℎ = �� … �A�N 8N �NG� … �A                                                                                                          (4) 
 
Then either (4) is reduced, so |ℎ%| = 20 − 2/+1                                                                             (5) 
 
Or 8N ∈ 	= and �A�N 8N �NG� is not defined, so |ℎ%| = 20 − 2/                                                      (6) 

 
Where 8N = �E�NG�  �E �� … �N 
 
If (2) and (5) hold, then 20 − 2, + 1 + 20 − 2/ + 1 < 20 
 

20 − 2, − 2/ + 2 < 0   ⇒ / + , >  0 − 1 
/ >  0 − , + 1 and , >  0 − / + 1 

 
If other cases hold, then it is clear that / >  0 − , and , >  0 − /  
 
Subcase 1:   If (2) and (5) hold, then: 
 

ℎ% = ��H … �A��� �H … �A �� … �A�HG�  �A�HG� … �A �� … �H�� 
 
�H … �A =  ��H … �A��� 8A�HG� … 5H�� ��H … �A� 

 
Since 0 − , + 1 < /,  then 8A�HG� ∈  	=  , and since 5H�� ∈ 	=,  then 8A�HG� 5H�� ∈  	= .  So g h is a 
conjugate of an element of  	=. 
 
Subcase 2:   If (3) and (5) or (6) hold, then  
 

%ℎ = ��HG� … �A��� �HG� … �A �� … �A�H  �A�HG� … �A  
�� … �H �H�� … �A  =  ��HG� … �A��� 8A�H … 5H  ��HG� … �A� 

 
Since 0 − , < / then 8A�H ∈ 	=, and since 5H ∈ 	=,  then 8A�H  5H ∈ 	= , then gh = conjugate of an element 
of 8A�H  5H ∈ 	=.  
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Subcase 3:  If (2) and (6) hold, then  
 

%ℎ = ��A�NG� … �A��� �A�NG� … �A �� … �N  �NG� … �A  �� … �A�N �A�NG� … �A  
      =  ��A�NG� … �A��� 8N  5A�N  ��A�NG� … �A�. 

 
Since   8N  5A�N ∈ 	= for  , > 0 − /,  then g h = conjugate of an element of 8N  5A�N ∈ 	=. 
 
Therefore, the elements of M are conjugate of zero length elements of @�>∗� 
 
Since 0 − , + 1 < / then 8A�HG� ∈  	=, and since 5H�� ∈  	=, then 8A�HG� 5H�� ∈ 	= , so gh is a conjugate 
of an element of 	=.  
 
Subcase 4: If (3) and (5) or (6) hold, then  
 

%ℎ = ��HG� … �A��� �HG� … �A �� … �A�H  �A�HG� … �A  �� … �H �HG� … �A  
       =  ��HG� … �A��� 8A�H … 5H  ��HG� … �A� 

 
Since 0 − , < / then 8A�H ∈ 	= , and since 5H ∈ 	= then 8A�H  5H ∈  	=.  
 
Therefore, g h = conjugate of an element of 8A�H  5H ∈ 	=  
 
Subcase 5:  If (2) and (6) hold, then  
 

%ℎ = ��A�NG� … �A��� �A�NG� … �A �� … �N  �NG� … �A  
�� … �A�N �A�NG� … �A  =  ��A�NG� … �A��� 8N  5A�N  ��A�NG� … �A� 

 
Since8N , 5A�N ∈  	= for  , > 0 − / then, g h = conjugate of an element of 8N  5A�N ∈  	=. 
 
Therefore, the elements of M are conjugate of zero length elements of @�>∗�. 
 

4 Conclusion 
 
This paper shows that a special type of pregroups which satisfy an additional condition namely P6 can be 
occupied with Length Function defined by Lyndon [6]. Therefore, it will have all the combinatorial group 
properties which are open for investigation. This paper also proved the following: 
 

(1) The elements of N consists of conjugates of elements of >∗ ∩ 6. 
(2) The equivalent elements of N in @�>∗� are the same conjugates of >∗. 
(3) The elements of M are conjugate of elements of length zero in  @�>∗�. 
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