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Abstract

The correlation scale and the Taylor scale are evaluated for interplanetary magnetic field fluctuations from two-
point, single time correlation function using the Advanced Composition Explorer (ACE), Wind, and Cluster
spacecraft data during the time period from 2001 to 2017, which covers over an entire solar cycle. The correlation
scale and the Taylor scale are respectively compared with the sunspot number to investigate the effects of solar
activity on the structure of the plasma turbulence. Our studies show that the Taylor scale increases with the
increasing sunspot number, which indicates that the Taylor scale is positively correlated with the energy cascade
rate, and the correlation coefficient between the sunspot number and the Taylor scale is 0.92. However, these
results are not consistent with the traditional knowledge in hydrodynamic dissipation theories. One possible
explanation is that in the solar wind, the fluid approximation fails at the spatial scales near the dissipation ranges.
Therefore, the traditional hydrodynamic turbulence theory is incomplete for describing the physical nature of the
solar wind turbulence, especially at the spatial scales near the kinetic dissipation scales.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Interplanetary
medium (825); Solar magnetic fields (1503); Space plasmas (1544); Solar activity (1475); Solar cycle (1487)

1. Introduction

Solar wind turbulence has received considerable attention for
several decades within the community (e.g., Kraichnan 1965;
Belcher 1971; Matthaeus & Goldstein 1982a, 1982b; Tu &
Marsch 1995), and recently there has been an upsurge in interest
in this topic. Much of the interest is driven by the fact that the
solar wind can provide a perfect natural laboratory for the study of
plasma turbulence in space at low-frequency magnetohydro-
dynamic (MHD) scales, which is essential for the studies of solar
wind generation, plasma heating, energetic particle acceleration,
cosmic-ray propagation, and space weather (Coleman 1968;
Jokipii 1968a, 1968b; Matthaeus et al. 1984; Barnes 1979).
During the past decades, the solar wind fluctuation properties and
equations of motion have been studied in great detail
(Belcher 1971; Matthaeus & Goldstein 1982a; Tu et al.
1984, 1989; Marsch & Tu 1997; Tu & Marsch 1997). However,
even until now, it is still impossible to make accurate quantitative
predictions. Most of the earlier studies used the single-spacecraft
time-lagged data to infer solar wind spatial properties based on the
well-known “frozen-in flow” approximation (Taylor 1938).
Provided that the solar wind flow speedVsw is much greater than
the local Alfvén speedVA, the solar wind fluctuations that pass a
detector are convected in a short time compared to all relevant
characteristic dynamical timescales, so the time lags Δt are
equivalent to spatial separations D Vt sw. This assumption is
relatively reliable under some specific conditions (Paularena et al.
1998; Ridley 2000). However, the timescale over which the

frozen-in flow assumption remains valid is not fully established
(Matthaeus et al. 2005; Weygand et al. 2013), and the correct way
to establish the spatial structure is to make use of the simultaneous
two-point single time measurements.
To overcome the shortcomings of the frozen-in flow

assumption, Matthaeus et al. (2005) obtained the two-point
correlation function making use of simultaneous two-point
measurements of the magnetic fields. By using this technique,
both the correlation length scale and the Taylor scale can be
determined, and the values of these two scales were given to be
186 Re (Earth radius, 1 Re=6378 km) and 0.39±0.11 Re,
respectively. Weygand et al. (2007) used the same method and
obtained the Taylor scale values from the data of magnetic field
fluctuations in plasma sheet and solar wind based on the
Richardson extrapolation method. They estimated the Taylor
scale in the solar wind as 2400±100 km, which agrees with the
value given by Matthaeus et al. (2005). Based on the two-point
correlation measurement technique, Weygand et al. (2009) also
obtained the values of the correlation scale and the Taylor scale
by analyzing the magnetic field data measured from the
magnetospheric plasma sheet and the solar wind. Their results
showed that in the solar wind, the correlation scale along the
magnetic field is longer than that along the perpendicular
direction, and the Taylor scale is independent of the magnetic
field directions. These conclusions indicated that the turbulence
is anisotropic. Later, Matthaeus et al. (2010) provided a method
for estimating the two-time correlation function and the
associated Eulerian decorrelation timescale in the turbulence.
This method can compare the two-point correlation measure-
ments with the single-point measurements at corresponding
spatial separations, and can be used for studying the temporal
decorrelation of magnetic field fluctuations in space. Recently,
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by using the direct two-point measurements and the frozen-in
flow assumption, Chasapis et al. (2017) examined the second-
order and fourth-order structure functions of the magnetic
turbulence at very small scales in the solar wind. Their analysis
extended several familiar statistical results, including the spectral
distribution of energy and the scale-dependent kurtosis, down to
the spatial scale near 6 km, and also clarified the earlier results.

All these applications of the two-point correlation measure-
ments validate the excellent performance of this technique for
studying the structure of the solar wind turbulence. In the
current Letter we determine the values of correlation and
Taylor scales of the interplanetary magnetic field fluctuations
based on two-point single time correlation functions throughout
a solar cycle to study the effects of solar activity on the
structure of the plasma turbulence in the solar wind.

This Letter is organized as follows. In Section 2, we give a
brief description of some basic concepts of the fluid turbulence,
which can also be used in the field of plasma turbulence. In
Section 3, we provide a detailed description of the method and
the procedure of the two-point measurements. In Section 4, we
calculate the Taylor scale and the correlation scale in different
time ranges, and discuss how the solar activity influences the
structure of the plasma turbulence. Several significant conclu-
sions will be provided in Section 5.

2. Fundamental Concepts in Fluid Turbulence

A turbulent flow should satisfy the Navier–Stokes equation,
which is the momentum evolution of an element of fluid and
can be written as
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Here u is the velocity, which is a fluctuating quantity in time t
and space x,∇is the gradient with respect to x, ρ is the density,
p is the pressure, and ν is the kinematic viscosity. Note that
Equation (1) corresponds to the incompressible case. Further-
more, Equation (1) neglects forces (driving forces, gravity)
except pressure. The strength of the nonlinear convective
term u·u against the dissipative term ν∇2 u in Equation (1)
can be measured by the “Reynolds number” which is defined as
R=UL/ν, where U and L denote the characteristic flow
velocity and the characteristic length scale (or correlation scale
in this study), respectively. The turbulent flow is characterized
by large Reynolds numbers, which requires that the viscous
term should be insignificant in this case. However, the
boundary conditions or initial conditions may make it
impossible to neglect the viscous term everywhere in the flow
field. This can be understood by allowing for the possibility
that viscous effects may be associated with the small length
scales. Under the conditions of large Reynolds numbers, to
make the dissipative term be the same order of the convective
term, the viscous term can survive only by choosing a new
length scale l. Thus,
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The length scale l is called viscous length, which represents the
width of the boundary layer. Thus, at very small length scales,
the viscosity can be effective in smoothing out velocity
fluctuations.
Since small-scale motions tend to have small timescales, one

can assume that these motions are statistically independent of
the relatively slow large-scale turbulence. If this assumption
makes sense, the small-scale motion should depend only on the
rate at which it is supplied with energy by the large-scale
motion and on the kinematic viscosity. In accordance with
Kolmogorov’s universal equilibrium theory of the small-scale
structure (Kolmogorov 1941a, 1941b), the rate of energy
supply should be equal to the rate of dissipation. According to
the dimensional analysis, the amount of the kinetic energy per
unit mass in the turbulent flow is proportional to U2; the rate of
transfer of energy is proportional to U/L∼1/T, where T
denotes the characteristic transfer time; the kinematic viscosity
ν is proportional to U·L; and the dissipation rate per unit mass
ε, which should be equal to the supply rate, is proportional to
U2/T∼U3/L. With these parameters, we can obtain length,
time, and velocity scales as η≡(ν3/ε)1/4, τ≡(ν/ε)1/2, and
v≡(νε)1/4, respectively. These scales are known as the
Kolmogorov microscales of length, time, and velocity. The
Reynolds number formed with ν and v is Rη=ηv/ν=1.
The value Rη=1 indicates that the small-scale motion is quite
viscous, and that the viscous dissipation adjusts itself to the
energy supply by adjusting length scales. From the expression

( )e ~ U L, 43

we know that the viscous dissipation of energy could be
estimated from the large-scale dynamics that does not involve
viscosity. Thus, the dissipation can be seen as a passive process
in the sense that it proceeds at a rate dominated by the inviscid
inertial behavior of the large eddies. The above expression is
one of the cornerstone assumptions of the classical hydro-
dynamic turbulence. However, we should keep in mind that the
large eddies only lose a negligible fraction of their energy
compared to direct viscous dissipation effects. Supposing that
the timescale of the energy decay is L2/ν, then the energy loss
proceeds at a rate of νU2/L2, which is very small compared to

U3/L if the Reynolds number n= =
n
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large. Kolmogorov (1941a, 1941b) suggested that the small-
scale structure of turbulence is always approximately isotropic
when the Reynolds number is large enough. This is the well-
known local isotropy theory. In isotropic turbulence, the
dissipation rate can be simply expressed as
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where λ denotes the Taylor scale. Combining Equations (4),
(5), and the form of the Kolmogorov microscale, we can obtain
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Comparing Equation (3) with Equation (6), we can see that the
Taylor scale is related to the viscous dissipation. Equation (6)
also suggests that for hydrodynamic turbulence with large
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Reynolds number, the Taylor scale is larger than the
Kolmogorov microscale.

The length scales L, η, and λ mentioned above can
characterize the properties of the flow with high Reynolds
numbers. The correlation scale L, also known as “outer” scale or
“energy containing” scale, is related to the inertial range of the
turbulence. This parameter represents the size of the largest eddy
in the turbulent flow (Batchelor 1953; Tennekes & Lumley 1972;
Batchelor 2000). The large eddies perform most of the transport
of momentum and contaminants, and the energy input also
occurs mainly at large scales. This correlation scale can be
measured by classical methods based on the Taylor’s hypothesis
and can be associated with the first bendover point in the power
spectrum of the turbulent fluctuations. The Kolmogorov
microscale η (“inner” scale or dissipation scale) represents the
smallest length scale in the turbulent flow (Jokipii & Hollweg
1970; Tennekes & Lumley 1972) and it is at the end of the
inertial range. In the view of traditional hydrodynamics, the
viscosity can be effective in smoothing out fluctuations and
dissipates small-scale energy into heat at very small length scales
(note that in the low-collisionality plasmas, this situation is less
clear). A standard method for identifying the Kolmogorov
microscale is to associate it with the breakpoint at the high-
wavenumber end of the inertial range above which the spectral
index of the power spectral density becomes steeper. The Taylor
scale λ is first proposed by Taylor (1935). It can be associated
with the curvature of the two-point magnetic field correlation
function evaluated at zero separation (Tennekes & Lumley 1972;
Matthaeus et al. 2005; Weygand et al. 2010, 2011; Chuychai
et al. 2014). In contrast to the correlation scale and the
Kolmogorov microscale, the Taylor scale does not represent any
group of eddy size, but it can characterize the dissipative effects.
Moreover, the Taylor scale is of the same order of magnitude as
the Kolmogorov microscale. Specifically, the latter is often
smaller than the former for hydrodynamic turbulence with large
Reynolds numbers.

An essential characteristic of turbulence is the transfer of
energy across scales. The energy resides mainly at large scales,
but it can be transferred across scales by nonlinear processes, and
eventually it arrives at small scales. The dissipation mechanisms
at the small scales would limit the transfer, dissipate the fluid
motions, and release the heat (Batchelor 1953; Tennekes &
Lumley 1972). This is the so-called “cascade” process. When the
associated Reynolds number and magnetic Reynolds number are
large compared to unity, this process can be expected in
hydrodynamics and in fluid plasma models such as MHD. In
previous studies, the cascade process is investigated through
spectral analysis or structure function analysis (Matthaeus &
Goldstein 1982a, 1982b; Goldstein et al. 1994, 1995; Tu &
Marsch 1995; Zhou et al. 2004). Many analysis methods describe
the inertial range of scale properties using the well-known power
law of Kolmogorov theory for fluids (Kolmogorov 1941a,
1941b) and its variants for plasmas (Kraichnan 1965). In
hydrodynamics, the inertial range (or the self-similar range)
mentioned above is typically defined extending from the correlation
scale (where the turbulence contains most of the energy) down to
the Kolmogorov microscale. In this work, we use the correlation
scale L and the Taylor scale λ, instead of the correlation scale L and
the Kolmogorov microscale η, to describe the properties of the
solar wind turbulence since the Taylor scale can be measured
relatively easily (Tennekes & Lumley 1972; Weygand et al. 2005).

3. Methods and Procedures

If the turbulence is homogeneous in space, then the means,
variances, and correlation values of the fluctuations are
independent of the choice of origin of the coordinate system
(Batchelor 1953; Tennekes & Lumley 1972; Barnes 1979;
Batchelor 2000). For a magnetic fieldB(x, t)=B0+b, the
mean is á ñ =B B0, the fluctuation is b=B−B0, and the
variance is ∣ ∣s = á ñb2 2 . The two-point correlation coefficient is

( ) ( ) · ( ) ( )
s

= á + ñr b x b x rR
1

. 7
2

Here r is the separation of two points x and x+r. For
homogeneity, R and B0 are independent of position x, though
they may be weakly dependent on position in reality. The á ñ...
denotes an ensemble average. In homogeneous medium, the
ensemble average is equivalent to a suitably chosen time-
averaging procedure. For large ∣ ∣r , the well-behaved turbulence
becomes uncorrelated and R→0.
The direction-averaged correlation scale is defined as

(Matthaeus & Goldstein 1982a; Matthaeus et al. 2005)
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¥
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In addition, the Taylor scale can also be associated with the
curvature of R(r) at the origin (see Matthaeus et al. 2005 and
Weygand et al. 2007 for more details). Strictly speaking the scale
defined in Equation (8) is the integral scale that is not necessarily
equal to the bendover scale of the spectrum. However, this will
not affect the conclusions in this work. The discussions of
different scales and their relations to each other can be found in
Shalchi (2020). A model correlation function with the correct
asymptotic behavior is R(r)∼e− r/L, which has often been used
as an approximation tool for estimating L (Matthaeus & Goldstein
1982a). Note that R(r)=1 for r=0 and R→0 for  ¥r .
From the equations mentioned above, it is clear that the two-

point correlation coefficient R(r) plays an important role in
determining the correlation scale L and the Taylor scale λ. In
the following, we shall focus on the procedures for obtaining
the R(r), L, and λ from multi-spacecraft data.
The magnetic field data used in this work were obtained by

the instruments on spacecraft ACE, Wind, and Cluster during the
time period from 2001 January to 2017 December. Most of the
distances between the ACE and Wind spacecraft are in the range
of 20–500Re, and the Cluster interspacecraft separations during
this period range from about 100 km to over 10,000 km. Since
the spacecraft ACE and Wind orbit the Lagrangian point L1,
which is about 1.5 million km from the Earth and 148.5 million
km from the Sun, the information of the solar wind can be
directly obtained by the spacecraft. The Cluster mission, which
consists of four identical spacecraft at different positions, can
provide the three-dimensional measurements of large-scale and
small-scale phenomena in the near-Earth environment (Escoubet
et al. 1997). Note that the four Cluster spacecraft are not always
in the solar wind. Occasionally, the Cluster spacecraft are in the
Earth’s magnetosphere. Therefore, the data provided by the
Cluster mission should be filtered before we use them.
The first step for investigating the spatial scales in the solar

wind turbulence is to identify the time intervals during which
the spacecraft were immersed in the solar wind. Table 1 shows
the typical values of several solar wind parameters near 1 au.
As we can see, the values of the magnetic field magnitude and
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the plasma parameters drastically change when the spacecraft
travel in and out of the Earth’s magnetosphere. Generally, in
the solar wind the plasma velocity is greater than 200 km s−1,
and the magnetic field magnitude is of the order of several nT.
When the spacecraft fly into the Earth’s magnetosphere,
however, the plasma velocity decreases rapidly, and the
magnetic field magnitude increases to several hundred nT.
Furthermore, both the plasma number density and the proton
temperature also show typically different values for different
cases, namely, in the solar wind and in the magnetosphere.

To illustrate the difference in the measurements mentioned
above, we take Figure 1 as an example. Figure 1 shows the
time series of plasma data measured by the Fluxgate
Magnetometer (FGM) and Cluster Ion Spectrometer experi-
ment (CIS) instruments on board satellite Cluster 1 during the
period 2004 January 19–31. In this time period, the satellite
traveled in and out of the Earth’s magnetosphere about 5 times.
We can see the relatively regular variations of the plasma

parameters in Figure 1. When the satellite crosses the
magnetopause, the plasma number density rapidly increases
due to the accumulation of particles there. The values of the
proton temperature and the magnetic field magnitude also
increase, while the plasma bulk velocity sharply decreases.
When the satellite flies out of the magnetopause, however,
these trends are reversed. Based on these behaviors, we can
roughly distinguish the data intervals of the solar wind from
those of the Earth’s magnetosphere. In addition, an automated
procedure can be adopted to identify the solar wind intervals. In
our investigations, the solar wind shocks and other discrete
solar wind structures are not removed from the data, since the
time period studied is long enough to neglect the impacts of
such solar wind structures.
The measurements from spacecraft ACE and Wind yield

two-point correlation coefficients at larger separations, and
those from the spacecraft Cluster provide the correlation
coefficients at smaller separations. For each pair of the
spacecraft, we linearly interpolated the data to 1 minute
resolution to simultaneously obtain the field vectors at different
spatial positions, since the sampling rate varied from spacecraft
to spacecraft. In order to obtain meaningful two-point
correlation coefficients at larger separations, longer continuous
intervals are required for our analysis. Therefore, the ACE–
Wind data are investigated with a cadence of 1 minute, and the
individual correlation estimates are calculated by averaging
over contiguous 24 hr periods of data. For Cluster data, the
correlation analysis is carried out with 2 hr sampling.

Table 1
Typical Values of Several Solar Wind Parameters at 1 au

Solar Wind
Parameters

Minimum
Values

Maximum
Values Mean Values

Number density 0.04 cm−3 8 cm−3 5 cm−3

Bulk velocity 200 km s−1 900 km s−1 400–500 km s−1

Proton temperature 5×103 K 1×105 K 2×105 K
Magnetic field 0.25 nT 40 nT 6 nT

Figure 1. Time series of plasma data measured by FGM and CIS instruments on board Cluster 1 during the period 2004 January 19–31. The top, second, third, and
bottom panels denote the particle number density, proton temperature, solar wind bulk velocity, and magnetic field magnitude, respectively.
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The data used in this study were measured during the time
period 2001–2017 that covers over an entire solar cycle. The
spacecraft can provide us thousands of time intervals for
studying the effects of solar activity on the correlation scale and
the Taylor scale. The entire data set is divided into a series of 3
yr time periods. In each 3 yr period, the data intervals are
randomly selected. For each data interval, we calculate the
time-averaged two-point correlation coefficients of the magn-
etic field vector. The correlation value is assigned to the time-
averaged spacecraft distance in the corresponding interval.
Using the normalized two-point correlation values calculated
from a large number of solar wind measurements in different
divided time periods, we can obtain the two-dimensional,
normalized correlation coefficients as functions of the spatial
separations and the time ranges. For example, Figure 2 shows
the estimates of solar wind correlation coefficients R(r) versus
spacecraft separations from ACE–Wind data intervals (left) and
Cluster data intervals (right) during the years 2001–2003. In the
left panel of Figure 2, a mean correlation function with the
form R(r)∼e− r/L is obtained by fitting to the data of ACE–
Wind correlation coefficients. Using the definition of the
correlation scale L given by Matthaeus et al. (2005), i.e.,
R(r)=e−1=0.368, the (direction-averaged) correlation
length scale L can be estimated to be 219 Re during the time
period 2001–2003. We can use the so-called Richardson
extrapolation technique (see Weygand et al. 2007 for details) to
calculate the Taylor scale. Using the normalized correlation
coefficients from Cluster data in the right panel of Figure 2, we
can obtain that the Taylor scale is 4311.2 km during
2001–2003. Note that the data intervals are selected with a
random procedure. Therefore, the correlation scale and the
Taylor scale may slightly change their values when we repeat
the calculations of them in the same divided time period. In this
work, we use the averaged values of these repeated calculations
for the correlation scale and the Taylor scale in each time
period (2001–2003, 2002–2004, K, 2014–2016, 2015–2017).

We can employ the values in different time periods to
investigate the variation trends of the correlation scale and the
Taylor scale. In this work, the sunspot number is chosen to be
the indicator of the solar activity. As we know, the number of
sunspots varies with an 11 yr period, which is called the solar
cycle (Parker 1979; Hathaway 2010). Generally, more sunspots
indicate that more masses and energies would be released into
interplanetary space through solar burst activities and events.
By means of the data of the sunspot number, the correlation
scale, and the Taylor scale, we can investigate the effects of the
solar activity on the structure of solar wind turbulence.

4. Results and Discussion

Figure 3 displays the evolution of the sunspot number and the
correlation scale during the time period 2001–2017. The left and
right ordinates denote the sunspot number and the correlation
scale, respectively. Obviously, the variation of the sunspots
shows a regular and periodic trend. As we can see, the
correlation scale also shows a weak periodic variation trend.
When the sunspot number is large, the correlation scale becomes
large; while when the sunspot number is small, the correlation
scale becomes relatively small as well. For example, during the
time periods 2001–2004 and 2011–2014, the sunspot number
and the correlation scale are larger than those during the time
periods 2005–2010 and 2014–2017. As shown in Figure 3, the
maximum and the minimum of the correlation scale are 211.6 Re
and 152.7 Re, respectively. The averaged value of the correlation
scale for all time periods is 178.12 Re, which is similar to the
value 186 Re given in Matthaeus et al. (2005). The correlation
coefficient between the sunspot number and the correlation scale
is 0.56, which suggests a moderate positive correlation between
the solar activity and the correlation scale. That is to say, the
correlation scale of the solar wind turbulence is modulated by the
solar activity to some extent, but not significantly.
Figure 4 depicts the evolution features of the sunspot number

and the Taylor scale during the time period 2001–2017. The

Figure 2. Estimates of solar wind normalized correlation coefficients R(r) vs. spacecraft separations from ACE–Wind data intervals (left) and Cluster data intervals
(right) during the years 2001–2003. The correlation coefficient for the magnetic field vectors decreases with the increasing spacecraft separation. Fitting to the ACE–
Wind data (solid curve) in the left panel gives the correlation scale L=219Re.
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Figure 3. Evolution features of sunspot number (red) and correlation scale (blue) during time period 2001–2017. The left and right ordinates denote the sunspot
number and the correlation scale (Re), respectively. The correlation coefficient between the sunspot number and the correlation scale is 0.56.

Figure 4. Evolution features of sunspot number (red) and Taylor scale (blue) during time period 2001–2017. The left and right ordinates denote the sunspot number
and the Taylor scale (km), respectively. The correlation coefficient between the sunspot number and the Taylor scale is 0.92.
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left and right ordinates denote the sunspot number and the
Taylor scale, respectively. As one can see, relative to the
correlation scale, the Taylor scale is more significantly related
to the sunspot number and the solar activity. The Taylor scale
increases or decreases with the increasing or decreasing
sunspot number, respectively. As shown in Figure 4, the
maximum and the minimum of the Taylor scale are 4345.5 km
and 1224.5 km, respectively. The averaged value of the Taylor
scale for all time periods is 2459.3 km (0.39 Re), which agrees
well with the value 0.39±0.11 Re given in Matthaeus et al.
(2005) and the value 2400±100 km presented in Weygand
et al. (2007). The correlation coefficient between the sunspot
number and the Taylor scale is 0.92, which indicates a strong
positive correlation between the solar activity and the Taylor
scale. The high value of the correlation coefficient means that
the Taylor scale is significantly modulated by the solar activity.

Based on Equation (6), we can obtain the form of the
effective magnetic Reynolds number Rm

eff as

( )⎜ ⎟⎛
⎝

⎞
⎠l

=R
L

. 9m
eff

2

Figure 5 presents the evolution features of the sunspot number
and the effective magnetic Reynolds number calculated with
Equation (9) during the time period 2001–2017. The left and
right ordinates denote the sunspot number and the effective
magnetic Reynolds number, respectively. As mentioned above,
relative to the correlation scale, the Taylor scale shows a
stronger positive correlation with the sunspot number. The
effective magnetic Reynolds number shows a negative
correlation with the sunspot number. The correlation coefficient

between the sunspot number and the effective magnetic
Reynolds number is −0.82, which indicates that the turbulence
is relatively weak during the time period of strong solar
activity. This result is somewhat counterintuitive.
Generally, the energy output from the Sun varies with the

solar activity. The solar activities include solar flares, coronal
mass ejections, extreme ultraviolet emissions, and X-ray
emissions (Hathaway 2010). Based on the magnetic field data
from the spacecraft ACE and Wind, we have found that both
the magnitude and the standard deviation of the magnetic fields
increase during the rise phase of the solar cycle, and decrease
during the declining phase of the solar cycle. Therefore, the
magnetic energy B2 increases with the increasing solar activity,
and decreases with the decreasing solar activity. Taking into
account Equation (4) and replacing the energy with the
magnetic energy, we can know that if the correlation scale L
does not change significantly, the energy dissipation rate ε will
increase with the increasing magnetic energy B2 during the rise
phase of the solar cycle. Combining this result with
Equation (5), we can further derive that in the traditional
theory of hydrodynamic turbulence, the Taylor scale λ will
decrease with the increasing ε during the rise phase of the solar
cycle, and the λ will increase with the decreasing ε during the
declining phase of the solar cycle. Therefore, according to the
traditional theory of hydrodynamic turbulence, there should be
negative correlation between the solar activity and the Taylor
scale. However, our results show that there is strong positive
correlation between them.
This counterintuitive finding is somewhat identical with the

results presented by Smith et al. (2006) and Matthaeus et al.
(2008). In the previous studies, the authors employed the data

Figure 5. Evolution features of sunspot number (red) and effective magnetic Reynolds number (blue) during time period 2001–2017. The left and right ordinates
denote the sunspot number and the effective magnetic Reynolds number, respectively. The correlation coefficient between the sunspot number and the effective
magnetic Reynolds number is −0.82.
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sets involving intervals from the magnetic cloud and noncloud
situations in the solar wind to investigate the spectral properties
in the dissipation range. They showed that the spectral form in
the dissipation range is not consistent with the predictions of
the hydrodynamic turbulence and its MHD counterparts. For
instance, the Taylor scale is usually larger than the Kolmo-
gorov microscale for the hydrodynamic turbulence with large
Reynolds number. However, Matthaeus et al. (2008) suggested
that under several conditions, the Taylor scale is smaller than
the Kolmogorov microscale even if the magnetic Reynolds
number is large enough. Therefore, the plasma dissipation
function is not of the familiar viscous-resistive Laplacian form.
They suggested that the steeper gradient of the dissipation
range spectrum is associated with the stronger energy cascade
rate. For weaker cascade rate, the gradient of the dissipation
range spectrum is gentler. Here, the steep dissipation range
spectrum indicates that the Taylor scale is large. On the
contrary, the gentle dissipation range spectrum means that the
Taylor scale is small. This result is similar to our finding that
there exists positive correlation between the Taylor scale and
the energy dissipation rate. This finding highlights the non-
hydrodynamic properties of the dissipation process in the solar
wind. One possible explanation is that in the solar wind, the
assumption of the fluid approximation fails at the spatial scales
near the dissipation range. Therefore, the traditional hydro-
dynamic turbulence theory is incomplete for describing
the physical nature of the solar wind turbulence, especially at
the spatial scales near the kinetic dissipation scales where
the particle effects are not negligible. In the solar wind, the
dissipation process of the turbulence always results from
the breakdown of the fluid approximation and the domination
of the kinetic particle effects such as cyclotron and Landau
damping (Smith et al. 2006). Therefore, the dissipation process
in the solar wind represents the coupling of the turbulent fluid
cascade and the kinetic dissipation.

As the cornerstone assumption of the classical hydrodynamic
turbulence, the viscous dissipation rate of energy can be
estimated by the supply rate of energy at large scales. This
assumption is described by Equation (4), and can be modified
as

( )e x+ = U L. 103

Here ε is the energy dissipation rate at small scales, U3/L
denotes the energy cascade rate, and ξ denotes the energy loss
occurring when the energy transfers from large scales to small
scales, especially near the spatial scales at which the solar wind
fluid approximation fails. Equation (10) indicates that the sum
of the energy dissipation rate and the total energy-loss rate
equals the energy transfer rate. As shown above, the Taylor
scale is strongly positively correlated with the energy cascade
rate. Combining this result with Equation (5), we can infer that
the Taylor scale λ will increase with the increasing magnetic
energy U2, which indicates that the energy dissipation rate ε is
relatively stable in the solar wind turbulence. Therefore, the
total energy loss ξ will increase with the increasing energy
cascade rate U3/L. Similarly, the total energy loss ξ will
decrease with the decreasing energy cascade rate U3/L. This
finding sheds new light on the relationship between the energy
cascade and the dissipation in the low-collisionality plasma
turbulence.

5. Conclusions

In this work, based on the simultaneous measurements
(Wind, ACE, and Cluster) of the interplanetary magnetic fields
during the time period 2001 January–2017 December, we use
the two-point, single time correlation function to determine the
fundamental parameters of the solar wind turbulence, such as
the correlation scale and the Taylor scale. The data set used in
this study covers an entire solar cycle. It is possible to employ
this data set accumulated over a long time period to study the
effects of solar activity on the correlation scale and the Taylor
scale. We show that the correlation coefficient between the
sunspot number and the correlation scale is 0.56, and the
correlation coefficient between the sunspot number and
the Taylor scale is 0.92. Obviously, the relationship between
the Taylor scale and the sunspot number is more significant
than the relationship between the correlation scale and the
sunspot number. Therefore, the effective magnetic Reynolds
number is primarily affected by the Taylor scale. The
correlation coefficient between the sunspot number and the
effective magnetic Reynolds number is −0.82, which indicates
that the solar wind turbulence is relatively weak when the solar
activity is strong. This result is somewhat counterintuitive.
In traditional theory of hydrodynamic turbulence, the

dissipation range or the inertial range can be described by a
universal function. The dissipation scale is determined by the
energy cascade rate through the inertial range. Specifically, the
stronger cascades generate the smaller dissipation scales.
However, our results suggest that the form of the dissipation
process in solar wind turbulence is not consistent with the
predictions of the hydrodynamic turbulence and its immediate
MHD counterparts. Using the solar wind data measured at 1 au,
we have shown that the variation of the Taylor scale depends
on the energy cascade rate in a manner different from the
traditional hydrodynamic case. The Taylor scale increases with
the increasing sunspot number, and decreases with the
decreasing sunspot number. This indicates that the Taylor
scale is positively correlated with the energy cascade rate.
One possible explanation is that in the solar wind, the fluid

approximation fails at the spatial scales near the dissipation
range. Therefore, the traditional theory of hydrodynamic
turbulence is incomplete for describing the physical nature of
solar wind turbulence, especially at the spatial scales near the
kinetic dissipation scale where the particle effects are not
negligible. The dissipation process in the MHD turbulence
results from the breakdown of the fluid approximation and the
domination of the kinetic particle effects such as cyclotron and
Landau damping. Therefore, the dissipation process in the solar
wind represents the coupling of the turbulent fluid cascade and
the kinetic dissipation. We suggest that the energy dissipation
rate ε is relatively stable in solar wind turbulence. The energy
cascade rate U3/L is positively correlated with the total energy
loss ξ.
The results presented in this work suggest that solar wind

turbulence is influenced by the solar activity accompanying the
solar cycle. In addition, our investigations highlight the non-
hydrodynamic properties of the dissipation process in the solar
wind, which provides new perspectives on the relationship
between the energy cascade and the dissipation in the low-
collisionality plasma turbulence. The anisotropy of the solar
wind turbulence is another important subject in the field. In the
future work, we will investigate the effects of the solar
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activities and the solar cycle on the anisotropy of the solar wind
turbulence.
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