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Abstract

In this paper, we consider an almost periodic discrete multispecies Lotka-Volterra mutualism
system with feedback controls. We firstly obtain the permanence of the system. Assuming that
the coefficients in the system are almost periodic sequences, we obtain the sufficient conditions
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together with numerical simulation indicates the feasibility of the main result.
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1 Introduction

In 2015, Zhang et al.[1] had studied the following discrete multispecies Lotka-Volterra mutualism
system with feedback controls

xi(k + 1) = xi(k) exp

{
ai(k)− bi(k)xi(k) +

n∑
j=1,j ̸=i

cij(k)
xj(k)

dij(k) + xj(k)
− ei(k)ui(k)

}
,

∆ui(k) = −fi(k)ui(k) +

n∑
j=1

gij(k)xj(k), i = 1, 2, · · · , n,

(1.1)

where {ai(k)}, {bi(k)}, {cij(k)}, {dij(k)}, {ei(k)}, {fi(k)} and {gij(k)} are bounded nonnegative
almost periodic sequences such that

0 < al
i ≤ ai(k) ≤ au

i , 0 < bli ≤ bi(k) ≤ bui , 0 < clij ≤ cij(k) ≤ cuij , 0 < dlij ≤ dij(k) ≤ duij ,

0 < eli ≤ ei(k) ≤ eui , 0 < f l
i ≤ fi(k) ≤ fu

i < 1, 0 < glij ≤ gij(k) ≤ guij , (1.2)

i, j = 1, 2, · · · , n, k ∈ Z. By means of constructing a suitable Lyapunov function, sufficient
conditions are obtained for the existence of a unique positive almost periodic solution which is
uniformly asymptotically stable.

For any bounded sequence {f(k)} defined on Z, fu = sup
k∈Z

f(k), f l = inf
k∈Z

f(k). By the biological

meaning, we will focus our discussion on the positive solutions of system (1.1). So it is assumed
that the initial conditions of system (1.1) are the form:

xi(0) > 0, ui(0) > 0, i = 1, 2, · · · , n. (1.3)

One can easily show that the solutions of system (1.1) with the initial condition (1.3) are defined
and remain positive for all k ∈ N+ = {0, 1, 2, 3, · · · }.

With the stimulation from the works[2, 3, 4, 5], the main purpose of this paper is to obtain a set of
sufficient conditions to ensure the existence of a unique globally attractive positive almost periodic
solution of system (1.1) with initial condition (1.3).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some
definitions and several useful lemmas. In the next section, we establish the permanence of system
(1.1). Then, in Section 4, we establish sufficient conditions to ensure the existence of a unique
positive almost periodic solution which is globally attractive. The main results are illustrated by
an example with numerical simulation in Section 5. Finally, the conclusion ends with brief remarks
in the last section.

2 Preliminaries

First, we give the definitions of the terminologies involved.

Definition 2.1([6, 7]) A sequence x : Z → R is called an almost periodic sequence if the ε-
translation set of x

E{ε, x} = {τ ∈ Z :| x(n+ τ)− x(n) |< ε, ∀n ∈ Z}
is a relatively dense set in Z for all ε > 0; that is, for any given ε > 0, there exists an integer
l(ε) > 0 such that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

| x(n+ τ)− x(n) |< ε, ∀n ∈ Z.
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τ is called an ε-translation number of x(n).

Definition 2.2([8]) Let D be an open subset of Rm, f : Z × D → Rm. f(n, x) is said to be
almost periodic in n uniformly for x ∈ D if for any ε > 0 and any compact set S ⊂ D, there exists
a positive integer l = l(ε, S) such that any interval of length l contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ε, ∀(n, x) ∈ Z × S.

τ is called an ε-translation number of f(n, x).

Definition 2.3([9]) A sequence x : Z+ → R is called an asymptotically almost periodic sequence
if

x(n) = p(n) + q(n), ∀n ∈ Z+,

where p(n) is an almost periodic sequence and lim
n→+∞

q(n) = 0.

Definition 2.4 A solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of system (1.1) with
initial condition (1.3) is said to be globally attractive if for any other solution (x∗

1(k), x
∗
2(k), · · · , x∗

n(k),
u∗
1(k), u

∗
2(k), · · · , u∗

n(k)) of system (1.1) with initial condition (1.3), we have

lim
k→+∞

(x∗
i (k)− xi(k)) = 0, lim

k→+∞
(u∗

i (k)− ui(k)) = 0, i = 1, 2, · · · , n.

Now, we state several lemmas which will be useful in proving our main result.

Lemma 2.1([10]) {x(n)} is an almost periodic sequence if and only if for any integer sequence
{k′

i}, there exists a subsequence {ki} ⊂ {k′
i} such that the sequence {x(n+ki)} converges uniformly

for all n ∈ Z as i → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.2([11]) {x(n)} is an asymptotically almost periodic sequence if and only if, for any
sequencemi ⊂ Z satisfyingmi > 0 andmi → ∞ as i → ∞ there exists a subsequence {mik} ⊂ {mi}
such that the sequence {x(n+mik)} converges uniformly for all n ∈ Z+ as k → ∞.

Lemma 2.3([12]) Assume that {x(n)} satisfies x(n) > 0 and

x(n+ 1) ≤ x(n) exp{a(n)− b(n)x(n)}

for n ∈ N, where a(n) and b(n) are non-negative sequences bounded above and below by positive
constants. Then

lim sup
n→+∞

x(n) ≤ 1

bl
exp{au − 1}.

Lemma 2.4([12]) Assume that {x(n)} satisfies

x(n+ 1) ≥ x(n) exp{a(n)− b(n)x(n)}, n ≥ N0,

lim sup
n→+∞

x(n) ≤ x∗,

and x(N0) > 0, where a(n) and b(n) are non-negative sequences bounded above and below by
positive constants and N0 ∈ N . Then

lim inf
n→+∞

x(n) ≥ min

{
al

bu
exp{al − bux∗}, a

l

bu

}
.

Lemma 2.5([13]) Assume that A > 0 and y(0) > 1, and further suppose that

y(n+ 1) ≤ Ay(n) +B(n), n = 1, 2, 3, · · · .

3



Zhang; BJMCS, 14(3), 1-12, 2016; Article no.BJMCS.23336

Then for any integer k ≤ n,

y(n) ≤ Aky(n− k) +

k−1∑
i=0

AiB(n− i− 1).

Especially, if A < 1 and B is bounded above with respect to M , then

lim sup
n→∞

y(n) ≤ M

1−A
.

Lemma 2.6([13]) Assume that A > 0 and y(0) > 1, and further suppose that

y(n+ 1) ≥ Ay(n) +B(n), n = 1, 2, 3, · · · .

Then for any integer k ≤ n,

y(n) ≥ Aky(n− k) +

k−1∑
i=0

AiB(n− i− 1).

Especially, if A < 1 and B is bounded below with respect to m, then

lim inf
n→∞

y(n) ≥ m

1−A
.

3 Permanence

In this section, we establish the permanence result for system (1.1). The proofs of following results
can be found in [1] and we omit the details here.

Theorem 3.1([1]) Assume that the conditions (1.2) and (1.3) hold, furthermore,

al
i − eui Ni > 0, (3.1)

then system (1.1) is permanent, that is, there exist positive constants mi, Mi, ni and Ni(i =
1, 2, · · · , n) which are independent of the solutions of system (1.1), such that for any positive
solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of system (1.1), one has:

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ Mi,

ni ≤ lim inf
k→+∞

ui(k) ≤ lim sup
k→+∞

ui(k) ≤ Ni, i = 1, 2, · · · , n,

where

Mi =
1

bli
exp

{
au
i +

n∑
j=1,j ̸=i

cuij − 1

}
, mi =

al
i − eui Ni

2bui
min

{
1, exp

{
al
i − eui Ni − bui Mi

}}

Ni =
1

f l
i

n∑
j=1

guijMj , ni =
1

fu
i

n∑
j=1

glijmj .

We denote by Ω the set of all solutions (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of system
(1.1) satisfying mi ≤ xi(k) ≤ Mi, ni ≤ ui(k) ≤ Ni(i = 1, 2, · · · , n) for all k ∈ Z+.

Proposition 3.1([1]) Assume that the conditions (1.2), (1.3) and (3.1) hold. Then Ω ̸= Φ.
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4 Global Attractivity and Almost Periodic Solution

The main results of this paper concern the global attractivity of almost periodic solution of system
(1.1) with conditions (1.2), (1.3) and (3.1).

Theorem 4.1 Assume that (1.2), (1.3), (3.1) and

(H1) ρi = max{|1− θiib
l
im

θii
i |, |1− θiib

u
i M

θii
i |}+

n∑
j=1,j ̸=i

θijc
u
ijM

θij
j

dlij
+ eui < 1,

φi = 1− f l
i +

n∑
j=1

guijMj < 1, i = 1, 2, · · · , n,

hold. Then any positive solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of system (1.1)
is globally attractive.

Proof. Assume that (p1(k), p2(k), · · · , pn(k), v1(k), v2(k), · · · , vn(k)) is a solution of system (1.1)
satisfying (1.2) and (1.3). Let

xi(k) = pi(k) exp{qi(k)}, ui(k) = vi(k) + wi(k), i = 1, 2, · · · , n.

Since

qi(k + 1) = lnxi(k + 1)− ln pi(k + 1)

= lnxi(k) + ai(k)− bi(k)(xi(k))
θii +

n∑
j=1,j ̸=i

cij(k)
(xj(k))

θij

dij(k) + (xj(k))θij
− ei(k)ui(k)

− ln pi(k)− ai(k) + bi(k)(pi(k))
θii −

n∑
j=1,j ̸=i

cij(k)
(pj(k))

θij

dij(k) + (pj(k))θij
+ ei(k)vi(k)

= qi(k)− bi(k)[(xi(k))
θii − (pi(k))

θii ]

+

n∑
j=1,j ̸=i

dij(k)cij(k)[(xj(k))
θij − (pj(k))

θij ]

[dij(k) + (xj(k))θij ][dij(k) + (pj(k))θij ]
− ei(k)wi(k)

= qi(k)− bi(k)(pi(k))
θii

[
(exp{qi(k)})θii − 1

]
+

n∑
j=1,j ̸=i

dij(k)cij(k)(pj(k))
θij [(exp{qj(k)})θij − 1]

[dij(k) + (xj(k))θij ][dij(k) + (pj(k))θij ]
− ei(k)wi(k)

= qi(k)
(
1− θiibi(k)[pi(k) exp{λi(k)qi(k)}]θii

)
+

n∑
j=1,j ̸=i

dij(k)θijcij(k)qj(k)[pj(k) exp{λj(k)qj(k)}]θij
[dij(k) + (xj(k))θij ][dij(k) + (pj(k))θij ]

− ei(k)wi(k), (4.1)

where λi(k), λj(k) ∈ (0, 1).
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Similarly, we get

wi(k + 1) = ui(k + 1)− vi(k + 1)

= (1− fi(k))ui(k) +

n∑
j=1

gij(k)xj(k)− (1− fi(k))vi(k)−
n∑

j=1

gij(k)pj(k)

= (1− fi(k))wi(k) +

n∑
j=1

gij(k)pj(k)(exp{qj(k)} − 1)

= (1− fi(k))wi(k) +

n∑
j=1

gij(k)pj(k)qj(k) exp{ξj(k)qj(k)}, i = 1, 2, · · · , n,

where ξj(k) ∈ (0, 1).

To complete the proof, it suffices to show that

lim
k→+∞

qi(k) = 0, lim
k→+∞

wi(k) = 0, i = 1, 2, · · · , n. (4.2)

In view of (H2), we can choose ε > 0 such that

ρεi = max{|1− θiib
l
i(mi − ε)θii |, |1− θiib

u
i (Mi + ε)θii |}+

n∑
j=1,j ̸=i

θijc
u
ij(Mj + ε)θij

dlij
+ eui < 1,

φε
i = 1− f l

i +

n∑
j=1

guij(Mj + ε) < 1, i = 1, 2, · · · , n.

Let ρ = max{ρεi , φε
i}, then ρ < 1. According to Theorem 3.2, there exists a positive integer k0 ∈ Z+

such that
mi − ε ≤ xi(k) ≤ Mi + ε, mi − ε ≤ pi(k) ≤ Mi + ε, i = 1, 2, · · · , n

for k ≥ k0.

Notice that λi(k) ∈ [0, 1] implies that pi(k) exp{λi(k)ui(k)} lies between pi(k) and xi(k), λj(k) ∈
[0, 1] implies that pj(k) exp{λj(k)uj(k)} lies between pj(k) and xj(k). From (4.1), we get

|qi(k + 1)| ≤ max{|1− θiib
l
i(mi − ε)θii |, |1− θiib

u
i (Mi + ε)θii |}|qi(k)|

+
n∑

j=1,j ̸=i

θijc
u
ij(Mj + ε)θij

dlij
|qj(k)|+ eui |wi(k)|, (4.3)

|wi(k + 1)| ≤ (1− f l
i )|wi(k)|+

n∑
j=1

guij(Mj + ε)|qj(k)|, i = 1, 2, · · · , n,

for k ≥ k0.

In view of (4.3), we get

max{ max
1≤i≤n

|qi(k + 1)|, max
1≤i≤n

|wi(k + 1)|} ≤ ρmax{ max
1≤i≤n

|qi(k)|, max
1≤i≤n

|wi(k)|}, k ≥ k0.

This implies

max{ max
1≤i≤n

|qi(k)|, max
1≤i≤n

|wi(k)|} ≤ ρk−k0 max{ max
1≤i≤n

|qi(k0)|, max
1≤i≤n

|wi(k0)|}, k ≥ k0.

Then (4.2) holds and we can obtain

lim
k→+∞

|xi(k)− pi(k)| = 0, lim
k→+∞

|ui(k)− vi(k)| = 0, i = 1, 2, · · · , n. (4.4)
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Therefore, positive solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of system (1.1) is globally
attractive. 2

Theorem 4.2 Assume that (1.2), (1.3), (3.1) and (H1) hold. Then system (1.1) admits a unique
almost periodic solution which is globally attractive.

Proof. It follows from Proposition 3.1 that there exists a solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k),
· · · , un(k)) of system (1.1) satisfying mi ≤ xi(k) ≤ Mi, ni ≤ ui(k) ≤ Ni, k ∈ Z+.

Suppose that (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) is any solution of system (1.1), then

there exists an integer valued sequence {k
′
p}, k

′
p → +∞ as p → +∞, such that (x1(k + k

′
p), x2(k +

k
′
p), · · · , xn(k + k

′
p), u1(k + k

′
p), u2(k + k

′
p), · · · , un(k + k

′
p)) is a solution of the following system



xi(k + 1) = xi(k) exp

{
ai(k + k

′
p)− bi(k + k

′
p)xi(k) +

n∑
j=1,j ̸=i

cij(k + k
′
p)

xj(k)

dij(k + k′
p) + xj(k)

−ei(k + k
′
p)ui(k)

}
,

∆ui(k) = −fi(k + k
′
p)ui(k) +

n∑
j=1

gij(k + k
′
p)xj(k), i = 1, 2, · · · , n,

From above discussion and Theorem 3.1, we have that not only (x1(k+ k
′
p), x2(k+ k

′
p), · · · , xn(k+

k
′
p), u1(k + k

′
p), u2(k + k

′
p), · · · , un(k + k

′
p)) but also (∆x1(k + k

′
p),∆x2(k + k

′
p), · · · ,∆xn(k +

k
′
p),∆u1(k + k

′
p),∆u2(k + k

′
p), · · · ,∆un(k + k

′
p)) are uniformly bounded, thus (x1(k + k

′
p), x2(k +

k
′
p), · · · , xn(k+k

′
p), u1(k+k

′
p), u2(k+k

′
p), · · · , un(k+k

′
p)) are uniformly bounded and equi-continuous.

By Ascoli’s theorem[14], there exists a uniformly convergent subsequence (x1(k+kp), x2(k+kp), · · · ,
xn(k+ kp), u1(k+ kp), u2(k+ kp), · · · , un(k+ kp)) ⊆ (x1(k+ k

′
p), x2(k+ k

′
p), · · · , xn(k+ k

′
p), u1(k+

k
′
p), u2(k + k

′
p), · · · , un(k + k

′
p)) such that for any ε > 0, there exists a k0(ε) > 0 with the property

that if m,n ≥ k0(ε) then
|xi(k + km)− xi(k + kn)| < ε, |ui(k + km)− ui(k + kn)| < ε,

which shows from Lemma 2.2 that (x1(k + kn), x2(k + kn), · · · , xn(k + kn), u1(k + kn), u2(k +
kn), · · · , un(k+kn)) is asymptotically almost periodic sequence, then (x1(k+kn), x2(k+kn), · · · , xn(k+
kn), u1(k + kn), u2(k + kn), · · · , un(k + kn)) are the sum of an almost periodic sequence (p1(k +
kn), p2(k + kn), · · · , pn(k + kn), v1(k + kn), v2(k + kn), · · · , vn(k + kn)) and a sequence (q1(k +
kn), q2(k + kn), · · · , qn(k + kn), w1(k + kn), w2(k + kn), · · · , wn(k + kn)) defined on Z, such that

xi(k + kn) = pi(k + kn) + qi(k + kn), ui(k + kn) = vi(k + kn) + wi(k + kn), k ∈ Z,

where
lim

n→+∞
pi(k + kn) = pi(k), lim

n→+∞
vi(k + kn) = vi(k),

lim
n→+∞

qi(k + kn) = 0, lim
n→+∞

wi(k + kn) = 0,

{pi(k)} and {vi(k)} are almost periodic sequences, i = 1, 2, · · · , n. It means that

lim
n→+∞

xi(k + kn) = pi(k), lim
n→+∞

ui(k + kn) = vi(k).

In the following we show that {(p1(k), p2(k), · · · , pn(k), v1(k), v2(k), · · · , vn(k))} is an almost periodic
solution of system (1.1).

From the properties of an almost periodic sequence, there exists an integer valued sequence {δp},

7
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δp → +∞ as p → +∞, such that

ai(k + δp) → ai(k), bi(k + δp) → bi(k), cij(k + δp) → cij(k), dij(k + δp) → dij(k),

ei(k + δp) → ei(k), fi(k + δp) → fi(k), gij(k + δp) → gij(k), as p → +∞.

It is easy to know that xi(k + δp) → pi(k), ui(k + δp) → vi(k) as p → ∞, then we have

pi(k + 1) = lim
p→∞

xi(k + 1 + δp)

= lim
p→∞

xi(k + δp) exp

{
ai(k + δp)− bi(k + δp)xi(k + δp)

+
n∑

j=1,j ̸=i

cij(k + δp)
xj(k + δp)

dij(k + δp) + xj(k + δp)
− ei(k + δp)ui(k + δp)

}

= pi(k) exp

{
ai(k)− bi(k)pi(k) +

n∑
j=1,j ̸=i

cij(k)
pj(k)

dij(k) + pj(k)
− ei(k)vi(k)

}
,

vi(k + 1) = lim
p→∞

ui(k + 1 + δp)

= lim
p→∞

{
[1− fi(k + δp)]ui(k + δp) +

n∑
j=1

gij(k + δp)xj(k + δp)

}

= [1− fi(k)]vi(k) +

n∑
j=1

gij(k)pj(k).

This prove that p(k) = {(p1(k), p2(k), · · · , pn(k), v1(k), v2(k), · · · , vn(k))} satisfied system (1.1),
and p(k) is a positive almost periodic solution of system (1.1).

Now, we show that there is only one positive almost periodic solution of system (1.1). For any
two positive almost periodic solutions (p1(k), p2(k), · · · , pn(k), v1(k), v2(k), · · · , vn(k)) and (z1(k),
z2(k), · · · , zn(k), l1(k), l2(k), · · · , ln(k)) of system (1.1), we claim that pi(k) = zi(k), vi(k) = li(k), (i =
1, 2, · · · , n) for all k ∈ Z+. Otherwise there must be at least one positive integer K∗ ∈ Z+

such that pi(K
∗) ̸= zi(K

∗) or vj(K
∗) ̸= lj(K

∗) for a certain positive integer i or j, i.e., Ω1 =
|pi(K∗)− zi(K

∗)| > 0 or Ω2 = |vj(K∗)− lj(K
∗)| > 0. So we can easily know that

Ω1 = | lim
p→+∞

pi(K
∗ + δp)− lim

p→+∞
zi(K

∗ + δp)| = lim
p→+∞

|pi(K∗ + δp)− zi(K
∗ + δp)|

= lim
k→+∞

|pi(k)− zi(k)| > 0,

or

Ω2 = | lim
p→+∞

vj(K
∗ + δp)− lim

p→+∞
lj(K

∗ + δp)| = lim
p→+∞

|vj(K∗ + δp)− lj(K
∗ + δp)|

= lim
k→+∞

|vj(k)− lj(k)| > 0,

which is a contradiction to (4.4). Thus pi(k) = zi(k), vi(k) = li(k)(i = 1, 2, · · · , n) hold for ∀k ∈ Z+.
Therefore, system (1.1) admits a unique almost periodic solution which is globally attractive. This
completes the proof of Theorem 4.2. 2

Remark 4.1 If n = 2, the conditions of Theorem 4.2 can be simplified. Therefore, we have the
following result.
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Corollary 4.1 Let n = 2, and assume further that (1.2), (1.3), (3.1) and

(H2) ρi = max{|1− θiib
l
im

θii
i |, |1− θiib

u
i M

θii
i |}+

θijc
u
ijM

θij
j

dlij
+ eui < 1,

φi = 1− f l
i + guiiMi + guijMj < 1, i, j = 1, 2, i ̸= j,

hold. Then system (1.1) admits a unique globally attractive almost periodic solution (x1(k), x2(k), u1(k),
u2(k)) which is bounded by Ω for all k ∈ Z+.

5 Example and Numerical Simulation

In this section, we give the following example to check the feasibility of our result.

Example Consider the following almost periodic discrete Lotka-Volterra mutualism system with
feedback controls

x1(k + 1) = x1(k) exp

{
1.1− 0.022 sin(

√
3k)− (1.05 + 0.013 sin(

√
5k))x1(k)

+
(0.025− 0.001 cos(

√
2k))x2(k)

0.2− 0.004 cos(
√
3k) + x2(k)

+
(0.02 + 0.0015 cos(

√
3k))x3(k)

0.4 + 0.035 cos(
√
2k) + x3(k)

− (0.025− 0.002 cos(
√
3k))u1(k)

}
,

x2(k + 1) = x2(k) exp

{
1.15− 0.025 sin(

√
2k)− (1.085 + 0.015 sin(

√
3k))x2(k)

+
(0.025 + 0.003 cos(

√
5k))x1(k)

0.35− 0.02 cos(
√
3k) + x1(k)

+
(0.025− 0.002 cos(

√
2k))x3(k)

0.2 + 0.04 sin(
√
3k) + x3(k)

− (0.025 + 0.004 sin(
√
2k))u2(k)

}
,

x3(k + 1) = x3(k) exp

{
1.25− 0.03 sin(

√
5k)− (1.1− 0.024 sin(

√
2k))x3(k) (5.1)

+
(0.03− 0.002 cos(

√
2k))x1(k)

0.2 + 0.003 sin(
√
3k) + x1(k)

+
(0.028 + 0.0015 cos(

√
3k))x2(k)

0.25− 0.04 cos(
√
5k) + x2(k)

− (0.02 + 0.002 cos(
√
3k))u3(k)

}
,

∆u1(k) = −(0.93− 0.03 sin(
√
2k))u1(k) + (0.015 + 0.005 sin(

√
3k))x1(k)

+(0.013− 0.004 sin(
√
3k))x2(k) + (0.024− 0.005 cos(

√
5k))x3(k),

∆u2(k) = −(0.924− 0.04 sin(
√
3k))u2(k) + (0.018− 0.004 sin(

√
5k))x1(k)

+(0.015− 0.005 cos(
√
2k))x2(k) + (0.014 + 0.004 sin(

√
2k))x3(k),

∆u3(k) = −(0.936− 0.035 cos(
√
5k))u3(k) + (0.017− 0.006 cos(

√
2k))x1(k)

+(0.013− 0.005 sin(
√
3k))x2(k) + (0.014 + 0.005 cos(

√
2k))x3(k).

By simple computation, we derive

ρ1 ≈ 0.392, ρ2 ≈ 0.542, ρ3 ≈ 0.214, φ1 ≈ 0.131, φ2 ≈ 0.281, φ2 ≈ 0.372.
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It is easy to see that the conditions of Theorem 4.1 are verified. Therefore, system (5.1) has a
unique positive almost periodic solution which is globally attractive. Our numerical simulations
support our results (see Fig. 1).

Fig. 1. Dynamic behavior of positive almost periodic solution
(x1(k), x2(k), x3(k), u1(k), u2(k), u3(k)) of system (5.1) with the three initial

conditions(1.02,1.1,1.1,0.06,0.06,0.053), (1.09,1.17,1.2,0.07,0.07,0.046) and
(1.13,1.05,1.25,0.064,0.047,0.061) for k ∈ [1, 70], respectively.
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6 Concluding Remarks

In this paper, assuming that the coefficients in system (1.1) are bounded non-negative almost
periodic sequences, we obtain the sufficient conditions for the existence of a unique almost periodic
solution which is globally attractive. By comparative analysis, we find that when the coefficients in
system (1.1) are almost periodic, the existence of a unique almost periodic solution of system (1.1)
is determined by the global attractivity of system (1.1), which implies that there is no additional
condition to add.

Furthermore, for the almost periodic discrete multispecies Lotka-Volterra mutualism system (1.1)
with time delays and feedback controls, we would like to mention here the question of how to study
the almost periodicity of the system and whether the existence of a unique almost periodic solution
is determined by the global attractivity of the system or not. It is, in fact, a very challenging
problem, and we leave it for our future work.
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