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Abstract 
 

A new distance measure between fuzzy sets (FSs) based on fuzzy D-implications is introduced in this 
paper. The proposed measure uses a matrix representation of each set in order to encode its information, 
where matrix norms in conjunction with fuzzy D-implications can be applied to measure the distance 
between the two FSs. It is worth noting that the applied technique in deriving the proposed measure gives 
the flexibility to construct several distance measures by incorporating different fuzzy implications, 
extending its applicability to several applications where the most appropriate implication is used. Apart 
from the analysis in constructing a D-implication based distance measure, a detailed discussion of its 
main properties is also presented. Moreover, an appropriate set of experiments has taken place in order to 
examine the performance of the proposed distance compared to well-known fuzzy implications, in some 
pattern classification problems from the literature. The corresponding results are promising and show that 
the proposed measure can classify the patterns correctly and with high degree of confidence.  
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1 Introduction 
 
An increased interest in proposing efficient distance measures between Fuzzy Sets (FSs) of several types             
[1-3] has been reported in the literature in the last decades. The scientific interest is mainly focused on 
developing distance measures able to measure accurately the distance between two fuzzy sets/numbers 
according to specific principles and definitions.  
 
Among these measures, there is a newly introduced type of distance measures [4,5] that make use of fuzzy 
implications in a matrix formulation in order to compute the distance between two fuzzy sets, with 
satisfactory performance. However, although the S-, R-, and QL - implications have been used extensively, 
D-implications are less used and reported in the literature. This fact constitutes a particular motivation to 
investigate and analyze some of D-implications properties by constructing a concrete theoretical framework, 
able to allow the definition of a distance measure.   
 
In this context, apart from the theoretical analysis, the construction of a distance measure based on                        
D-implication is proposed hereafter and is used to classify known patterns in three pattern classification 
problems. Finally, its performance is compared with that of well-known fuzzy implications of the literature, 
under several experimental configurations. 
 
We remark that a preliminary work [6] has focused on presenting main properties of D-implications. This 
paper extends the work in [6] by, first, defining a novel distance measure based on D-implications and, 
second, by studying comparatively the effectiveness of the proposed distance measure in a set of 
experiments regarding pattern classification problems. 
 
The paper is organized by presenting some mathematical preliminaries on Fuzzy Implications, with 
emphasis on D-implications in Section 2. Moreover, Section 3 describes in detail the applied technique to 
derive a distance measure based on D-implications and analyses its main properties, while its application to 
pattern classification problems along with a comparison with other popular implications is presented in 
Section 4. Finally, Section 5 summarizes the main conclusions derived by the overall experimental study. 
 

2 Fuzzy Implications - Definitions and Notations 
 
2.1 Fuzzy implications. Basic notations 
 
A fuzzy implication I  is a function of the form: [ ] [ ] [ ]: 0,1 0,1 0,1I × →  where for any possible truth 

values a ,b  of given fuzzy propositions ,p  q , respectively, it defines the truth value, ( ),I a b , of the 

conditional proposition “ifp then q ”. The function ( ).,.I  should be an extension of the classical 

implication from domain { }0,1 to the domain[ ]0,1 , of truth values in fuzzy logic.  
 

The implication operator of the classical logic is a mapping: { } { } { }: 0,1 0,1 0,1m × → , which satisfies 

the conditions: ( ) ( ) ( )0,0 0,1 1,1 1m m m= = =  and ( )1,0 0m = . These conditions are the least ones 

that we can demand from a fuzzy implication operator. In other words, fuzzy implications collapse to the 

classical implication, when the truth values are restricted to 0 and 1; i.e. ( )0,0I = ( )0,1I =  ( )1,1 1I =  

and ( )1,0 0I = . 

 

One way to define m in classical logic is to use the logic formula { }, 0,1a b∀ ∈ : 
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( , )m a b a b= ∨    (1) 

 
Another two different Boolean expressions for the implication functionmare shown next. 

                          

{ ( ) }( , ) max  {0,1}|= ∈ ∧ ≤m a b x a x b  

 

 
 

(2) 

( , ) ( )m a b a a b= ∨ ∧  

 

 
(3) 

The extensions of these equations in fuzzy logic are [ ], 0,1a b∀ ∈ , respectively, 

 

( ) ( )( ), ,SI a b S n a b=  

 

(4) 

( ) [ ] ( ){ }, sup 0,1 | ,RI a b x T a x b= ∈ ≤  

 

(5) 

( ) ( ) ( )( ), , ,QLI a b S n a T a b=  

 

(6) 

WhereT is a t-norm, S  is a t-conorm, n  is a fuzzy negation, on [ ]0,1  and the triple , ,T S n< >  is 

required to satisfy the De Morgan laws. 
 
The fuzzy implications obtained from Eq. (4) are usually referred to in the literature as S-implications. 
Moreover, the fuzzy implications obtained from Eq. (5) are called R-implications, while those obtained from 
Eq. (6) are called QL-implications [7-10]. 
 
In the following, when reporting to S-, R-, and QL- implications we will mean fuzzy implications with types 
(4), (5), (6), respectively. 
 
2.2 Fuzzy D-implications 
 
In addition to the three classes of fuzzy implications (S-, R-, QL-implications), which are predominant in the 
literature, other fuzzy implications are possible [7]. 
 

The formula ( ),m a b a b= ∨ , { }, 0,1a b∀ ∈  may also be rewritten, due to the law of absorption of 

negation in classical logic, as: 
 

 ( ) ( ) { }, , , 0,1m a b a b b a b= ∧ ∨ ∀ ∈  
 

(7) 

 
The extension of this equation in fuzzy logic is: 
 

( ) ( ) ( )( )( ) [ ], , , , , 0,1I a b S T n a n b b a b= ∀ ∈  
 

(8) 

   
Where S and T are dual with respect to n . In the literature, these fuzzy implications are called Dishkant 

implications or D-implications in short, they will be symbolized ( ).,.DI throughout this text and is called an 

DI -implication [11]. 
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The following Propositions give some properties and characteristics of DI -implications [6]. Their proofs are 

shown in Appendix. These properties are also required for some S-, R- and QL-implications [12] and could 
be important in specific applications.  
 

Proposition 1. Let fuzzy implication DI , then the following properties hold, [ ], , 0,1a b x∀ ∈ . 

 

i) ( ) ( ), ,D Da b I x a I x b≤ ⇒ ≤ ⇔ ( ) ( ) ( )( ), , , ,D D DI a x b I a x I a b∧ = ∧ . 

ii)  ( ) ( ), ,D Da b I x a I x b≤ ⇒ ≤ ⇔ ( ) ( ) ( )( ), , , ,D D DI a x b I a x I a b∨ = ∨ .  

The proof of Proposition 1 is shown in the Appendix. 
 

Let T be a t-norm, S a t-conorm and n a strong negation. Then, the corresponding QL-operator, QLI , is a    

QL-implication if and only if the corresponding D-operator, DI , is a D-implication [11]. So, in general             

DI -implications violate property ( ) ( ), ,D Da b I a x I b x≤ ⇒ ≥ . The conditions under which this 

property is satisfied from QLI -implications (therefore and from DI -implications) can be found in [13]. 

 

Proposition 2. Let DI  be a fuzzy D-implication such that satisfy the property

( ) ( ), ,D Da b I a x I b x≤ ⇒ ≥ , [ ], , 0,1a b x∀ ∈ . Then the following properties hold, [ ], , 0,1a b x∀ ∈ . 

 

i) ( ) ( ), ,D Da b I a x I b x≤ ⇒ ≥ ( ) ( ) ( )( ), , , ,D D DI a x b I a b I x b⇔ ∧ = ∨ . 

ii)  ( ) ( ), ,D Da b I a x I b x≤ ⇒ ≥ ⇔ ( ) ( ) ( )( ), , , ,D D DI a x b I a b I x b∨ = ∧ . 

 
The proof of Proposition 2 is shown in the Appendix. 
 

Proposition 3. Let fuzzy implication ( ) ( ) ( )( )( ), , ,D S SI a b n a n b b= ∨ ∧ , where ( ) 1Sn a a= − , then 

the following properties hold, , ,a b c∀ [ ]0,1∈ . 

 

i) ( )( ) ( )( ), ,D DI a b c I a b c∧ ≥ ∨ . 

ii)  ( ) ( )( ) ( ) ( ) ( )( ), , , ( , ), , , ,D D D D DI a c I b c I a b c I a c I b c∧ ≤ ∧ = ∨ . 

iii)  ( ) ( )( ) ( ) ( ) ( )( ), , , ( , ), , , , .D D D D DI a c I b c I a b c I a c I b c∧ = ∨ ≤ ∨  

iv) ( )( ) ( )( ), , , ,D Da I a b I a a b∨ = ∨  

v) ( ) ( )( ) ( ), , , ,D D DI a c I b c I a b∧ ≤ , for ba ≤≤ c   

 
The proof of Proposition 3 is shown in the Appendix. 
 

The classical modus ponens is the tautology: ( ) bbaa ⇒⇒∧ )( . Modus ponens states that given two 

true propositions, ""a  and "" ba⇒ , the truth of the proposition ""b  may be inferred.  
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In fuzzy logic, after algebraic interpretation in terms of truth values, this becomes as follows: The truth value 
of ""a  and "" ba⇒  must be less than or equal to the truth value of ""b , which can be expressed as 

( )( ), ,T a I a b b≤ , ,a b∀ [ ]0,1∈ , where is T a t-norm and I  is a fuzzy implication. 

 

For fuzzy D-implication ( ) ( ) ( )( )( ), , ,D S SI a b n a n b b= ∨ ∧ , ,a b [ ]0,1∈ , where ( )Sn a =  1 a− , it 

holds:  
 

( )( ), ,Da I a b b∧ ≤ , for ba   ≤  (the proof is straightforward). 

 

3 A Distance Measure 
 
3.1 Metric distance - definitions and basic notations 
 
Definition  1. A metric distance in a set X  is a real function RXXd →×:  which satisfies                                  
( , ,x y z X∀ ∈ ):  

 
a) yxyxd =⇔= 0),( , 

b) ),(),( xydyxd = , symmetric,      

c) ),(),(),( yxdyzdzxd ≥+ , Triangle Inequality. 
 
Various distance measures have previously been proposed in the literature involving fuzzy sets [1,2,14,15]. 
Some common metrics used to describe the distance between fuzzy sets are the following Eq. (9-12).  
 

If the universe setE is finite, i.e., { }1,..., nX x x=  then for any two fuzzy subsets A  and B  of X  with 

membership functions ( ).Aµ  and ( ).Bµ , respectively, we have: 

 
Hamming  
distance ( ) ( ) ( )

1

,
n

H A i B i
i

d A B x xµ µ
=

= −∑  (9) 

 
Normalized 
Hamming  
distance 

 

( ) ( ) ( )
1

1
,

n

n H A i B i
i

d A B x x
n

µ µ−
=

= −∑  (10) 

 
 
Euclidean  
distance 

 

( ) ( ) ( )( )2

1

,
n

E A i B i
i

d A B x xµ µ
=

= −∑  
(11) 

 
Normalized 
Euclidean  
distance 

 

( ) ( ) ( )( )2

1

1
,

n

n E A i B i
i

d A B x x
n

µ µ−
=

= −∑  
(12) 

 

3.2 Proposed distance measure 
 
A new family of normalized distance measures between fuzzy sets based on matrix norms and fuzzy 
implications has been suggested in [4] and extended for the case of intuitionistic fuzzy sets in [5]. 
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Furthermore, it is remarked [16] that if ( ) ( )1 2,ij ijΠ a Π b= = , 1, ,i n= K , 1, ,j n= K  are square 

matrices then the norm ⋅  can be used to define a metricd  as: 

 

( )1 2 1 2,d Π Π Π Π= −  (13) 

 

Let A  be fuzzy set in a finite universe { }1,..., nX x x= , with membership function ( ).Aµ . Let DI  be a 

fuzzy D-implication. We define the n n×  matrices ( )AΠ µ  of DI  as follows: 

  

                                                                 =

( )

( )
( ) ( )

1

1, , ,
A

D A A n

A n

x

I x x

x

µ
µ µ

µ

  
  

     
  
  

KM  

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1

1

,       ,

                                                       

,      ,

D A A D A A n

D A n A D A n A n

I µ x µ x I µ x µ x

I µ x µ x I µ x µ x

 
 

=  
 
  

K K

M M M M

K K

 

 

Let X  denote a universe of discourse, whereX  is a finite and let ( )F X  denote the set of all fuzzy sets in

X . 
 

Definition  2. Given two fuzzy sets ( ){ }, |AA x x x Xµ= ∈ , ( ){ }, |BB x x x Xµ= ∈ , where 

{ }1,..., nX x x=  is a finite universe of discourse. Also, let DI  be a fuzzy D-implication and any tensor-or 

operator-norm⋅ . Then 

 

   (14) 

 

where ( ) ( ) ( )( )
1,...,

,D i i
i n

I µ x µ xΠ µ ⋅ ⋅⋅ =
 =   

, defines a metric distance 

 

 ( ) ( ) [ ): 0,d F X F X× → +∞ . 

 

The above function ( ), ; Dd A B I  is a metric [4]. So, this definition actually introduces multiple families of 

metrics with different meanings, according to the binary operator chosen.  
 

In Eq. (14) the norm Π  is computed by using the largest non negative eigenvalue of the positive definite 

Hermitian matrix TΠ Π (ΠΤ is the transpose of matrix Π) [16], 
 

maxΠ λ=  (15) 
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4 Application in Pattern Classification 
 
In order to study the ability of the proposed distance measure to count the distance between two fuzzy sets, a 
set of experiments have been conducted. For this purpose, three well known from the literature problems, 
according to which a test sample need to be classified to a specific category, are selected.  
 
In the following examples, attributes correspond to the measurements that are used to describe each class, 
while the classes are represented by specific patterns that they describe the classes’ centroids. This procedure 
constitutes the main operation of the minimum-distance classifier, where the test sample is assigned to the 
class from which its distance is minimum and is described by the following equation: 
 

( ){ }arg min ,kk
k Dist P S∗ =  (16) 

 
The proposed D-implication based distance measure is compared with similar distances derived by using the 

popular engineering implications of Mamdani ( ( ) { }M , min ,a b a bσ = ) and Larsen ( ( )L ,a b abσ = ) 

commonly used in Fuzzy Inference Systems (FIS), noted as dM and dL respectively.  Furthermore, in order to 
study the ability of the implication based distance measures with that of other measures from the literature, 
the distances defined in Eq.(9-12) have been participated in the comparative study presented herein.  
 
In order to compare the examined distance measures, the performance index called Degree of Confidence 
(DoC) defined by the authors in [5] is also used. This factor measures the confidence of each distance metric 
in recognizing a specific sample that belongs to the pattern (i) and has the following form: 
 

( ) ( ) ( )
1,

, ,
n

i
j i

i i j

DoC dist P S dist P S
= ≠

= −∑  (17) 

 
It is obvious from the above Eq. (13) that the greater DoC(i) the more confident the result of the specific 
distance metric is. 
 
The pattern classification problems used in this study and presented hereafter have been selected from the 
literature due to their popularity, since they used as benchmark datasets in evaluating the performance of 
fuzzy distance and/or similarity measures. It is worth noting that only the membership values of the 
attributes of those problems are used, since this data also includes hesitancy information, which is useful for 
intuitionistic fuzzy sets while this information is unnecessary in our case.  
 
Finally, it is worth pointing out that in the following experiments, the proposed distance measure (dimpD) of 
Eq. (14) uses the D-implication 
 

 ( ) { }{ }, max min 1 ,1 ,DI a b a b b= − − .    

 

4.1 Problem 1 
 
This problem has been introduced in [17] and corresponds to a pattern classification problem of 4 classes 
and 12 attributes, described by the patterns P1, P2, P3, P4 and the test sample S, as presented in the following 
Table 1.  
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Table 1. 4-class/12-attributes problem [17], patterns and test sample 
 

  Attributes 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

Pattern 
#1 ( )

1P
xµ  

0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432 

Pattern 
#2 ( )

2P xµ  
0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760 

Pattern 
#3 ( )

3P xµ  
0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045 

Pattern  
#4 ( )

4P xµ  
1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028 

Test 
sample  ( )S xµ  

0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012 

 
For this example, it is prior known that the test sample belongs to class 4 and thus the distances have to take 
minimum values when the sample compared with the fourth pattern. Table 2, summarizes the distance 
measures’ results along with the degree of confidence of each one. In this table the minimum distance and 
the two best distances with the highest degree of confidence, have been noted in bold. 
 

Table 2. Distance measures’ results 
 

Distances Results 
dist(P1,S) dist(P2,S) dist(P3,S) dist(P4,S) ( )4DoC  

dH 5.401 5.591 2.460 0.263 12.663 
dn-H 0.450 0.466 0.205 0.022 1.055 
dE 1.799 1.778 1.064 0.099 4.345 
dn-E 0.519 0.513 0.307 0.028 1.254 
dL 3.668 3.467 2.520 0.339 8.638 
dM 3.447 3.760 2.431 0.264 8.847 
dimpD 3.599 3.672 2.482 0.282 8.907 

 
A careful study of the above table leads to the conclusion that while all the distances under comparison 
recognize correctly the test sample, the confidence of each distance measure varies. Although the Hamming 
distance (dH) shows more confident than the other distances, the proposed D-implication distance (dimpD) is 
the second more confident measure by outperforming the distances that use the traditional Mamdani (dM) 
and Larsen (dL) implications. 
 

4.2 Problem 2 
 
This problem has been introduced in [18] and corresponds to a pattern classification problem of 3 classes 
and 3 attributes, described by the patterns P1, P2, P3 and the test sample S, as presented in the following 
Table 3.  
 
For this example, it is prior known that the test sample belongs to class 3. Table 4, summarizes the distance 
measures’ results along with the degree of confidence of each one. 
 

Table 3. 3-class/3-attributes problem [18], patterns and test sample 
 

  Attributes  
x1 x2 x3 

Pattern #1 ( )
1P

xµ  1.0 0.8 0.7 

Pattern #2 ( )
2P xµ  0.8 1.0 0.9 

Pattern #3 ( )
3P xµ  0.6 0.8 1.0 

Test sample ( )S xµ  0.5 0.6 0.8 
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Table 4. Distance measures’ results 
 

Distances Results 
dist(P1,S) dist(P2,S) dist(P3,S) ( )3DoC  

dH 0.800 0.800 0.500 0.600 
dn-H 0.267 0.267 0.167 0.200 
dE 0.548 0.510 0.300 0.458 
dn-E 0.316 0.294 0.173 0.264 
dL 1.136 1.281 0.755 0.908 
dM 0.744 0.883 0.456 0.715 
dimpD 0.949 0.883 0.520 0.793 

 
The results are quite different as compared with the previous problem, since the most confident distance 
measure is that using the Larsen implication (dL), while the proposed measure remains the second most 
efficient one, by outperforming the rest distances. 

 
4.3 Problem 3 
 
This example has been introduced in [19,20] and corresponds to a pattern classification problem of 3 classes 
and 3 attributes, described by the patterns P1, P2, P3 and the test sample S, as presented in the following 
Table 5.  
 

Table 5. 3-class/3-attributes problem [19,20], patterns and test sample 
 

  Attributes  
x1 x2 x3 

Pattern #1 ( )
1P

xµ  0.1 0.5 0.1 

Pattern #2 ( )
2P xµ  0.5 0.7 0.0 

Pattern #3 ( )
3P xµ  0.7 0.1 0.4 

Test sample ( )S xµ  0.4 0.6 0.0 

 
For this example, it is prior known that the test sample belongs to class 2. Table 6, summarizes the distance 
measures’ results along with the degree of confidence of each one. 
 
The results in this problem are similar to those of the problem 1, with the Hamming distance being the 
dominant distance measure and the proposed metric being better than the Larsen implication based distance.  
 
Conclusively, the proposed D-implication distance measure gives the same recognition rates with the other 
distances under comparison and in some cases is more confident than the traditional implications of 
Mamdani and Larsen and other distance measures from the literature. 

 

Table 6. Distance measures’ results 
 

Distances Results 
dist(P1,S) dist(P2,S) dist(P3,S) ( )2DoC  

dH 0.500 0.200 1.200 1.300 
dn-H 0.167 0.067 0.400 0.433 
dE 0.332 0.141 0.707 0.756 
dn-E 0.191 0.082 0.408 0.436 
dL 0.326 0.222 0.552 0.435 
dM 0.546 0.200 0.766 0.913 
dimpD 0.506 0.221 0.583 0.646 
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5 Conclusion 
 
A novel distance measure between fuzzy sets based on fuzzy D-implications was proposed in the previous 
sections. The aforementioned distance shows a satisfactory behavior in classifying the patterns of a typical 
pattern classification problem, while it is high confident when compared to other implication based 
(Mamdani, Larsen) and traditional distance measures. It is worth noting that from the experimental study is 
concluded that each distance measure behaves differently in every problem and one has to evaluate several 
distances in order to decide which one is the most appropriate to use. In this context the proposed                        
D-implication based distance measure constitutes an alternative choice, while the applied procedure that 
constructs it gives the flexibility to develop multiple distance measures of the same kind by using different 
type of D-implications. 
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Appendix 
 
This Appendix presents the mathematical proofs of Propositions 1, 2 & 3 in section 2.2. 
 

Proof of Proposition 1. 
 

i) ( )⇒  

 
We have two different cases: 
 

Case x b≤ : From (i) it holds that ( ) ( ), ,D Dx b I a x I a b≤ ⇒ ≤                          (A1) 

  Moreover we have ( ) ( ), ,D DI a x b I a x∧ =  and from (A1) 

  ( ) ( )( ) ( ), , , ,D D DI a x I a b I a x∧ = . Therefore 

  ( ) ( ) ( )( ), , , ,D D DI a x b I a x I a b∧ = ∧  and property (i) has been proved. 

 

Case x b≥ : From (i) it holds that ( ) ( ), ,D Db x I a b I a x≤ ⇒ ≤                          (A2) 

  Moreover we have ( ) ( ), ,D DI a x b I a b∧ =  and from (A2) 

  ( ) ( )( ) ( ), , , ,D D DI a x I a b I a b∧ = . Therefore 

  ( ) ( ) ( )( ), , , ,D D DI a x b I a x I a b∧ = ∧  and property (i) has been proved. 

 ( )⇐  

 
We have two different cases: 
 

Case x b≤ : From (i) it holds that ( ) ( ) ( )( ), , , ,D D DI a x b I a x I a b∧ = ∧                         (A3) 

Moreover we have ( ) ( ), ,D DI a x b I a x∧ =  and from (A3)                      

( ) ( ) ( )( ), , , ,D D DI a x I a x I a b= ∧  

  Therefore ( ) ( ), ,D DI a x I a b≤  and property (i) has been proved. 

 

Case x b≥ : We have ( ) ( ), ,D DI a x b I a b∧ =  and from (A3) 

  ( ) ( ) ( )( ), , , ,D D DI a b I a x I a b= ∧ . 

  Therefore ( ) ( ), ,D DI a x I a b≥  and property (i) has been proved. 

 
ii)  This statement is proved in a similar way.   

 
Proof of Proposition 2. 
 

i)  ( )⇒  

 
We have two different cases: 
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Case a x≤ :  From (i) it holds that ( ) ( ), ,D Da x I a b I x b≤ ⇒ ≥                          (A4) 

  Moreover we have ( ) ( ), ,D DI a x b I a b∧ =  and from (A4) 

  ( ) ( )( ) ( ), , , ,D D DI a b I x b I a b∨ = . Therefore 

   ( ) ( ) ( )( ), , , ,D D DI a x b I a b I x b∧ = ∨  and property (i) has been proved. 

 

Case a x≥ :  From (i) it holds that ( ) ( ), ,D Da x I x b I a b≥ ⇒ ≥                          (A5) 

  Moreover we have ( ) ( ), ,D DI a x b I x b∧ =  and from (A5) 

  ( ) ( )( ) ( ), , , ,D D DI a b I x b I x b∨ = . Therefore 

   ( ) ( ) ( )( ), , , ,D D DI a x b I a b I x b∧ = ∨  and property (i) has been proved. 

   ( )⇐  

 
We have two different cases: 
 

Case a x≤ : From (i) it holds that ( ) ( ) ( )( ), , , ,D D DI a x b I a b I x b∧ = ∨                         (A6) 

  Moreover we have ( ) ( ), ,D DI a x b I a b∧ =  and from (A6) 

  ( ) ( ) ( )( ), , , ,D D DI a b I a b I x b= ∨ . 

  Therefore ( ) ( ), ,D DI a b I x b≥ and property (i) has been proved. 

 

Case a x≥ : We have ( ) ( ), ,D DI a x b I x b∧ =  and from (A6) 

  ( ) ( ) ( )( ), , , ,D D DI x b I a b I x b= ∨ . 

  Therefore ( ) ( ), ,D DI x b I a b≥  and property (i) has been proved. 

 
ii)   This statement is proved in a similar way.   

 
Proof of Proposition 3. 
 
We prove the property (i) and (v). The rest of the properties are proven in a similar way. 
 

i)  We have two different cases: 
 

Case a b≤ : Ιt holds that ( )( ) ( ) ( )( ), , , 1 ,1 ,D DI a b c I a c a c c∧ = = ∨ ∧ − −                         (A7) 

 

  and ( )( ) ( ) ( )( ), , , 1 ,1 ,D DI a b c I b c b c c∨ = = ∨ ∧ − −                          (A8) 

 

  From (A7) and (A8) we have ( )( ) ( )( ), , , ,D DI a b c I a b c∧ ≥ ∨ . 
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Case a b≥ :  The statement is proven in a similar way. 
 
The property (i) has been proved. 
 

v) From Proposition1 we have a b≤ ⇒ ( ),DI a x ≥ ( ),DI b x . Therefore  

 

( ) ( )( ), , ,D DI a c I b c∧ ( ),DI b c= ( ) ( )( )( ), ,S T n b n c c= ( ) ( )( )( ), ,S T n a n b b≤ ( ),DI a b= . 

The property (v) has been proved. 
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