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Abstract

A new distance measure between fuzzy sets (FSs) basattnD-implications is introduced in this
paper. The proposed measure uses a matrix represeragdgach set in order to encode its information,
where matrix norms in conjunction with fuzzy D-implications)dze applied to measure the distance
between the two FSs. It is worth noting that the appliednigue in deriving the proposed measure gives
the flexibility to construct several distance measurgsirizorporating different fuzzy implications,
extending its applicability to several applicationsenehthe most appropriate implication is used. Apart
from the analysis in constructing a D-implication basestadice measure, a detailed discussion of its
main properties is also presented. Moreover, an approgeats experiments has taken place in order to
examine the performance of the proposed distance comparealtonawn fuzzy implications, in somg
pattern classification problems from the literaturke Torresponding results are promising and show|that
the proposed measure can classify the patterns correctlyigmidigh degree of confidence.
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1 Introduction

An increased interest in proposing efficient distancesmes between Fuzzy Sets (FSs) of several types
[1-3] has been reported in the literature in the lastdes. The scientific interest is mainly focused on

developing distance measures able to measure accuthgelgistance between two fuzzy sets/numbers
according to specific principles and definitions.

Among these measures, there is a newly introduced typetahdésmeasures [4,5] that make use of fuzzy
implications in a matrix formulation in order to compute tdistance between two fuzzy sets, with

satisfactory performance. However, although $heR-, andQL - implications have been used extensively,

D-implications are less used and reported in the literafithiss fact constitutes a particular motivation to

investigate and analyze some of D-implications propeliieconstructing a concrete theoretical framework,
able to allow the definition of a distance measure.

In this context, apart from the theoretical analysis, tbestuction of a distance measure based on
D-implication is proposed hereafter and is used to classify kngatterns in three pattern classification
problems. Finally, its performance is compared with dfatell-known fuzzy implications of the literature,
under several experimental configurations.

We remark that a preliminary work [6] has focused on ptesgmain properties of D-implications. This
paper extends the work in [6] by, first, defining a nodistance measure based on D-implications and,
second, by studying comparatively the effectiveness of pteposed distance measure in a set of
experiments regarding pattern classification problems.

The paper is organized by presenting some mathematieimpraries on Fuzzy Implications, with

emphasis on D-implications in Section 2. Moreover, Section &rittes in detail the applied technique to
derive a distance measure based on D-implications and andysesin properties, while its application to
pattern classification problems along with a comparisdh wther popular implications is presented in
Section 4. Finally, Section 5 summarizes the main conclusieriged by the overall experimental study.

2 Fuzzy Implications - Definitions and Notations
2.1 Fuzzy implications. Basic notations

A fuzzy implicationl is a function of the formk :[O,JJX[O,fl - [ O,j. where for any possible truth
valuesa,b of given fuzzy propositiond, q, respectively, it defines the truth vaIuIe(a, b), of the
conditional proposition “ifp then g ”. The function | (,) should be an extension of the classical

implication from domair{O,]} to the domairﬁO,]] , of truth values in fuzzy logic.

The implication operatorof the classical logic is a mappinm:{O,]} X{ O,:}. - { O,}]., which satisfies

the conditions:m(0,0) = n(O,]) = n( 1,).= ‘and m(l, 0) = 0. These conditions are the least ones
that we can demand from a fuzzy implication operatomthrer words, fuzzy implications collapse to the
classical implication, when the truth values are restli¢o 0 and 1; i.el (0,0) = (0,1) = | (1,1) =1

and1(1,0)=0.

One way to defineM in classical logic is to use the logic formUla, bD{ O,]} :
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m(a b= alk @
Another two different Boolean expressions for the implaafunctionmare shown next.

m(a b=max { xJ{0,1}|( ad y< b @

m(a b= al(alh @)

The extensions of these equations in fuzzy IogidﬂﬁebD[O,]] , respectively,

(ab)=5(r(4. 3 @
Iz (a,b) =sue{x0[0,} T(a X< B (5)
QL(a’b):S(r(éaT( ab) (6)

WhereT is a t-norm,S is a t-conorm,n is a fuzzy negation, 0[10,]] and the triple<T, S, n> is
required to satisfy the De Morgan laws.

The fuzzy implications obtained from Eq. (4) are usualfgrred to in the literature aS-implications
Moreover, the fuzzy implications obtained from Eq. (5) are d&lémplications while those obtained from

Eq. (6) are calle@L-implications[7-10].

In the following, when reporting t8-, R, andQL- implications we will mean fuzzy implications with types
(4), (5), (6), respectively.

2.2 Fuzzy D-implications

In addition to the three classes of fuzzy implicatidgs R-, QL-implications), which are predominant in the
literature, other fuzzy implications are possible [7].

The formulam(a, b) =ald L, Da,bD{O,]} may also be rewritten, due to the law of absorption of
negation in classical logic, as:

m(a b)=(a0b)0 bO a 1{0.3 ™

The extension of this equation in fuzzy logic is:

(b)=S(T(( 3. 4 §). b0 am[o] ®

WhereS and T are dual with respect tB . In the literature, these fuzzy implications are cabéshkant
implications or D-implications in short, they will be syniied | (., ) throughout this text and is called an

| , -implication [11].
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The following Propositions give some properties and chaistitsrof | , -implications [6]. Their proofs are
shown in Appendix. These properties are also required for Sgrie andQL-implications [12] and could
be important in specific applications.

Proposition 1.Let fuzzy implication| ;, then the following properties hold]a, b, XD[O,]] .

) asb=I,(xa)

IN

b (% = 1o(ax00)=0(1; (a3, |, (a.B).
»(x) < 1 (@ x00)=0(1, (a3 |, (a.B).

The proof of Proposition 1 is shown in the Appendix.

IN

iy asb=1,(xa)

Let T be at-norm, S at-conorm andh a strong negation. Then, the correspond]_ngoperator,IQL, is a
QL-implication if and only if the correspondirig-operator, |, is aD-implication [11]. So, in general
|, -implications violate propertya < b= ID(a, X)Z |D(b, X) . The conditions under which this

property is satisfied fron oL -implications (therefore and frorh, -implications) can be found in [13].

Propositon 2. Let |, be a fuzzy D-implication such that satisfy the property
asb= I, (a, X) 2|, ( b, )@ , Oa, b, XD[O,]] . Then the following properties hol@]a, b, XD[O,]] .

) asb=l(ax2l (Y = I,(a0xb)=0(1,(ab),l,(xb).
i) asb=l(ax=1, (Y < I,(adxb)=0(1,(ab),l(xb).

The proof of Proposition 2 is shown in the Appendix.

Proposition 3. Let fuzzy implicationl ; (a,b) = D(D(nS (a), ng( b)), t) where ns(a) =1-a, then
the following properties hold,]a, b, CD[O,]] .

i)y | ((a Ob ,C)ZlD((an), 9.
( p\&C), D( ,C))SID(D(a b),9 = (ID(a’
i) O(15(a.c). 15 (0.¢)) = 1 (0@ b),9g<0( b (a,
BN w(ac(ag
v Ol (ac ), o (b.0)) < 1o (a,

The proof of Proposition 3 is shown in the Appendix.

) foras<c<b

The classical modus ponens is the tautol({@/[ (a= b)) = b. Modus ponens states that given two
true propositions, @' and"a=>b", the truth of the propositiohb" may be inferred.
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In fuzzy logic, after algebraic interpretation in terafgruth values, this becomes as follows: The trutheva
of "a" and"a=>b" must be less than or equal to the truth valu€ldf, which can be expressed as

T(a, | (a, b)) < b, Oa,b D[O,]] , where isT a t-norm andl is a fuzzy implication.

For fuzzy D-implicationl , (a,b) = D(D(ns(a), ns( b)) g,a, bD[O,]], wherens(a) =1-a, it
holds:

D(a, Iy (a, b)) < b, for a<b (the proof is straightforward).
3 A Distance Measure

3.1 Metric distance - definitions and basic notatios

Definition 1. A metric distancein a set X is a real functiond: X X X = R which satisfies
(Ox, y, zO X):

a) d(xy)=0< x=y,
b) d(x,y)=d(y,X),symmetric
c) d(x,2)+d(zy)=d(xY), Trianglelnequality.

Various distance measures have previously been proposed itethtute involving fuzzy sets [1,2,14,15].
Some common metrics used to describe the distance befuesy sets are the following Eg. (9-12).

If the universe sdE is finite, i.e., X ={ Xl,...,)g]} then for any two fuzzy subse# and B of X with

membership functionyA(.) andil, () , respectively, we have:

Hamming

distance d,(AB)= Z|'UA( X) = g ( )|()| 9)
i=1

Normalized

1 n
Hamming d._ (A B) =E z |ﬂA( %) = s ( )?)| o
i=1

distance

Euclid " 11
ey ce(m8)= S (un(x)- s 1)

Normalized 1 5 2
distance. d, (A B):J; (#a(X) = 112 %))

3.2 Proposed distance measure

A new family of normalized distance measures betweenyfgets based on matrix norms and fuzzy
implications has been suggested in [4] and extended foa#®edf intuitionistic fuzzy sets in [5].
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Furthermore, it is remarked [16] that ffl, = (aﬂ),H2 = (b] ) ,i=1...,n, j=1...,n are square

matrices then the norrN'[”] can be used to define a metiicas:
d(11,11,) =||11,- 7)) (13)

Let A be fuzzy set in a finite universX ={ )g_,...,)g} , with- membership functiorﬂA(.) . Let |, be a

fuzzy D-implication. We define th@X n matricesH(,uA) of I, as follows:
H(/”A) = [_::D ('MA (x’)"'u’l (xf )):| 4 D ’[IUA (Xl) e ’IUA(Xn):I

ID(#A()(l)"ﬂA(Xl)) ID(#A(X]:) huA(Xn))
(1 00 a8)) o) ea()

Let X denote a universe of discourse, whXres a finite and letF (X) denote the set of all fuzzy sets in
X.

Definition 2. Given two fuzzy setdA= { X,uA |XD X} { x,uB |XD X} , where

X ={ ) )g} is a finite universe of discourse. Also, Iy be a fuzzy D-implication and any tensor-or

operator-norrﬂ[m. Then

d(A,B:1,) 2|1 ()= 17 (1t )| G4

WhereH(,uD) :[ Iy (ﬂm()ﬁ ) ’ND()? ))} , defines a metric distance

d: F(X)xF(X) - [0,+).

The above functiord ( A B ID) is a metric [4]. So, this definition actually introducssltiple families of
metrics with different meanings, according to the birggrator chosen.

In Eq. (14) the nornﬂH” is computed by using the largest non negative eigenvalle gfdsitive definite
Hermitian matrix /7" I7 (17" is the transpose of matrig) [16],

”H” = A (15)
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4 Application in Pattern Classification

In order to study the ability of the proposed distance measue@itd the distance between two fuzzy sets, a
set of experiments have been conducted. For this purpose, well known from the literature problems,
according to which a test sample need to be classdiadspecific category, are selected.

In the following examples, attributes correspond to the oreatents that are used to describe each class,
while the classes are represented by specific patterthéyadescribe the classes’ centroids. This procedure
constitutes the main operation of the minimum-distarassdier, where the test sample is assigned to the
class from which its distance is minimum and is desdrlipethe following equation:

k" =arg ngm{ Dist(R S)} (16)

The proposed D-implication based distance measure is cechpéth similar distances derived by using the
popular engineering implication®f Mamdani ( g,, (a, b) = min{ a, t} ) andLarsen (0, (a, b) = ab)
commonly used in Fuzzy Inference Systems (FIS), noteg asd d respectively. Furthermore, in order to

study the ability of the implication based distance messwith that of other measures from the literature,
the distances defined in Eqg.(9-12) have been participated @othparative study presented herein.

In order to compare the examined distance measures, thenpenfe index calle®egree of Confidence
(DoC) defined by the authors in [i§ also used. This factor measures the confidence ofdésteimce metric
in recognizing a specific sample that belongs to the p&fideand has the following form:

Doct) = 3 [disi P, §- dist P ar

i=Li#]

It is obvious from the above Eq. (13) that the greBe€” the more confident the result of the specific
distance metric is.

The pattern classification problems used in this studypgesented hereafter have been selected from the
literature due to their popularity, since they used exscbmark datasets in evaluating the performance of
fuzzy distance and/or similarity measures. It is wortting that only the membership values of the
attributes of those problems are used, since this datanalsdes hesitancy information, which is useful for
intuitionistic fuzzy sets while this information is unessary in our case.

Finally, it is worth pointing out that in the followingeriments, the proposed distance measuygpjdof
Eq. (14) uses the D-implication

I, (a,b)=max{ min{ -a,+8 4.
4.1 Problem 1

This problem has been introduced in [17] and corresponds to anpeleissification problem of 4 classes
and 12 attributes, described by the pattern®R P;, P, and the test sample S, as presented in the following
Table 1.
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Table 1. 4-class/12-attributes problem [17], patternand test sample

Attributes
X1 X2 X3 X4 X5 Xg X7 Xg Xg X10 X11 X12

Pattern U (X 0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.21832 0.750 0.432
#1 R

Pattern (X) 0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.00a45 0.047 0.760
#2 He,

Pattern (X) 0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.50000 0.324 0.045
#3 He,

Pattern (X) 1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.4B®00 0.386 0.028
#4 He,

Test 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.49987 0.376 0.012
sample 'uS(X)

For this example, it is prior known that the test sanbglengs to class 4 and thus the distances have to take
minimum values when the sample compared with the fourtterpatTable 2, summarizes the distance
measures’ results along with the degree of confideneadf one. In this table the minimum distance and
the two best distances with the highest degree of card&géave been noted in bold.

Table 2. Distance measures’ results

Distances Results
dist(P4,S) dist(R,,S) dist(R;,S) dist(R,,S) Doc¥

dy 5.401 5.591 2.46( 0.26¢ 12.66:¢
dn 0.45(C 0.46¢ 0.20¢ 0.022 1.05&
de 1.79¢ 1.77¢ 1.06¢ 0.099 4.34E
Op e 0.519 0.513 0.307 0.028 1.254
d 3.668 3.467 2.520 0.339 8.638
du 3.447 3.760 2.431 0.264 8.847
Jimpp 3.599 3.672 2.482 0.282 8.907

A careful study of the above table leads to the conclusgiah while all the distances under comparison
recognize correctly the test sample, the confidenceaf distance measure varies. Although amming
distance(dy) shows more confident than the other distances, the proposed Daitigulidistance (o) is
the second more confident measure by outperforming thendss that use the traditiorfdmdani (dy)
andLarsen(d,) implications.

4.2 Problem 2

This problem has been introduced in [18] and corresponds to anpeleissification problem of 3 classes
and 3 attributes, described by the patternsPR P; and the test sample S, as presented in the following
Table 3.

For this example, it is prior known that the test samplergs to class 3. Table 4, summarizes the distance
measures’ results along with the degree of confidencecbf @ze.

Table 3. 3-class/3-attributes problem [18], patterns antest sample

Attributes
X1 X2 X3
Pattern #1 A (X) 1.0 0.8 0.7
1
Pattern #2 A (x) 0.8 1.0 0.9
2
Pattern #3 e, (X) 0.6 0.8 1.0
3
Test sample s (x) 0.5 0.6 0.8
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Table 4. Distance measures’ results

Distances Results

dist(P4,S) dist(P,S) dist(R;,S) Docl®
du 0.800 0.800 0.500 0.600
On 0.267 0.267 0.167 0.200
de 0.548 0.510 0.300 0.458
dne 0.316 0.294 0.173 0.264
d 1.136 1.281 0.755 0.908
dwu 0.744 0.883 0.456 0.715
Gimpp 0.949 0.883 0.520 0.793

The results are quite different as compared with the preygoolem, since the most confident distance
measure is that using thearsenimplication (d.), while the proposed measure remains the second most
efficient one, by outperforming the rest distances.

4.3 Problem 3

This example has been introduced in [19,20] and correspondsattean classification problem of 3 classes
and 3 attributes, described by the patternsPR P; and the test sample S, as presented in the following
Table 5.

Table 5. 3-class/3-attributes problem [19,20], patternand test sample

Attributes
X1 X2 X3
Pattern #1 A (x) 0.1 0.5 0.1
Pattern #2 e, (x) 0.5 0.7 0.0
Pattern #3 U (X) 0.7 0.1 0.4
P3
Test sample s (x) 0.4 0.6 0.0

For this example, it is prior known that the test samplerug to class 2. Table 6, summarizes the distance
measures’ results along with the degree of confidencecbf @ze.

The results in this problem are similar to those of pheblem 1, with theHammingdistancebeing the
dominant distance measure and the proposed metric beirg thett the_arsenimplication based distance.

Conclusively, the proposed D-implication distance measiwvesdhe same recognition rates with the other
distances under comparison and in some cases is more confidenthéhdraditional implications of
MamdaniandLarsenand other distance measures from the literature.

Table 6. Distance measures’ results

Distances Results
dist(P4,S) dist(P,S) dist(R;,S) D OC(2)

dy 0.500 0.200 1.200 1.300
A 0.167 0.067 0.40C 0.43=
de 0.332 0.141 0.707 0.75¢€
One 0.191 0.082 0.40¢ 0.43¢

d 0.326 0.222 0.552 0.435
du 0.546 0.200 0.766 0.913
Gimop 0.506 0.221 0.583 0.646
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5 Conclusion

A novel distance measure between fuzzy sets based oy Dumplications was proposed in the previous
sections. The aforementioned distance shows a satisfdmbavior in classifying the patterns of a typical
pattern classification problem, while it is high confidemhen compared to other implication based
(Mamdani, Larsenand traditional distance measures. It is worth notingftban the experimental study is
concluded that each distance measure behaves diffenemisery problem and one has to evaluate several
distances in order to decide which one is the most apgptepto use. In this context the proposed
D-implication based distance measure constitutes an dlterrzhoice, while the applied procedure that
constructs it gives the flexibility to develop multiglestance measures of the same kind by using different
type of D-implications.
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Appendix

This Appendix presents the mathematical proofs of Ritipos 1, 2 & 3 in section 2.2.

Proof of Proposition 1.
) (=)
We have two different cases:
Casex<b:  From (j)itholds thatx< b= 1,(a X)< I, (a b) (A1)
Moreover we havé, (a, xt b) =1y (a, X) and from (A1)
D(I o (a, X), Is (a,b)) =1, (a, X). Therefore
I (a, X Db) = D( I (a, X) v ( a, b)) and property (i) has been proved.

Casex=b:  From (j)itholds thab< x= I, (a, b) < I, (& X (A2)
Moreover we hav;, (&, x0b) = I, (@, b) and from (A2)
D(I 5 (a, X), Is (a,b)) =1, (a, b) . Therefore
I (a, X Db) = D( I (a, X) v ( a, b)) and property (i) has been proved.
(0)
We have two different cases:
Casex<b:  From (i) itholds thad , (a,x Ob) = O( 1, (&, %), I, (& b)) (A3)

Moreover we havd (a, xt b) =1y (a, X) and from (A3)

I, (a,x)=0(1, (a.%), 15 (a.b)
Thereforel (a, X) <lp (a, b) and property (i) has been proved.

Casex=b:  Wwe havel, (a,x0b) = 1,(a,b) and from (A3)

I, (a,b)=0(1, (a,x), 1, (ab).
Thereforel (a, X) =21, (a, b) and property (i) has been proved.

i) This statement is proved in a similar way.

Proof of Proposition 2.
) (=)

We have two different cases:

12
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Casea < X:

Casea = X:

(@)

From (i) it holds tha@ < X= I, (a,b) = I (x b
Moreover we havd , (a 0, b) = I, (@, b) and from (A4)
D(ID (a,b), Is (X,b)) =1y (a, b). Therefore

I (a H)e b) = D( I (a, b) v o ( X, b)) and property (i) has been proved.

From (i) it holds thata = x= |5 (x,b) = I, (a b)
Moreover we havd ;, (@ 0, b) = 15 (X, b) and from (A5)
D(ID (a,b), Is (X,b)) =1y (X, b) . Therefore

I (a H)e b) = D( I (a, b) v o ( X, b)) and property (i) has been proved.

We have two different cases:

Casea< X:

Casea = X:

From (i) it holds that,, (2 O, b) = O( I, (&, b), I, (% b))
Moreover we havd ;, (@ 0, b) = I (@, b) and from (A6)

I, (a,b) =0(1, (a,b), I, (x.b)).
Thereforel (a, b) 21, (X, b) and property (i) has been proved.

We havel ; (a0x,b) = 1, (X, b) and from (A6)

I, (x.b) =0(1, (a,b), 15 (x.b)).
Thereforel 5 (X,b) 21, (a, b) and property (i) has been proved.

ii) This statement is proved in a similar way.

Proof of Proposition 3.

We prove the property (i) and (v). The rest of the propgdie proven in a similar way.

i) We have two different cases:

Casea<h:

Itholds thatl , (O(a,b),c) = 1, (a,.¢) =0(0(1- a1~ § ., g
andl, (O(a,b),c) = I, (b,¢) =0(0(1- b1~ § .9

From (A7) and (A8) we havkg, (D(a,b),c) 2 |, (D(a, b) , C) .

(A4)

(A5)

(A6)

(A7)

(A8)
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Casea=b: The statement is proven in a similar way.

The property (i) has been proved.

v) From Propositionl we hava< b= 1, (a,x) = I, (b, x) . Therefore

(1o (@,6). 1o (0,6)) =15 (0.¢) =S(T(r( . { 3). $=S(T(n( 3. (8). h=1,(ab).

The property (v) has been proved.
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