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ABSTRACT 
 

This is a practical example of a powerful research strategy: putting together data from studies 
covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when 
the individual observations failed to provide definitive understanding. The rationale is that defining 
a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a 
“consilience” of the often competing hypotheses considered for individual data sets. An internally 
consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the 
characteristics of a system than does analysis of individual data sets limited to narrow ranges of 
conditions. Our example examines three very different data sets on the clearance of salicylic acid 
from humans:  a high concentration set from aspirin overdoses; a set with medium concentrations 
from a research study on the influences of the route of administration and of sex on the clearance 
kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a 
first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model with 
forward and backward reactions. The reaction rates found from model 1 were distinctly different for 
the three data sets, having no commonality. The M-M model 2 fitted each of the three data sets but 
gave a reliable estimates of the Michaelis constant only for the medium level data (Km = 24±5.4 
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mg/L); analyzing the three data sets together with model 2 gave Km = 18±2.6 mg/L. (Estimating 
parameters using larger numbers of data points in an optimization increases the degrees of 
freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) increased 
the number of free parameters but nevertheless improved the goodness of fit to the combined data 
sets, giving tighter constraints, and a lower estimated Km = 14.6±2.9 mg/L, demonstrating that 
fitting diverse data sets with a single model improves confidence in the results. This modeling effort 
is also an example of reproducible science available at html://www.physiome.org/jsim/models/ 
webmodel/NSR/SalicylicAcidClearance 
 

 
Keywords: Briggs-Haldane; clearance; enzyme; half-life; JSim; Michaelis-Menten; model; 

reproducible; salicylic acid; salicylurate; CoA; aspirin; multilevel systems; confidence 
ranges. 

 
1. INTRODUCTION 
 
The purpose of this presentation is to 
demonstrate that useful information can be 
gleaned from the literature by putting together 
disparate data sets that can be integrated to yield 
a quantitative interpretation that could not be 
obtained from any of the individual data sets. We 
start with three clinical data sets on the clearance 
of aspirin from the blood. These were studies on 
humans, one in the range of normal therapy (10-
70 mg/L, plasma levels; dose 1000 mg), one in 
people poisoned by overdosing (> 250 mg/L, 
high doses), and one on the kinetics of 
disappearance of the 80 mg antiplatelet dose              
(< 6 mg/L). The principle on which this essay is 
based is that we can gain mechanistic insight by 
analyzing the three data sets together but not 
from any of the individual data sets. Further, 
despite the fact that we use only crude, 
accumulated average values from different 
populations of patients and experimental 
subjects, and use no information on actual 
biochemical kinetics, we can present an analysis 
of predictive value that may be used to 
understand the observations and to guide 
therapy. 
 
In this study, we examine data on aspirin that 
were gathered in three unrelated clearance 
studies. Thinking pharmacokinetically, one wants 
to interpret data in parametric terms (rate 
constants, enzyme affinities, membrane 
permeabilities, etc.) that represent the processes 
and provide insight into mechanism. We take 
advantage of the wide ranges of concentrations 
observed, trying to identify rate constants and 
affinities that should be common to the three 
diverse data sets. 
 
Aspirin, acetyl salicylic acid, is rapidly hydrolyzed 
to acetate and salicylate. Salicylate is the 
effective therapeutic agent at 30 to 80 mg/L. The 

drug's efficacy is limited by its degradation. 
Mitochondrial enzymes in liver and kidney 
degrade salicylate to an inert product, 
salicylurate, that is, like salicylate itself, excreted 
in the urine. Binding to plasma proteins retards 
renal clearance of salicylate, prolonging its 
retention, so that most of the renal excretion is as 
the salicylurate. Concentrations ten times 
therapeutic levels are toxic, causing acidosis, 
and sometimes death. The LD50 (lethal dose for 
50% of subjects) is about 200 mg/kg in rats and 
mice and probably higher in humans, i.e. of the 
order of more than 10 grams for a 50 kg person. 
Historically, fevers, pains, and inflammation were 
treated with preparations from willow bark from 
Greek times. Salicylate was explicitly identified 
by Stone [1]. Aspirin, acetyl-salicylate, was 
synthesized and marketed by Bayer in 1897, and 
continues to be in wide use with few problems. 
 

2. OVERVIEW OF THE KINETICS 
 
The substrate to product reaction sequence, S--> 
P, is: 
 

Aspirin--> Salicylic acid --> Salicyl-CoA --> 
Salicylurate   

  
The hydrolysis to salicylic acid is so fast that it 
can be considered instantaneous. The rate-
limiting step in degradation is the conversion of 
salicylic acid to salicyl-CoA catalyzed by medium 
chain acyl-Coenzyme A synthase, and the final 
step is the conversion of salicyl-CoA to 
salicylurate, catalyzed by glycine-N-
acyltransferase [2]. The conversion to 
salicylurate is a key step toward renal clearance, 
accounting for 50% [3,4] to 85% [5] of ingested 
salicylate. Only about 10% is urinary salicylate 
[6]. Presumably renal clearance by passive 
filtration across the glomerular membrane is zero 
for salicylate bound to plasma albumin, and may 
be slower for the ionized fraction of salicylate 
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because of the charge. In any case the clearance 
basically follows the conversion to salicylurate. 
 

We define a minimal model in which the whole 
body is considered as a mixing chamber into 
which the salicylate is absorbed, and within 
which an enzyme converts salicylate to 
salicylurate. Salicylurate is assumed to be the 
only product, and the only solute cleared by the 
kidney, ignoring the salicylate 10% mentioned 
just above. The converting enzymes are in 
mitochondria in the liver and kidney, not free in 
the circulation: the kinetic simplicity of the model 
makes sense only if the whole body mixing and 
the transport from blood to mitochondria are both 
fast compared to the conversion steps and the 
renal clearance. 
 

Three models to describe and “explain” the 
clearance of the salicylate will be explored: (1) 
the first tests the concept that first order kinetics 
dominate the system, as if the clearance were 
controlled by a single exponential washout 
process, a totally inadequate model; (2) the 
second model asks if a Michaelis-Menten 
enzymatic reaction model can define the kinetics; 
(3) the third test is a more fully developed 
enzyme kinetic model with reversible reactions. 
Each model is tested against the three data sets 
individually and then together, asking whether or 
not the data from three different sets of subjects 
at three very different levels of dosage can be 
“explained” in terms of one structurally and 
parametrically self-consistent model describing 
the processes governing the clearance. We say 

“explain” in quotes since all models are 
incomplete and inexact.  
      

3. THE DATA AND THE SOURCES 
  
The data sets are group-averaged observations 
on plasma salicylate concentrations as a function 
of time over most of a day after ingestion of 
aspirin. The data were published in three 
unrelated studies, each of which covered a 
different range of concentrations (Fig. 1). 
 
The data (Fig. 1 left) for low dose aspirin 
ingestion [7] are the averaged plasma 
concentrations from ten healthy male volunteers 
who ingested an 81 mg tablet of aspirin. The last 
seven points were digitized from the authors' 
figure (their Fig. 1, right panel, dose period 1, 
open squares). “All aspects of the study were 
conducted in accordance with regulations of the 
United States Food and Drug Administration 
(FDA), in particular those regarding informed 
consent and approval by a qualified Institutional 
Review Board”. 
 
The data (Fig. 1 middle) for mid dose aspirin 
ingestion [8] are the averaged plasma 
concentrations from 9 female and 9 male healthy 
volunteers, who ingested 1000 mg of lysine 
acetyl salicylate. The last eleven points were 
digitized from authors' Fig. 3, the solid triangles. 
“Each subject gave informed written consent to 
participate in the study and the study received 
the approval of an Ethics Committee”. 

 

 
 

Fig. 1. Salicylate decay curves for low, medium and high doses from three separate studies 
Each is a group-averaged set of data from humans; Left panel: Benedek95; middle panel: Aarons89; right panel: 
Prescott82. Each data set is fitted with Model 1, single exponential functions with the half-life and an initial value 
of concentration for each dose group as the sole parameters. Parameter values and standard deviations for the 
model solutions to Eq 2 are given in Table 1 
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The data (Fig. 1, right) for the high dose aspirin 
ingestion [9] are the averaged plasma 
concentrations from 16 patients being treated for 
mild poisoning, salicylism, (plasma salicylate 
concentrations 250-400 mg/L). The last nine 
points were digitized from authors' figure (their 
Fig. 1, open circles). In these aspirin overdose 
cases, the authors were attempting to discern 
best treatment methods. The research was 
performed at the Regional Poisoning Treatment 
Centre and University Department of 
Therapeutics and Clinical Pharmacology, Royal 
Infirmary, Edinburgh EH3 9YW. “All patients 
were conscious and recovered uneventfully”.  

 

4. METHODS OF ANALYSIS 

 

We used a general-purpose simulation system, 
JSim [10], designed for data analysis, displaying 
results and storing them as Reproducible 
Exchange Packages (REP). JSim code for the 
three models is written in MML, Mathematical 
Modeling Language: the equations have the 
same form as one would write them on paper, 
with the exception that the derivative dS/dt is 
written S:t. Routines for solving ordinary 
differential equations (ODEs), partial differential 
equations (PDEs) and differential algebraic 
equations, are built into JSim and selected by the 
user. JSim provides 8 methods for solving ODEs, 
three for PDEs. Comparing different methods is a 
key step in code verification, a part of 
demonstrating its correctness. Eight optimizers 
are available for automated fitting of model 
solutions to data; switching from one method to 
another helps to determine the uniqueness of the 
fit. At the point of best fit both an analytical 
method (covariance matrix) and MonteCarlo 
(randomized) method are used for estimating 
confidence limits, and projecting uncertainty 
quantification. The REP provides storage of all 
data, figures and parameter files and retention of 
all the models developed for a project, in a form 
reproducible under Linux, MacOS X or Windows. 
Model code is in the APPENDICES. The models 
used in the analysis are installed at 
html://www.physiome.org and can be run over 
the web. They are open source and open 
operation, and may be downloaded from there, 
as can JSim itself.  All data files, models, initial 
conditions, parameters, and resulting figures for 
this report are completely described in the REP 
file at html://www.physiome.org/jsim/models/ 
webmodel/NSR/SalicylicAcidClearance 
 

4.1 Model 1: A Descriptive First-order 
Washout Model 

 
The single exponential decay or first-order 
process is based on the expectation that there is 
a single means of clearance from the body and 
that it is passive, whereby a constant fraction of 
the concentration is removed per unit time, 
independent of the concentration. Assuming that 
mixing within the body is fast compared with the 
rate of removal, then, using S for salicylate 
concentration mg/L, and k as the fraction 
removed per minute, the removal flux is k times 
S.  For a given initial concentration S(t=0) = S0, 
the governing ordinary differential equation 
(ODE)  is 
 

dS t( ) / dt=-k S t( ).   
(1) 

 

The solution to this ODE is 
 

S t( )=S0 exp -k  t( )   (2) 

 
A semilog plot would give a straight line, a 
constant fraction lost per unit time. When half of 
the substance is gone, the solution becomes 
 

S0 / 2=S0 exp -k  thalf( ).   
(3) 

Defining the half-life as 
 

thalf = loge 2( ) / k
                       (4) 

 

allows one to rewrite Eq. 1 as 
 

dS t( ) / dt =- loge 2( ) / thalf( ) S t( ).  (5) 

 

The descriptive parameters, k and S0, for the 
model were adjusted to fit the data by minimizing 
the weighted sums of square of the distances 
between the data points and the model solutions, 
the Sum of Squares of Weighted Residuals, 
SSWR. This can be done either manually or by 
automated optimization. The model code is in 
Appendix 1. The “import nsrunit; unit conversion 
on;” requests the parser (a precompiler phase) to 
check the equations, and any exponents or 
transcendental functions like sine, for unit 
balance [11]; the parser also inserts reconciling 
conversion factors, e.g. 60 sec/min, when 
analogous units have been used.  
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This is automatic, and is the first step in verifying 
that the model code is computing correctly, a part 
of JSim’s design to support the project from 
experiment through the steps of a VVUQ 
process, model development, Verification that 
the code computes correctly, Validation that the 
model can be fitted to experimental data, and 
Uncertainty Quantification in parameter 
identification, in estimation of confidence limits 
from the sensitivity functions or from Monte 
Carlo, and in making predictions. 
 

The Model 1 parameters for initial concentrations 
(LS0, MS0, and HS0) and the respective rate 
constants, Lk, Mk, and Hk (or alternatively the 
half lives), may be manually adjusted to fit the 
data. The same process can be automated using 
the “Optimization” Graphical User Interface 
(GUI). The optimization GUI is used to automate 
the fitting to each data set individually to estimate 
the decay rate and the initial concentrations; 
these are reported in Table 1, along with the 
standard deviations estimated from the 
covariance matrix. 

 

As a test to see if clearance was by a single 
passive first order process we optimized the 
model solutions to use a single decay rate to 
best fit the three data sets simultaneously. This 
idea was disproved; a single decay slope could 
fit only one of them reasonably well at a time. 
Their initial values were strikingly different, so the 
only situation that would give similar decay rates 
for the three sets of data would be if their 
clearances mechanisms were the same, e.g. 
renal clearance by glomerular filtration. This was 
clearly not the case, so we rejected the 
hypothesis of a common factor being renal 
passive clearance. 
 

What we learn from this model is that decay 
rates are slower at high concentrations (Table 1). 
Raising the initial concentrations by two orders of 

magnitude increases the half-lives by over 
tenfold. The time courses of the high dose 
concentrations and the upper range of the mid 
dose concentrations are approximately linear, 
suggesting that a zero-order process (S is 
removed at a constant rate) might be a better 
model. The last points of the mid dose and all the 
low dose concentration-time curves are 
nevertheless close to an exponential decay. 
Putting these observations together suggests 
that another model, a saturable enzyme model 
might be better; more explicitly, a saturable 
enzyme model with a Km somewhere between 
the low dose concentrations and the medium 
dose concentrations would make sense. 

 

4.2 Model 2: The Michaelis-Menten Model 
for Enzymatic Reaction 

 

The reaction sequence S--> P for salicylurate 
formulation is 

 

SalicylicAcid® Salicyl -CoA® Salicylurate.  
 

The Michaelis-Menten [12] model assumes that 
there is no reverse flux from salicylurate, the 
product P, back to substrate S. Most of the 
clearance of S follows conversion of S to the 
metabolite, P, which is cleared by the kidney. 
 

Using a single mechanistic model to fit the three 
data sets simultaneously should be more 
powerful than obtaining three independent half-
life estimates, because of increasing the degrees 
of freedom by virtue of the constraints: more data 
means larger n, and the fewer parameters, one 
Km and one Vmax instead of 3 decay rates, means 
a tighter focus, fewer parameters per data point. 
Using all the data simultaneously focuses the 
analysis on the characteristics of an explanatory 
mechanism, enzymatic degradation (Fig. 2). 

 
 

Table 1. Exponential decay model: Optimized parameters 
 

Parameter value 
 ±1 SD* 

Initial concn 
S0, mg/L 

Decay rate constant,  
fraction /hr k, hr

-1
 

Half-life, min  RMS/S0  

Low concn 4.61±0.74  0.332±0.016 126±7 0.015 
Middle concn 71.8±1.75  0.156±0.008 267±14 0.026 
High concn 337.5±10.3   0.026±0.002 1600±100 0.015 

Table 1: Optimized values for initial concentrations and rates of decay using the first order clearance model.  
The standard deviations of the estimates came from optimizing the group data sets individually 
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Fig. 2. Reversible enzymatic reaction 
Substrate salicylate, S, combining with free enzyme, 
E, to form complex, SE, reacts to form product, P, and 
release free enzyme, E, to react with another 
substrate molecule 

 

S is the substrate, salicylic acid, E is the enzyme, 
medium chain acyl-Coenzyme A synthetase, and 
SE is the enzyme-substrate complex, and P is 
still the product, salicylurate.  Our assumption in 
this formulation is that SE, the enzyme-substrate 
complex, and PE, the enzyme-product complex 
are instantaneously interconvertible and can be 
regarded as the same species. The four 
reactions are considered to be reversible. This 
results in a system of four ODEs with initial 
conditions (Eqs.  6, 7, 8, 9, and 10) using mass 
balance equations 
 

dS / dt= -kon1 S E+koff1 SE   (6) 

 

dSE / dt = kon1 S E - koff1+koff2( ) SE    (7) 

Conservation of enzyme mass allows an 
algebraic expression for E instead of an ODE: 
 

E= ETOT -SE.
                                    (8) 

 

Salicylurate, P, is formed in the reaction, but is 
also removed by other processes, potentially by 
the reverse reaction with rate kon2 for backward 
binding to the same enzyme, or by conversion to 
other substances, represented by the 
consumption reaction at rate G: 

 

dP / dt= -kon2 P E+koff2 SE-G P.  (9) 

 

For the most part, we will set G to zero and 
ignore the effect of the removal of P. The initial 
conditions are given as 
 

S t = 0( )=S0;SE t= 0( )= 0;E t= 0( )= ETOT;P t= 0( )= 0;

(10) 
 

The Michaelis-Menten (M-M) equation is identical 
to the Briggs-Haldane (B-H) equation [13], but 
they are derived via different assumptions from 
Eqs 6 and 7. B-H is based on the intermediate 
complex, SE, being in quasi-steady state, 
specifically dSE/dt is small compared to the rate 
of change of S and P. M-M is based on the 
substrate, S, and the complex, SE, being in rapid 
equilibrium with high on- and off-rates so that the 

ratio E/ES is continuously defined in accord with 
the dissociation constant KS: 
 

KS = koff1 / kon1 = E S / SE.
                 (11) 

 

The parameter kon2 for the reversal of the 
product formation is assumed to be zero for the 
M-M model, but for the data shown is probably 
not true. The final equation in both cases, which 
we will call the Briggs-Haldane / Michaelis-
Menten model (B-H/M-M), is 

 

 
dS / dt=-Vmax S / Km +S( ),   (12) 

where S is the concentration or activity of the 
substrate, Vmax, the maximum velocity of the 
reaction is given by 
 

Vmax = koff2 ETOT.   (13) 

The substrate concentration at which the reaction 
velocity is half of Vmax occurs when the enzyme 
is half occupied, i.e. [ES]/ [ETOT] = 0.5, and 
accounts for the conversion of ES forward to P 
and backward to S. This defines Km from Eq. 13 
as 
 

Km = koff1+koff2( ) / kon1  or Km =KS+koff2 / kon1
 (14) 

 

illustrating that when the forward, product-
forming reaction is slow compare to the binding 
on- and off-rates that Km is only slightly greater 
than KS. When the concentration, S, is small 
compared to Km (as in the low dose case), the 
ODE for S approaches 
 

dS / dt » - Vmax / Km( ) S,   (15) 

 

which is a first order process with the solution   
defining that for this situation Vmax / Km equals 
the k of Model 1 for the first order reaction 
process. When the concentration S is large 
compared to Km, then S / (S + Km,) approaches 
1, and the ODE for S, Eq. 16, approaches 
 

dS / dt » -Vmax.   (16) 
  

 

This is a zero order process with solution 

S t( )=S0 -Vmax  t. Thus the B-H/M-M model 

can be zero-order at high concentrations and first 
order at low. 
 
The M-M code in MML is in Appendix 2. For 
starting values for data fitting, we estimated Vmax 
using the first and last points of the high dose 
curve [9] to approximate Eq. 17 as 
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Vmax » -dS / dt » -DSA /Dt

       » - 341mg / L - 225mg / L( ) / .95hour -15.94hour( ) » 7.7mg / L hour( ).

 

(17) 

This is about 2% per hour in these aspirin-poisoned patients. From the low dose data [7] we estimate 
a rate constant using  

-dlog S / S0( ) / dt =Vmax / Km » -¶log S / S0( ) /¶t =-D logS /Dt. (18) 
 

Vmax / Km= log ((2.483 mg/L)/(0.184 mg/L) ) / ( 
(12.032 hour)-1.888 hour) ) = 0.257 hour-1, and 
using the estimated value for Vmax, we obtain a 
starting estimate for Km, namely, Km = Vmax 

/(0.257 hour-1) = (7.7 mg/(L hour)/(0.257 hour-1) = 
30.0 mg/L. This is higher than the estimate of Km, 
16.5 mg/L, from Ho et al. [14]. 
 
For automated optimization we set the point 
weights to 1. For fitting the three data curves 
simultaneously we assigned curve weights that 
were high for the low dose data, and low for the 
high dose data, as stated above, so that they 
have similar total weight in the weighted sum of 
squares (Table 2, next to bottom row). The sum 
of squares of the differences between data and 
model solution for the individual data set are in 
the bottom row in Table 2. (A sum of the 
individual differences divided by the individual 
model point values, divided by Npoints for the 
individual data set, gives the fractional residual 
error; this is useful for comparisons amongst the 
individual data set fits.) The fit to the three data 
curves using single common values for Vmax and 
Km is shown in Fig. 3. 
 

In Fig. 4 we plot the flux, the rate of 
disappearance of S (enzymatic degradation) or -
dS/dt calculated from the model solutions versus 
the observed concentrations, the data. The 
intersection of this curve with Vmax /2 gives Km on 
the abscissa. Fluxes at the high concentrations 
are close to the upper limit at Vmax.  
 

What did we learn from the irreversible M-M 
model? Firstly, the parameter values of this 
model were not well defined by fitting the 
individual data curves:  at the low and the high 
concentrations the variances were worse than 
those for the first order washout model 1. 
However, when the three data sets were fitted 
with one set of parameters the estimates were 
well defined, with much smaller coefficients of 
variation, SD/Mean, for both the low and high 
concentration data. This makes for a good 
generality: in order to estimate Km the 
experiment must provide data over a wide range 
and the range must encompass the Km. On 
comparing the estimates for the mid range data 

alone with those from the values for the three 
sets together, they are not statistically 
significantly different. The fluxes are linearly 
related to S/(S+Km); their range is greatest for 
the mid level data, the triangles in Fig. 4, where 
the ratio of flux to concentration changes steeply 
in the neighborhood of the Km. At levels below 
Km /10 and above levels of 10 Km, the slopes of 
flux versus concentration are shallow, and 
therefore nearly impossible to use to estimate Km 
accurately. Even Vmax is poorly estimated from 
the high concentration data: when the enzyme is 
nearly saturated, with zero order kinetics, all one 
knows from the high dose data alone is that the 
concentrations are many times the Km. 
 

4.3 Model 3:  Enzyme Kinetic Model with 
Binding Rate Coefficients and 
Reversibility 

 
The third model incorporates reactions implied in 
Fig. 2 and defined in Eqs 7 to 10. Since all 
chemical reactions are in principle reversible, the 
model has a reverse flux P → S, and thus allows 
comparing the results with those from the 
irreversible B-H/M-M formulation. A preliminary 
treatment was presented in [15]. We lack early 
samples that might have provided information on 
the rapidity of binding, so in accord with 
expected small solute binding to proteins we 
assume that kon1 is high, e.g. we use 3 
L/(mg*sec), of the same order as fatty acids to 
albumin.  The rate of product formation is 
governed by KS, koff2, and Km, the combination of 
the first two giving us Km (Eq.15). The maximum 
forward velocity of the reaction is Vmax, which is 
the product ETOTkoff2. From the experience with 
model 2 (M-M) we know that the strongest 
parameter estimation method is to use the three 
experimental data sets simultaneously, together 
they cover three orders of magnitude of 
concentrations. Not knowing the affinity KP for the 
product, but given that reactions are reversible, 
the long tail of concentrations for low dose data 
suggest that this reaction is demonstrating its 
reversibility. Since P was not measured one 
cannot hope to obtain a unique estimate of KP, 
even though the reverse flux must occur at all 
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three concentration levels. Analogous to KS in 
Eq. 12, the dissociation constant KP defines the 
equilibrium condition for P, E, and EP such that: 
 

EPPE=kk= on2off2 //Kp   
(19) 

 

 

where EP is considered identical to ES through 
their instantaneous interconvertibility. The model 
3 code to optimize to fit the three data sets 
simultaneously with one set of parameters as in 
Appendix 3. 
 

Table 2. Model 2: B-H/M-M: Parameters from optimizations 
 

Parameter  
±1 SD 

Low dose  
individual optim 

Mid dose  
individual optim 

High dose 
individual optim 

Simultaneous  
optimization 

 Km  mg/L Fixed at 24.1 24.1±5.4 Fixed at 24.1 18.2±2.6 
Vmax mg/(L*hr) 8.4±0.49 9.2±0.89 7.7±0.56 7.85±0.38 
Vmax / Km   1/hr 0.35±0.021 0.40±0.12 0.36±0.011 0.44±0.07 
LS

0
    mg/L 5.07±0.23 - - 5.07±0.48 

MS
0

    mg/L - 65.99±0.57 - 64.59±0.99 

HS
0

    mg/L - - 333.1±1.6 335.0±2.5 

Wgt  in Simult 
Optimization 

1.6435 0.0211 0.0034 Curve Wgts at left 

S'i-Si |/S'i/Np 0.170 0.014 0.017 0.096 

Table 2: Values from optimizing Briggs-Haldane/Michaelis-Menten model. The shaded regions 
mark estimates of parameters with such low sensitivities that the results had no meaning until we decided to use 
the estimate of Km from the mid dose data as fixed values of Km and optimized on that basis. If the calculations 
for the shaded boxes were chosen in accord with the Km from the simultaneous fit (right column) the Vmax would 
change in proportion and Vmax / Km would not change. The SD for Vmax / Km for simultaneous optimization was 
calculated by a Monte Carlo iterative optimization using the MML function for setting the five parameters (Vmax, 
Km, and the three S0's) defined by their individual Gaussian probability density functions, doing 104 optimizations. 
The SD for Vmax / Km  for the mid dose data was found by using Caladis (www.Caladis.org/compute/), also a 
Monte Carlo method. Error assessments are provided in the bottom row, the fractional error per point, S'i-
Si|/S'i/Np 

 

 
 

Fig. 3. Fitting the Briggs-Haldane / Michaelis-Menten model (solid lines) to the three data sets 
simultaneously. The five parameters are in Table 2, right column. For comparison, the dashed curve for the 
low dose panel represents the first order solution to the BH-MM equation, the rate constant at low concentrations 
being Vmax /Km. The dashed line in the high dose panel is the zero order solution to the BH-MM equation, at the 
rate Vmax. The estimate of the Km, 18.2 mg/L, is more than any of the concentrations of the low dose data but less 
than any of those of the high dose data, meaning that its strongest influence comes from the mid dose data 
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Fig. 4. Clearance of S, dS/dt, versus S, the 
traditional Michaelis -Menten plot, describes 
the best fit of the model solution to all three 
data sets. At Vmax /2 the concentration S = Km. The 
intersection is at Km = 18.2 mg/L, Vmax /2 = 3.9 
mg/(L*hour). The abscissa indicates the low dose data 
(diamonds), mid dose (triangles), and high dose 
(circles) mapping to the fluxes on the ordinate, just as 
the Km maps to Vmax /2 

 
Eqs. 7 to 10 concern the conversion of salicylic 
acid to salicylurate. We guesstimate ETOT, the 
concentration of medium chain acyl-CoA 
synthetase, to be 1.5e-4 mg/L, taken from the 
geometric mean of estimates for the human acyl-
coenzyme A synthetase ACSM2B, mitochondrial 
(ACSM2B) ELISA Kit (http://www.mybiosource. 
com/datasheet.php?products_id=911502). We 
set kon1 to be ~3/sec or ~10800 / hour, then 
optimized to estimate the remaining parameters 
in three different situations: (A) fitting the 
individual data sets, (B) fitting the three data sets 
simultaneously to estimate for KS, KP, and koff2 and 
the three “initial” concentrations, and (C) fixing 
the three initial concentrations to the values 
found in B and optimizing only the kinetic 
parameters, KS, KP, and koff2. From the optimized 
parameters we calculated the effective Michaelis-
Menten parameters, Km and Vmax, reported in 
Table 3 in the fourth and third rows from the 
bottom. The estimate of Km is slightly lower than 
those reported by Levy [4]. The derived 
estimates for koff1, the rate of complex 
dissociation to produce free substrate S from the 
ES complex, and kon2, the rate of binding of 
product P to form EP (regarded as equilibrated 
with the ES form), are reported in the bottom two 
rows of Table 3. To obtain the estimates of the 
SD's for the free parameters, 1000 Monte Carlo 
cases were run for each combination of 
parameters. To do this we added 1% 

proportional uniform noise to each data point. 
Monte Carlo results were rejected when values 
for KS, KP, and koff2 were over 1000. The fits of 
the model solutions to the data are in Fig. 5. The 
low dose data are now better fitted to the tail of 
the curve, a result of the reverse reaction and the 
concentrations approaching an equilibrium level 
between S and P.  
 
The decay curve for the low dose (Fig. 5) is no 
longer a single exponential decay, but is 
deviating from it by prolonging the tail: small 
reverse flux from P to S keeps the concentration 
of S above zero, so this result is substantially 
different from that in Fig. 3, left. The influence of 
the concentration of the product P is small 
because the enzyme E has a relatively low 
affinity for P, as indicated by the high value for KP 
(Table 3). 
 
With the high dose (Fig. 5, right) the decay is 
almost linear, showing that the enzyme is nearly 
saturated and that product is being formed at a 
rate near Vmax, a zero order process.  This is 
much slower than the rate of decay proportional 
to concentration observed at low concentrations. 
The estimated Vmax of 8.0 mg/(L•hr) is almost 
identical with the crude estimate from the slope 
in Eq 18.  
 
With the middle dose the fraction of enzyme 
bound with S is almost constant until the 
concentration of S is less than approximately 40 
mg/L. There is a gradual transition from nearly-
saturated conversion initially to closer to first 
order clearance after 5 hours. The initial rates of 
removal of S at high and mid-level 
concentrations, operating close to Vmax, are 
described as well by the B-H/M-M model as by 
this model. 
 
For these fits ETOT is not optimized since its value 
is more or less nominal. Its value appears in the 
calculations always as a part of the product, ETOT 
times koff2. Thus ETOT and koff2 vary inversely with 
one another if both are free parameters, and in 
the correlation matrix would inevitably be highly 
correlated, in this case around r ~ 0.8. When 
covariances are high between pairs of 
parameters, the estimated standard deviations 
(SD) will be large. Without data on the 
concentrations of P, KP is almost unconstrained. 
In accord with the M-M concept of rapid 
equilibration between E, ES and S, kon1 was fixed 
to a moderately high value of 3/sec, which then 
reduced the SDs of the parameter estimates to  
about 34% for KS  and 75% for KP, This illustrate



Raymond 

that constraining the degrees of freedom narrows 
the parameter confidence ranges for the 
remaining free parameters. When only K
and koff2 were freely adjustable, the SD on k
shrunk to ~3%. 
 
Fig. 6 (top panels) shows the fitting of the 
concentration-time curves on a semilog plot. On 
this scale it becomes obvious how much slower 
is the decay rate for the high concentrations. 
With the Low dose, the decay is initially almost 
exponential but the tail begins to level off after 8 
 

  
Fig. 5. Fitting of the enzyme model solution for S(t) (heavy line in each plot) using 
simultaneous optimization to fit all three data sets
columns. The parameter values do not differ significantly between using 3 free parameters ( K
and using 6 free (those + the 3 initial concentrations), but the estimated confidence ranges do differ, the degrees 
of freedom being reduced by fixing the values of the three initial concentrations, removing them from the 
estimation procedure 

 

Fig. 6. Model fitting to the three data sets simultaneously: (Parameters are in Table 3 right 
column). Top Panels: Data and model fits on a semilog plot, fitting 
fractional enzyme occupancy, SE/Etot and free unbound enzyme E versus time, for the same three data sets as 
shown in the top panels. For the low dose data the enzyme is mostly free, i.e. SE/E
data, there is very little free 
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constraining the degrees of freedom narrows 
the parameter confidence ranges for the 
remaining free parameters. When only KS, KP, 

were freely adjustable, the SD on koff2 

Fig. 6 (top panels) shows the fitting of the 
semilog plot. On 

this scale it becomes obvious how much slower 
is the decay rate for the high concentrations. 
With the Low dose, the decay is initially almost 

ail begins to level off after 8 

hours:  the reverse reaction, P --> S, provides an 
explanation for this. The middle dose data are 
those that give the most definitive information on 
KS: the concentrations pass from above to below 
KS, thus it makes sense that the estimates of K
and koff2 from the middle dose data alone (column 
3 of Table 3) have much narrower confidence 
limits than those estimated individually from the 
low and high doses (columns 2 and 4), and 
provides an estimate that is not very differe
from the best estimate provided by analyzing all 
the data simultaneously. 

Fitting of the enzyme model solution for S(t) (heavy line in each plot) using 
simultaneous optimization to fit all three data sets. The fitting parameters are given in Table 3, right 3 
columns. The parameter values do not differ significantly between using 3 free parameters ( K
and using 6 free (those + the 3 initial concentrations), but the estimated confidence ranges do differ, the degrees 
of freedom being reduced by fixing the values of the three initial concentrations, removing them from the 

 

Model fitting to the three data sets simultaneously: (Parameters are in Table 3 right 
Data and model fits on a semilog plot, fitting S and predicting P. Lower panels:

and free unbound enzyme E versus time, for the same three data sets as 
shown in the top panels. For the low dose data the enzyme is mostly free, i.e. SE/Etot is low; for the high dose 
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explanation for this. The middle dose data are 
those that give the most definitive information on 

: the concentrations pass from above to below 
that the estimates of KS 

from the middle dose data alone (column 
3 of Table 3) have much narrower confidence 
limits than those estimated individually from the 
low and high doses (columns 2 and 4), and 
provides an estimate that is not very different 
from the best estimate provided by analyzing all 

 

Fitting of the enzyme model solution for S(t) (heavy line in each plot) using 
parameters are given in Table 3, right 3 

columns. The parameter values do not differ significantly between using 3 free parameters ( KS, KP, and koff2 ) 
and using 6 free (those + the 3 initial concentrations), but the estimated confidence ranges do differ, the degrees 
of freedom being reduced by fixing the values of the three initial concentrations, removing them from the 

 

Model fitting to the three data sets simultaneously: (Parameters are in Table 3 right 
Lower panels: The 

and free unbound enzyme E versus time, for the same three data sets as 
is low; for the high dose 



 
 
 
 

Raymond and Bassingthwaighte; BJPR, 7(6): 457-473, 2015; Article no.BJPR.2015.126 
 
 

 
467 

 

Table 3. Enzyme kinetic model: Estimated parameters under three conditions 
 

 A. Optimizing to fit individual data sets at 
each dose level 

B. Simultaneous optimization to fit all 
three dose level data using  6 free 

parameters 

C. Simultaneous optimization to fit 
all three dose levels with S

0
 fixed 

Parameter Low dose  
 ±1 SD 

Medium  
dose ±1 SD 

High  dose 
±1 SD 

How 
obtained 

Estimate 
±1 SD 

SD/ 
Mean 

How 
obtained 

Estimate 
 ±1 SD 

SD/ 
Mean 

KS mg/L 6.33±2.10 8.30±2.54 181±131 Opt 11.9±0.66 ±5.5% Opt 10.44±0.18 ±1.7% 
KP mg/L 169±67 246±130 91±68 Opt 335±30.4 ±9.1% Opt 273.5±6.5 ±2.4% 
 koff2  1/sec 7.45±1.96 14.7±0.67 55.4±30.4 Opt 15.4±0.29 ±1.9% Opt 14.82±0.13 ±0.9% 
LS

0
  mg/L 4.57±0.12 -- -- Opt 5.39±0.09 ±1.7% Fixed 5.67 -- 

MS
0

  mg/L -- 65.8±0.25 -- Opt 65.5±0.22 ±0.3% Fixed 64.9 -- 

HS
0

  mg/L -- -- 353±6.0 Opt  336±0.98 ±0.3% Fixed 335 -- 

kon1  L/(mg•sec) 3.0 3.0 3.0 Fixed 3.0 -- Fixed 3 -- 
ETOT   mg/L 1.5e-4 1.5e-4 1.5e-4 Fixed 1.5e-4 -- Fixed 1.5e-4 -- 
Km  mg/L  
=  KS + koff2 / kon1 

8.82±2.75 13.2±2.76 199±131 Calc 17.1±0.75 ±4.4% Calc 15.4±0.22 ±1.4% 

 Vmax mg/(L•hr)  
= TOT•koff2  

4.02±1.06 7.94±0.36 29.9±16.4 Calc 8.30±0.15 ±1.9% Calc 8.00±0.07 ±0.9% 

koff1 1/sec = KS•kon1 
 

19.0± 6.3 24.9±7.6 542±393 Calc  35.8±1.99 ±5.5% Calc 31.3±0.55 ±1.7% 

 kon2   L/(mg•sec)  
= koff2 /KP 

0.0467±0.0064 0.077±0.044 6.4±20.5 Calc 0.046±0.0042  ±9.2 Calc 0.054±0.0014  ±2.5% 

Table 3. Estimated parameter values for the enzyme model: Assuming a fixed value for kon1 = 3 L/ (mg• sec), we used three approaches: [A] (columns 2 to 4): 
“Unconstrained” fitting of the three data sets individually; [B] (Columns 5 to 7): Simultaneous fitting of the three data sets using KS, KP, and koff2, and the three initial values, 
S(t=0). [C] (Columns 8 to 10):  Simultaneous fitting of the three data sets using only KS, KP, and koff2, with all other parameters fixed. The resulting fit is displayed in Fig. 5 
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5. ENZYME SATURATION 
 
While it is true that the fastest absolute flux, Vmax, 
occurs when the enzyme is completely saturated 
and all of the enzyme molecules are working, ES 
= Etot, the fastest flux per unit substrate 
concentration occurs when the substrate has 
greatest access to the enzyme, namely at low 
substrate concentrations, when occupancy is 
lowest. The idea is illustrated in Fig. 6. 

 
With the low dose (left panel) the fraction of 
enzyme bound, SE/ETOT, was only 0.3, 30% 
saturated, at the beginning and fell rapidly to less 
than 10%. By definition, when the enzyme is 
unsaturated, the fraction of enzyme molecules 
available to bind substrate is maximal, resulting 
in rapid conversion of S to its metabolite, P. The 
fraction of free enzyme E/ETOT (dotted line) rose 
toward close to 100% as the reaction depleted S. 
The mid dose panel shows that the bound 
fraction, the substrate-enzyme complex, SE/ETOT  
(solid line), was initially high, over 80%, and 
nearly constant (quasi-steady state): the rate of 
change of SE/ETOT was small until the 
concentration of S was less than approximately 
40 mg/L, after which it diminished increasingly 
rapidly.  In contrast, with the high dose (right 
panel) the fractional occupancy, SE/ETOT is over 
90 %, almost fully saturated, throughout the 
observation period. In this situation the fraction of 
the toxic substrate removed per unit time is 
small, about 2% per hour, and interventional 
therapy is desired.  
 

6. DISCUSSION 
 
The three models used to explain the 
disappearance of S, salicylate, from plasma, 
where the data came from three separate studies 
and spanned three orders of magnitude, were: 
(1) a descriptive first order decay model, chosen 
since it is the commonest and simplest model 
used in pharmacokinetic analysis, (2) a Briggs-
Haldane/ Michaelis-Menten model, an 
approximation for an enzymatic reaction, the 
commonest and most frequently used model in 
biochemical reactions, though it is 
thermodynamically undefined. and (3) a 
thermodynamically based enzyme kinetic model 
with reversibility, thus fulfilling minimal 
thermodynamic expectations. 
 
Model 1, first order, could only fit one data set at 
a time, meaning that the different data sets had 
unrelated clearance rates. Simultaneous 

optimization had no role to play since there were 
no parameters in common. The good individual 
fits with model 1 cannot be interpreted in terms of 
one mechanism. 
 
The B-H / M-M formalism, model 2, fitted suitably 
at all doses, but only for the mid dose data did 
the fractional enzyme saturation, SE/Etot shift 
through 50% and give a measure of the 
dissociation constant, KS.  This marks a transition 
point between a zero order process at the earlier 
time to a first order process at the later time. For 
the low dose observations the concentrations 
were always less than the optimized value for 
Km, but contributed to defining it. But even 
though the concentrations were low, the decay 
did not have exactly the expected single 
exponential form, and instead exhibited a second 
slower component extending the tail of the curve, 
a clear deviation. The Briggs-Haldane / 
Michaelis-Menten model was therefore 
inadequate even in this region. 
 
The “full” enzyme kinetic model, model 3, even 
though it does not distinguish SE from PE, and 
assumes that the reversibility in the pocket of the 
enzyme binding site occurs more or less 
instantaneously in either direction, properly 
accounts for the degree of saturation of the 
enzyme, so the ratio SE/Etot is correct whether it 
forms from S or P.  We could have used 
Hofmeyr's variant of the M-M model including the 
reversibility [16]. In a steady state they give the 
net forward flux, Vfnet, as the difference between 
the unidirectional forward and the unidirectional 
backward fluxes: 
 

-dS / dt =
Vfmax S / Ks -Vrmax P / Kp( )

1+S / Ks+P / Kp( )
 (20) 

where the denominator accounts for the enzyme 
occupancy by both S and P. The number of free 
parameters, four, is the same, given that we fixed 
kon1. In the high dose case particularly the 
denominator of Eq. 20 is large, as reflected in the 
slow degradation rate. This model assumes, as 
do the B-H/M-M models, that ETOT is small 
compared to S and P. In the particular cases we 
model, this is also true, but that restriction is not 
necessarily valid: in any progress curve 
experiment, as in the low dose case in this study, 
if product P were removed continuously the 
concentration of S would decrease to zero, 
violating the assumption that ETOT /S is small. If P 
is not removed, then the system would settle at 
equilibrium with dS/dt = 0, and the numerator of 
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Eq 20 would go to Vfmax S / Ks =Vrmax P / Kp( ) , 

and leads to the equilibrium ratio S/P at 
 

S

P
=

Vrmax

Vfmax


Ks

Kp

=
koff1
koff2


Ks

Kp

=
koff1

2 / kon1
koff2

2 / kon2
. (21) 

Because we have no information on 
concentrations of P, we have no real information 
on KP or kon2, but is useful to contemplate what 
other circumstantial evidence might constrain the 
estimates. By definition, at equilibrium

kon2 Kp = koff2 , so given the estimated values 

from Table 3 with koff2 = 14.4/sec and KP = 260 
mg/L, then if we think the low dose data might be 
reaching a constant S/P equilibrium by 15 hours 
one could calculate rough estimates of kon2 and 
conceivably revise the estimates of KP

 
from 

knowledge of the relative renal clearances of P 
and S.   
 
A reason for emphasizing using the differential 
equations rather than the algebraic expression in 
Eq. 21 is that the incorporation of salicylic acid 
into the salicylate-CoA form is a slow reaction, 
violating the M-M assumption of fast binding and 
unbinding. Using the full equations allows this, 
and the present study shows that the forward 
reaction is partially limited by both kon1 and koff2, 
latter being only 5 times the former. This is 
important in accounting accurately for rapid 
changes in concentrations, obviously important in 
the first moments after injecting or ingesting an 
actively metabolized substance. 
 
Even while arguing for the “full” model, we 
recognize many shortcomings our modeling, and 
in the data. The most obvious and worrisome is 
the simplification that pretends that the enzyme 
and the measured concentrations are in the 
same mixing tank, the circulating blood: the 
actuality is that the enzyme is really two enzymes 
[2] and they are not in the blood but in 
mitochondria of the liver and kidney. The 
intracellular localization means that a slow kon1 
becomes understandable in the light of the time 
required for convection-permeation-diffusion 
processes to enter the cells and to permeate the 
mitochondrial membrane, and for the time to take 
the same route in reverse for the reaction 
product, salicylurate to enter the blood and to be 
cleared into the urine by glomerular filtration. 
Bloch et al. [17] also model aspirin clearance, 
reporting similar results with a different modeling 
system. To assuage our guilt feelings for not 
accounting for these retarding processes, we 

developed a crude but more general model that 
does that. This more complex model 
(SalicylateBodyMIto #377 at www. physiome.org) 
considers the reactants S and P and the enzyme 
E to be in the mitochondrial space, so S and P 
need to permeate the cell and mitochondrial 
membranes to exchange with a whole-body-
blood-equivalent mixing chamber, in which S and 
P are measured, and from which both may be 
removed by renal clearance. Assuming fairly high 
permeabilities for S and P, and analyzing the 
data as described above, we obtained essentially 
similar values for KS, KP, and koff2 to those 
reported in Table 3. The conclusion is that 
accounting for the expected complicating and 
retarding influences had little effect on the 
identification of the key kinetics of the enzymatic 
process. 
 
The assertion, “All models are wrong but some 
are useful,” attributed to George E. P. Box [18] is 
appropriate for the models and analyses 
presented here. There are several different paths 
for the metabolism of salicylates [19] with 
different intermediate enzymes with different 
Vmax's and Km's [20]. If that weren't bad enough, 
taking plasma concentrations from multiple 
subjects and averaging them seems also 
somewhat dubious. Although we have been 
successful in fitting population averages from 
three different studies and demonstrating that 
using all the data markedly improves the 
apparent resolution in the parameter estimates, 
the results remains questionable. However, the 
critical message from this paper is that one 
cannot estimate the effective Km from either the 
low dose or the high dose data alone. One gets 
an approximate estimate from mid dose data. 
Then by using simultaneously the high mid and 
low dose data one gets not only confirmation of 
the approximation provided by the mid dose 
data, but increased accuracy for that estimate, 
presuming of course, that these different groups 
of humans are essentially similar. The variance 
of the parameter estimates are actually small 
compared to getting Km's from general sources 
like KEGG, and do represent human in vivo 
conditions, so making the values particularly 
relevant to popular usage. Much narrower 
confidence ranges can be determined using 
isolated enzymes in test-tube experiments, e.g. 
as for xanthine oxidase [21] or for glycolysis [22] 
but the conditions are rather different from            
in vivo. There is no doubt that greater precision 
would be gained if we could fit detailed data from 
individual subjects, and account for individual 
characteristics such as dose per kilogram of 
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body weight, sex of subject, age of subject, etc.; 
this would allow us to assess population 
variances meaningfully. 
 

The analyses using B-H/M-M and the differential 
equations for the enzyme model both provided 
comparisons of the results of individual versus 
simultaneous analysis of the three data sets, 
(Tables 2 and 4) giving evidence that better 
estimates of parameters are obtained when the 
analysis is required to include all the data at 
once. This is virtually always the case, and is the 
reason for undertaking large scale, multiscale 
modeling of biological systems, namely to enable 
the systematic, simultaneous analysis of multiple 
data sets simultaneously on multiple components 
of the system. Experiments designed to provide 
many measures of concentrations, fluxes, 
conditions, temperatures, and variant 
perturbations of the system are important for 
serious modeling analyses to assess working 
hypotheses on a biological system. 
 

Are the a priori conditions for considering the 
three sets of data together valid? A difficult 
question gives rise to an insecure answer: the 
groups were assayed by three different 
investigative teams at quite different times. But 
the measurement of plasma salicylate 
concentrations was pretty standardized by that 
time and reasonably accurate, well within the 
range of variation of the different people in each 
group. Probably sex differences should have 
been accounted for. But all were adult humans, 
making it reasonable to expect the variation in 
Km’s to be small compared to the huge range 
among species found for most enzymes in the 
KEGG repository. None of even the high dose 
group critically ill, so that their general conditions 
were close to normal. Our presumption that the 
groups were similar cannot be proven, but it 
would be as difficult to prove that they were not. 
Doubt lingers, but our judgment is that combining 
data sets in the analysis is more useful than not. 
 

Extending the analysis of multiple data sets to 
experiments where the relationships on the data 
are purely statistical, and are so inaccurate that 
only log2-fold comparisons are near the 
threshold for statistical evaluation, as in mRNA 
array data, is not compatible with our approach. 
“The invalid assumption that correlation implies 
cause is probably among the two or three most 
serious and common errors of human 
reasoning.”. Stephen Jay Gould [23]. Array 
analyses, mRNA and protein, reveal statistical 
associations, not relationships, mechanisms or 
causation. The a priori condition for biophysically 

and biochemically-based physiological modeling 
analysis is that one must have firm knowledge of 
system connectivity and stoichiometry, which is 
to say cause and effect relationships amongst 
elements of the modeled system (the 
“hypothesis”). One cannot conceive, even from 
replicated experiments done under the same 
conditions providing large amounts of noisy array 
data, of gaining much confidence concerning the 
nature of associations among chemical 
constituents, and even less in the parameter 
values.  
 
The models described here are available on the 
Physiome Model Repository as Model 369 at 
www.physiome.org. They and model 377 can be 
run over the web or downloaded and run on 
one’s own computer under the modeling system 
JSim. JSim can also be downloaded from the 
same site. 
 

7. CONCLUSIONS 
 
The modeling analysis of data, whether it is to 
provide descriptors or to determine mechanisms 
by which a system functions, gains accuracy by 
fitting several sets of data simultaneously with a 
common set of parameters. The greater the 
variety of good information represented by a 
single model the better the estimates of model 
parameters and the more secure the position of 
the model as a reasonable working hypothesis. 
What one seeks in biological modeling is a 
combination of goals: a secure description from 
which to make classifications; a comprehensive 
understanding of a self consistent system; a 
physicochemical system consistent with the laws 
of nature; an evaluation of confidence ranges for 
parameters and for the behavior of the system’s 
variables. In this study we use literature data 
covering a wide range of salicylate 
concentrations to estimate the parameters 
governing the clearance from the body, 
particularly on its enzymatic degradation. The 
range of the data, covering three-hundred fold in 
concentrations in three diverse groups, 
constrained the parameter estimates so that their 
coefficients of variation were less than 5%, a 
result not often achievable in clinical studies 
even with good experiment design, and 
emphasizing the power of integrating data from 
different sources.  
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APPENDIX 
 

Appendix 1. A: First order decay model 
 
import nsrunit; unit conversion on; 
math Decay {  
// INDEPENDENT VARIABLE 
realDomain t hour; t.min=0; t.max=16.0; t.delta=0.05; 
// PARAMETERS:  L for Low dose, M for Medium dose, and H for High dose 
real LS0 = 4.61 mg/L, MS0 = 71.8 mg/L, HS0 =338 mg/L;        // Initial concentration at t=0. 
real Lk = 0.33 1/hour, Mk = 0.156 1/hour, Hk = 0.0002 1/hour; // decay rates 
// DEPENDENT VARIABLES 
real LS(t) mg/L, MS(t) mg/L, HS(t) mg/L;             // Model concentrations for 3 data sets 
// INITIAL CONDITIONS 
when(t=t.min) {LS=LS0; MS=MS0; HS=HS0; }  //Concentrations projected back to t = 0 
// ORDINARY DIFFERENTIAL EQUATIONS 
LS:t = - Lk*LS;       // rate of disappearance of S in the low dose case 
MS:t = - Mk*MS;   // rate of disappearance of S in the medium dose case 
HS:t = - Hk*HS;     // rate of disappearance of S in the high dose case 
}   // program end 
 
Appendix 2. Model II: B-H/M-M model 
 
import nsrunit; unit conversion on; 
import nsrunit; unit conversion on; 
math BH_MM { // B-H and Michaelis-Menten use same equation but differing assumptions 
 
realDomain t hour; t.min=0; t.max=16.0; t.delta=0.05;          // defining time domain 
 
real LS0 = 4.6 mg/L, MS0 = 66 mg/L, HS0=337 mg/L;        // Init conc at t=0 defined 
real LBH(t) mg/L, MBH(t) mg/L, HBH(t) mg/L;                   //defining variables, concentration-time 
curves 
when (t = t.min) {LBH = LS0; MBH = MS0; HBH = HS0;}  //initial conditions applied 
real Km = 29.96 mg/L;                   // arbitrary starting value 
real Vmax = 7.7 mg/(L*hour);       // arbitrary starting value 
real VmaxOverKm = Vmax/Km;   // equivalent first order reaction rate, applicable at low concn 
 
LBH:t  = - Vmax*LBH / (Km + LBH);          // LBH to be fitted to the low dose data 
MBH:t = - Vmax*MBH / (Km + MBH);       // MBH to be fitted to the medium dose data 
HBH:t  = - Vmax*HBH / (Km + HBH);        // HBH to be fitted to the high dose data 
 
realDomain S mg/L; S.min=1e-1; S.max=1e3; S.delta=1e-1;  //defining a concentration domain, S 
real dSdt(S) mg/(L*hour);                                                         //defining a flux on this domain 
dSdt =  - Vmax*S/(Km+S);                                                       // equation for M-M flux as fn of S 
 
}   // program end 
 
Appendix 3. Model III: Enzyme model 
 
import nsrunit; unit conversion on; 
math Enzyme { /* Three identical models used to weight the three data 
                              sets individually for optimization.  
                              L is low dose, M is mid dose, H is high dose, 
                              S: salicyclic acid, E: free enzyme, SE: the complex, P: product */          
// INDEPENDENT VARIABLE 
realDomain t hour; t.min=0; t.max=90.0; t.delta=0.1; 
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// PARAMETERS SAME FOR THE THREE MODELS ANALYZING ALL THREE DATA SETS 
 
real  kon1   = 3  L*mg^(-1)*sec^(-1), // On rate  for SA + E → SE 
      koff1           1/sec,                        // Off rate for SE -> SA + E 
      kon2            L/(mg*sec),             // On rate  for P  + E -> SE 
      koff2  = 13  1/sec,                       // Off rate for PE -> P + E 
      Etot   = 1.5e-4  mg/L,                 // Total enzyme (Coenzyme A) 
      Km                 mg/L,                   // Km = (koff1+koff2)/kon1, Michaelis constant 
      Vmax             mg/(L*hr),           // Vmax = koff2*Etot  
      Ks     = 10      mg/L,                   // = koff1/kon1 dissociation constant for S binding to E  
      Kp     = 100   mg/L;                    // = koff2/kon2 dissociation constant for P binding to E 
// CALCULATED PARAMETERS 
       koff1= kon1*Ks;                       // solving for koff1 
       Kp   = koff2/kon2;                    // solving for kon2 
       Vmax = koff2*Etot;                  // reaction velocity at enzyme saturation 
       Km   = (koff1+koff2)/kon1;     // Michaelis constant, equal to Ks when koff2 is small 
 //   INITIAL DOSE PARAMETERS, PREFIXED L, M, H, FOR LOW, MID, AND HIGH DOSES 
real LS0 = 5.07  mg/L,               
      MS0 = 64.59 mg/L, 
      HS0 = 335.0 mg/L, 
 //   DOSE MODEL VARIABLES (All are functions of time) 
      LS(t)  mg/L,  LSE(t) mg/L,  LE(t) mg/L,  LP(t) mg/L,   // Substrate, complex, enzyme, product in 
Low study 
      MS(t)  mg/L, MSE(t) mg/L, ME(t) mg/L, MP(t) mg/L,  // Substrate, complex, enzyme, product in 
Mid study  
      HS(t)  mg/L, HSE(t) mg/L,  HE(t) mg/L,  HP(t) mg/L,  // Substrate, complex, enzyme, product in 
High study                          
 //   DOSE INITIAL CONDITIONS 
 when(t=t.min) {LS = LS0;  LSE  = 0;  LP=0; 
                          MS = MS0; MSE = 0; MP=0; 
                           HS = HS0; HSE = 0; HP=0; } 
 //    ORDINARY DIFFERENTIAL AND MASS BALANCE EQUATIONS 
 LS:t    = -kon1*LS*LE + koff1*LSE; 
 LSE:t  =  kon1*LS*LE - koff1*LSE - koff2*LSE + kon2*LE*LP; 
 LP:t    =                                                 koff2*LSE - kon2*LE*LP; 
 LE      =  Etot - LSE; 
 
 MS:t    = -kon1*MS*ME + koff1*MSE; 
 MSE:t  =  kon1*MS*ME - koff1*MSE - koff2*MSE + kon2*ME*MP; 
 MP:t    =                                                    koff2*MSE  - kon2*ME*MP; 
 ME      =  Etot - MSE; 
 
 HS:t    = -kon1*HS*HE + koff1*HSE; 
 HSE:t  =  kon1*HS*HE - koff1*HSE - koff2*HSE + kon2*HE*HP; 
 HP:t    =                                                   koff2*HSE - kon2*HE*HP; 
 HE      =  Etot - HSE; 
 
}   program end 
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