Ondiany, John Joseph O. and Karieko, Obogi Robert and Mude, Lao Hussein and Monari, Fred Nyamitago (2024) On the Number of Cyclic Codes Over \(\mathbb{Z}_{31}\). Journal of Advances in Mathematics and Computer Science, 39 (7). pp. 55-69. ISSN 2456-9968
Ondiany3972024JAMCS119485.pdf - Published Version
Download (738kB)
Abstract
Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over
. First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes.
Item Type: | Article |
---|---|
Subjects: | Afro Asian Archive > Mathematical Science |
Depositing User: | Unnamed user with email support@afroasianarchive.com |
Date Deposited: | 11 Jul 2024 05:17 |
Last Modified: | 11 Jul 2024 05:17 |
URI: | http://info.stmdigitallibrary.com/id/eprint/1355 |