On the Number of Cyclic Codes Over \(\mathbb{Z}_{31}\)

Ondiany, John Joseph O. and Karieko, Obogi Robert and Mude, Lao Hussein and Monari, Fred Nyamitago (2024) On the Number of Cyclic Codes Over \(\mathbb{Z}_{31}\). Journal of Advances in Mathematics and Computer Science, 39 (7). pp. 55-69. ISSN 2456-9968

[thumbnail of Ondiany3972024JAMCS119485.pdf] Text
Ondiany3972024JAMCS119485.pdf - Published Version

Download (738kB)

Abstract

Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over
. First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes.

Item Type: Article
Subjects: Afro Asian Archive > Mathematical Science
Depositing User: Unnamed user with email support@afroasianarchive.com
Date Deposited: 11 Jul 2024 05:17
Last Modified: 11 Jul 2024 05:17
URI: http://info.stmdigitallibrary.com/id/eprint/1355

Actions (login required)

View Item
View Item